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Abstract

Bacteriophages can help the treatment of bacterial infections yet require in-silico models to deal with the great genetic diversity
between phages and bacteria. Despite the tolerable prediction performance, the application scope of current approaches is limited to
the prediction at the species level, which cannot accurately predict the relationship of phages across strain mutants. This has hindered
the development of phage therapeutics based on the prediction of phage–bacteria relationships. In this paper, we present, PB-LKS, to
predict the phage–bacteria interaction based on local K-mer strategy with higher performance and wider applicability. The utility of
PB-LKS is rigorously validated through (i) large-scale historical screening, (ii) case study at the class level and (iii) in vitro simulation of
bacterial antiphage resistance at the strain mutant level. The PB-LKS approach could outperform the current state-of-the-art methods
and illustrate potential clinical utility in pre-optimized phage therapy design.
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INTRODUCTION
Bacteriophages (Phages), known as the viruses for bacteria, are
the most abundant organism in the biosphere and can be found
in all places where their bacterial hosts exist [1]. Current stud-
ies showed that the use of phages to cure bacterial infection
could be a promising alternative to chemical antibiotics [2]. More
importantly, with the rapid emergence of drug-resistant bacteria
caused by the overconsumption of antimicrobials, phage ther-
apy shows therapeutic effects for drug-resistant bacteria [3]. The

effectiveness of phage therapy is based on the mechanism that
therapeutic phages could specifically lyse the bacteria which
caused the disease without harming other commensal bacteria.
This is mainly because a phage only infects target bacteria which
express its receptor [4]. Lytic phages lyse the host cell to release
progeny viruses, which can be a great candidate for the treatment
of bacterial infection [5]. Lysogenic phages integrate their nucleic
acid into the host cell’s DNA or plasmid and replicate without
destroying the cell [4]. In addition, a previous study indicated that
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the combined therapy of phage and antibiotics could improve
the susceptibility of drug-resistant bacteria to antibiotics and
reduce the emergence of resistant bacteria [6]. Meanwhile, the
antibacterial spectrum of phages is considerably narrow, which
means that a phage tends to have an antibacterial effect on only
several or a certain class of bacteria while becoming inefficient
for other bacteria. Therefore, the effectiveness of phage therapy
relies on the correct match between phage and its host bacteria.

Commonly used experimental approaches to identify phage–
bacterial interactions included plaque assays [7], liquid assays
[8], viral tagging [9], single-cell sequencing [10] and so on, which
were time-consuming and expensive [11] with limited scopes of
application to the dramatically increasing number of both phages
and bacteria. Therefore, computational approaches for phage–
bacteria interaction prediction, which feature high-throughput
and culture-independent characteristics, are highly desired [12].
Currently, the computational methods based on metagenomic
sequencing and assembly of viral contigs can be roughly divided
into alignment-based methods and alignment-free methods
[13]. The theoretical basis of alignment-based methods is that
the host bacteria usually contain the genomic fragment of the
phage [14, 15]. This kind of method relies on the homology
sequence alignment between the query phage and host genome,
which illustrates high accuracy in the prediction of the phage–
bacteria relationship [16]. Among them, BLAST- and CRISPR-based
approaches were widely applied. CRISPR-based approaches could
obtain higher accuracy than BLAST-based methods but can only
be applied to 40–70% of the prokaryotes that encode a CRISPR
system [12]. Thus, alignment-based methods are not suitable for
the prediction of many novel phage–bacteria relationships.

The alignment-free methods of co-variation analysis link the
abundance of co-variation between phage and bacteria sequences
across metagenomes in an environment without constructing an
explicit homology sequence alignment. This kind of approach
can be applied to newly identified phages or bacteria; however,
previous studies indicated that the accuracy is relatively lower
than approaches involving the sequence homology information
[12]. Another alignment-free method is the sequence composition
method, which is based on the phenomenon that phages and
their hosts often share similar patterns in codon usage or short
nucleotide words (K-mer) [17, 18]. Representative works, such
as HostPhinder [19], VirHostMatcher (VHM) [20], LMFH-VH [21],
ILMF-VH [22], Prokaryotic virus Host Predictor (PHP) [23] and
WIsH [24], generated sequence composition features to predict
the phage–bacteria interaction. For example, HostPhinder cal-
culated the K-mer similarity of a query phage to each phage
with the known host in the reference phage database; the host
of the query phage was considered as the host of that phage
with most similar K-mer in the database [19]. This means that
the prediction accuracy of HostPhinder might be reduced if no
phage with high K-mer similarity in the phage database can be
found. VHM introduced d2

∗, which is a measurement with back-
ground normalization to calculate the oligonucleotide frequency
dissimilarity between phages and hosts, while the bacterium with
the lowest score is considered the predicted host [20]. With the
integrative information from phage–phage, host–host and phage–
host association networks, LMFH-VH and ILMF-VH generated the
kernelized logistic matrix factorization algorithm based on net-
work similarity fusion and heterogeneous networks for phage–
host interaction prediction, respectively. Also, PHP introduced a
Gaussian model to calculate the differences in K-mer frequencies
between phage and host genome sequence, and the host with the
top-ranked score can be considered as a potential host for phage.

The prediction accuracy of the above models at the genus level is
ranged from 33% to 58.9% [23]. Furthermore, WIsH [24] is regarded
as a useful tool for phages with short contigs, which trained
a homogeneous Markov model for each potential host genome
and calculates the likelihood of contigs under each model. The
one whose model yielded the highest likelihood is considered
the host for query phage. For WIsH, the prediction accuracy can
reach 63% on the database of 3 kbp phage contigs. However, the
prediction accuracy of current alignment-free methods still has
room for improvement. This is because the current alignment-
free methods rely on the sequence composition features of the
whole genome for prediction, which ignores the fact that phage
often integrates its genome in the local segments rather than the
whole genome sequence of the bacteria genomes. Moreover, the
above methods often utilize features from reference databases or
interaction networks, in which the prediction fineness can only be
achieved at the genus or species level, not for mutants.

The whole genome size of known phages ranged from 2435 bp
to 540 kbp, which is smaller than the whole genome size from
112 kbp to 14 Mbp for bacteria [25, 26]. The magnitude differences
mean that the gene segment of the phage cannot be evenly
integrated into the entire genome of the bacteria, which will lead
to the incorrect prediction of alignment-free methods based on
the whole genome sequence. Thus, we proposed a local K-mer
strategy (LKS) instead of global genome sequence analysis to
construct the in-silico prediction model for phage–bacteria inter-
action (PB-LKS). First, the most similar segments (MSSs) in both
the phage and bacteria genomes will be screened through the
sliding windows before calculating the K-mer frequency of the
sequence composition. Then, the K-mer frequencies were used
as the descriptors to generate the prediction model with the
appropriate algorithm.

The ability of PB-LKS to predict the phage–bacteria interaction
is rigorously evaluated on both intra- and interdatasets at
different taxonomy levels. It is initially tested through the
historical experimentally validated data of 1342 pairs of phage–
bacteria relationships, in which PB-LKS could provide a good
performance from the kingdom level to the genus level. Then,
its ability to pick up positive Antinobacteriophage for bacterial
strains from Actinomycetes at the class level was tested on 3455
phage–bacteria interaction pairs derived from PhagesDB [27].
Furthermore, we challenged the utility of PB-LKS at the strain
level, to predict the experimentally tested relationships between
a previously described phage φAb124 [28] and nine Acinetobacter
baumannii. In general, the PB-LKS model could not only provide a
high prediction ability to identify the interaction between phages
and bacteria strains but also hold the potential to help design
clinical phage therapy.

METHODS
LKS-based descriptor generation
This model aimed to construct an alignment-free model to predict
phage–bacteria interaction, based on the similarity of co-occurred
K-mers. Detailed steps include the followings.

Step1. Local segments splitting. Both the whole genome
sequences of phages and bacteria were split into a series of
segments using a sliding window. The whole genome sequences
consist of a complete genome sequence or several contigs. For
the phages and bacteria with a complete genome sequence, the
segments were split based on the whole genome sequence, and
the whole genome sequence was defined as the split-sequence if
the length was shorter than the window size. For genomes that
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consist of several contigs which is longer than the window size,
the segments were split on each contig, while the segments were
defined as the longest contig if the length of every contig is shorter
than the window size. The window size ranged from 1000 bp to
15 000 bp. For each window size, three step lengths were tested.

Step2. K-mer frequency calculation for each segment. For each
sequence segment of phages and bacteria, the K-mer frequency
fk−mer was calculated (K-mer length from 3 to 5). The host vector of
fhost
k−mer and phage vector of fphage

k−mer both contained 64-element, 256-
element and 1024-element score of all possible 3-nucleotide, 4-
nucleotides and 5-nucleotide combination, respectively.

Step3. Screening the MSS. The MSSs between phages and bacte-
ria were defined as those with the largest correlation coefficient of
fk−mer. The correlation coefficient was calculated using the corrcoef
function of numpy 1.22.2 package in Python 3.10.2.

Step4. Calculation of local K-mer descriptor. For the selected
MSS, the local K-mer descriptor was defined as the difference
between fphage

k−mer and fhost
k−mer.

In the end, the local K-mer descriptor contained the 64-
element, 256-element and 1024-element vectors, describing the
K-mer difference of the most similar local segment among the
whole genome of phage and host.

Algorithm design of PB-LKS
The local K-mer strategy for phage–bacteria interaction prediction
involved four steps (Figure 1): (i) divide the genome sequences
from both phage and bacteria into segments through sliding
windows with defaulted window length (WL) and step size (SS,
Figure 1A). (ii) Count the frequency of each K-mer to generate
the K-mer frequency descriptors for each segment (Figure 1B).
(iii) Rank the correlation coefficient of K-mer descriptors for
all of the pairwise segments from the phage and the bacteria
to detect the MSS pairs (Figure 1C). (iv) Calculate the local
K-mer descriptor defined by the difference between K-mer
features from the phage genome and K-mer features from
bacteria (Figure 1D). (v) Constructing the PB-LKS model by
combining descriptors with appropriate algorithms. The model
is designed to provide the interaction prediction for any phage
and bacteria with a complete genome sequence (Figure 1E).
The dataset used for Model construction and evaluation can
be found in the ‘Supplementary Methods Datasets’ part (see
Supplementary Data available online at http://bib.oxfordjournals.
org/), and detailed statistics of the training and test dataset are
listed in Supplementary Tables 1 and 2 (see Supplementary Data
available online at http://bib.oxfordjournals.org/).

Parameter optimization and model selection of
PB-LKS
The key elements of the PB-LKS approach included two essen-
tial parts: (i) optimize WL and SS for each segment to generate
descriptors for phage and bacteria and (ii) appropriate learning
approaches for model construction. Here, we set an initial WL
and an SS of 1000 bp, respectively. Then, to obtain the opti-
mized PB-LKS parameters for phage–bacteria interaction predic-
tion, we performed a screening test that traversed the WL ranged
from 1000 bp to 15 000 bp with SS set as 0.2 WL, 0.4 WL and
0.8 WL, respectively (Supplementary Table 3, see Supplementary
Data available online at http://bib.oxfordjournals.org/). Further-
more, considering it is a standard binary classification problem
that deals with vector information, machine-learning approaches
including Bayesnet, Hoeffding Tree, Logistic Regression, Random
Tree, Random Forest, XGBoost and Support Vector Machine (SVM),
as well as deep-learning approaches of Multi-Layer Perceptron

(MLP), Convolutional Neural Network (CNN), Recurrent Neutral
Network (RNN) and Bidirectional RNN (Bi-RNN), were introduced
for model selection.

RESULTS
Model construction of PB-LKS
The performance of machine learning approaches through 10-
fold cross-validation on the initial parameters at the genus level
is illustrated in Table 1. Results showed that the model of Random
Forest could achieve the highest performance with an ROC-AUC
of 0.803 and an accuracy of 0.727, followed by the performance of
Logistic regression with an ROC-AUC of 0.780 and an accuracy of
0.712. Considering the better performance of Random Forest com-
pared with all others, it was selected for parameter optimization
(see Methods).

Furthermore, a 10-fold cross-validation of the training dataset
was provided to evaluate the performance of different parameter
combinations through a Random Forest classifier (Supplemen-
tary Tables 4–8, see Supplementary Data available online at http://
bib.oxfordjournals.org/). Results showed that increasing the WL
at the beginning (1000–9000 bp) can significantly increase pre-
diction performance from 0.770 to 0.860. Meanwhile, with WL
greater than 9000 bp, the value of ROC-AUC was maintained to
be stable from 0.860 to 0.868, with deviations less than 0.01(Sup-
plementary Table 4, see Supplementary Data available online at
http://bib.oxfordjournals.org/). The further increase of WL may
sometimes decrease the accuracy from 0.775 (WL of 9000) to 0.764
(WL of 10 000) (Supplementary Table 5, see Supplementary Data
available online at http://bib.oxfordjournals.org/), which means
that the WL ranged above 9000 will no further increase the
prediction performance. On the other hand, it seems that the
step at the first level (0.2 WL) could provide the best prediction
performance than the higher SS. Thus, we use the WL of 9000 bp
and SS of 1800 bp for optimized parameters to construct the local
K-mer descriptor.

The length of K-mers is also an important parameter for phage–
host interaction prediction; the prediction models constructed
with K-mer length from 3 to 5 were validated through a 10-
fold cross-validation and independent testing dataset (Supple-
mentary Tables 9–14, see Supplementary Data available online
at http://bib.oxfordjournals.org/). The result shows that the
prediction model based on 4-mer outperformed models based
on 3-mer and 5-mer on both inter- and intravalidation, with an
ROC-AUC of 0.860 on 10-fold cross-validation at the strictest
genus level and an ROC-AUC of 0.801 on independence test
dataset at the strictest genus level (Supplementary Tables 10
and 13, see Supplementary Data available online at http://bib.
oxfordjournals.org/). Meanwhile, the ROC-AUC of the model
based on 3-mers shows 0.853 on 10-fold cross-validation of
the training set and shows 0.797 on the independent test
set (Supplementary Tables 9 and 12, see Supplementary Data
available online at http://bib.oxfordjournals.org/). In addition, the
model constructed with 5-mer gave an ROC-AUC of 0.841 on 10-
fold cross-validation of the training set at the genus level and
shows that of 0.785 on the test set (Supplementary Tables 11
and 14, see Supplementary Data available online at http://bib.
oxfordjournals.org/). Therefore, the local K-mer descriptor was
designed with a WL of 9000 bp and SS of 1800 bp and K-mer length
of 4, and we constructed a phage–bacteria interaction prediction
model based on different machine learning algorithms such as
Random Forest, XGBoost, SVM and deep learning algorithms
such as MLP, CNN, RNN and Bi-RNN. The performance of the
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Figure 1. Workflow of PB-LKS approach. (A) Dividing the phage genome and the bacteria genome into multiple segments with defaulted WL and SS.
(B) Generating the K-mer profile of all the phage–bacteria segment pairs. (C) Ranking the pairwise segments based on the correlation coefficient of

K-mer descriptors. (D) Defining the model descriptor as the difference between the K-mer feature from phage (fphage
k−mer ) and the K-mer feature from host

bacteria (fhost
k−mer). (E) Modeling the phage–bacteria interaction through the optimal algorithm.

above models is evaluated through 10-fold cross-validation on the
training set and further test on independence test set at different
taxonomy levels including kingdom, phylum, class, order, family
and genus (Supplementary Tables 15–28, see Supplementary

Data available online at http://bib.oxfordjournals.org/). For 10-
fold cross-validation, prediction models constructed by Random
Forest, XGBoost and SVM show an ROC-AUC of 0.860, 0.864 and
0.870 at the genus level, while models constructed by MLP, CNN,
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Table 1: Performance of machine learning approaches on initial testing by setting the WL of 1000 bp and SS of 1000 bp

Machine learning approaches Accuracy Sensitivity Specificity Precision F-score ROC-AUC

Bayesnet 0.606 0.606 0.606 0.622 0.593 0.695
Hoeffding Tree 0.613 0.613 0.613 0.622 0.605 0.698
Logistic Regression 0.712 0.712 0.712 0.712 0.712 0.780
Random Tree 0.688 0.688 0.688 0.688 0.688 0.688
Random Forest 0.727 0.715 0.739 0.720 0.713 0.803

RNN and Bi-RNN give an ROC-AUC value of 0.782, 0.782, 0.770
and 0.717, respectively (Figure 2A and Supplementary Tables 15–
21, see Supplementary Data available online at http://bib.
oxfordjournals.org/). Meanwhile, the Random Forest model and
XGBoost model show an ROC-AUC of 0.801 and 0.817 at the
genus level on the independence dataset. Compared with RF and
XGBoost, the SVM model and deep learning models illustrated
relatively lower prediction performance; the ROC-AUC value of
four deep learning models is less than 0.8 at the genus level
(Figure 2B and Supplementary Tables 22–28, see Supplementary
Data available online at http://bib.oxfordjournals.org/). The 10-
fold cross-validation result illustrated the superior performance
of machine learning models, and the worse performance of
DL methods on the independence test set further indicated
that deep learning approaches are unsuitable for the PB-LKS
model based on the local searching strategy K-mer descriptors.
Meanwhile, the model constructed by XGBoost could achieve
Minor enhancements than those of RF on all the tested scenarios
with a difference of less than 2.5% at all taxonomy levels
(Supplementary Tables 15–16, 22 and 23, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Considering the
interpretability of the different models, we finally chose Random
Forest to construct the PB-LKS model but also retained the Python
package constructed by XGBoost for potential usage.

High performance of PB-LKS on general
phage–bacteria interaction prediction
With the optimized parameters and algorithm, the PB-LKS was
evaluated through 10-fold cross-validation at different taxonomy
levels including kingdom, phylum, class, order, family and
genus. Common evaluation parameters for binary classification
including ROC-AUC, accuracy, recall, specificity, precision and
F-score were used for model validation (see ‘Supplementary
Model construction and evaluation’ part, see Supplementary
Data available online at http://bib.oxfordjournals.org/). It can
be found that from the kingdom level to the genus level, the
ROC-AUC value decreased from 0.959 to 0.860 (Figure 3A and
Supplementary Table 15, see Supplementary Data available
online at http://bib.oxfordjournals.org/). This is reasonable
that the prediction performance decreased with the increasing
classification fineness because, for a broader taxonomy level, it
is easier to distinguish the difference between positive pairs from
negative ones. More importantly, even in the most restrictive
prediction at the genus level, the PB-LKS could provide a high
prediction performance with an ROC-AUC of 0.860, an accuracy
of 0.775 and a recall of 0.792 (Supplementary Table 15, see
Supplementary Data available online at http://bib.oxfordjournals.
org/).

Furthermore, for independent testing, the performance was
relatively stable, with ROC-AUC value ranging from 0.752 to 0.852
(Figure 3B), which illustrated that the computational model could
provide accurate prediction at different taxonomy levels. The
prediction at the taxonomy level of phylum could achieve the

Figure 2. Performance of models constructed by different machine
learning algorithms and deep learning algorithms at different taxonomy
levels. (A) Ten-fold cross-validation performance on the training set.
(B) Validation performance on the independent test set.

best prediction performance with an ROC-AUC value of 0.852
and followed by the taxonomy level of class with an ROC-AUC
value of 0.842 (Figure 3B and Supplementary Table 22, see Sup-
plementary Data available online at http://bib.oxfordjournals.
org/). The performance at the genus level could reach the ROC-
AUC of 0.801 and accuracy of 0.801. Moreover, considering the
potential imbalanced situation in reality that positive pairs are
expected to be significantly less than negative ones, while it is
more important to discover positive samples than negative ones,
we introduced PR-AUC for evaluation. Results showed that the PR-
AUC could obtain performance from 0.848 to 0.931 at different
taxonomy levels (Figure 3C). Similarly, the taxonomy of phylum
achieved the best prediction performance with a PR-AUC value
of 0.931 and followed by the taxonomy level of class with a PR-
AUC value of 0.924 (Figure 3C). For the strictest genus level, PB-
LKS could achieve the PR-AUC of 0.892. All above illustrated that
PB-LKS could provide a good prediction performance of the phage–
bacteria interaction based on multiple perspectives of evaluation,
indicating the ability to provide an accurate determination of
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Figure 3. Model performance of constructed Random Forest model at different taxonomy levels. (A) Ten-fold cross-validation performance. (B) The
Receiver Operating Characteristic curve on the independent test dataset. (C) The Precision-Recall curve on the independent test dataset.

Table 2: Performance of PB-LKS model and other state-of-the-art methods at the genus levels on independent test set

Predicted method Accuracy Recall Specificity Precision F-score ROC-AUC

PB-LKS 0.801 0.801 0. 801 0.803 0.801 0.801
PHP 0.730 0.730 0.729 0.813 0.710 0.730
BLAST 0.751 0.751 0.751 0.829 0.736 0.751
CRISPR 0.546 0.545 0.546 0.762 0.427 0.546

phage–bacteria interactions at different taxonomy levels. Note
that, the predicted probability score ranged between 0 and 1. The
267 wrong predictions included 108 false negatives and 159 false
positives. Further investigation showed that 20% of the scoring
region (0.4, 0.6) contains 54.682% of the wrong predictions, which
means that this is the ‘fuzzy region’ that requires extra attention.

Finally, we compared PB-LKS to state-of-the-art alignment-free
and alignment-based models. Considering the potential utility of
PB-LKS in phage therapy, correctly predicting ‘positive samples’
is regarded as the most important function, recall was therefore
an important measurement to evaluate the performance of these
models.

The prediction performance on the same testing dataset of 671
phage–bacteria pairs illustrated that the alignment-free model
PHP [23] based on K-mer frequencies could only provide a recall
rate of 0.46 at the genus level, which is defined as host prediction

accuracy in other researches. For the alignment-based model,
CRISPR [29] and BLAST [30] algorithms could achieve a recall of
0.59 and 0.77 at the genus level, respectively. Furthermore, we
also testified the PB-LKS model with state-of-the-art methods of
PHP, BLAST and CRISPR on the independence test set. Results
showed that, at the genus level, above state-of-the-art methods
could be outperformed by PB-LKS with an ROC-AUC of 0.80 and
a recall of 0.80 (Table 2). Meanwhile, other methods showed ROC-
AUC from 0.546 to 0.730 at the genus level, and the BLAST and
CRISPR methods can only predict hosts for 596 and 89 phages from
the independence dataset which includes 671 phages. Detailed
comparison results at the different taxonomy levels are listed
in Supplementary Tables 29–31 (see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/). According to these
results, the PB-LKS model could conduct a comparable predic-
tion performance at the strictest genus level compared with the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae010#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae010#supplementary-data
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http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Table 3: Pickup rate for prediction of Actinobacteriophages–host interaction at different taxonomic levels

Host Strain Number of Phages Class Order Family Genus

M. smegmatis mc2155 1739 99.655% 99.540% 98.735% 98.735%
G. terrae 3612 418 93.301% 93.541% 93.541% 92.823%
M. foliorum NRRL B-24224 366 98.361% 98.361% 96.721% 97.268%
Arthrobacter sp. ATCC 21022 213 79.812% 76.995% 76.526% 77.934%
S. griseus ATCC 10137 105 91.429% 84.762% 84.762% 89.524%

Table 4: Prediction result of PB-LKS and other state-of-the-art tools and experimental result of interaction between phage φAb124 and
bacteria B1–B9 at different taxonomic levelsa

B1 B2 B3 B4 B5 B6 B7 B8 B9

Experimental result 1 0 1 1 0 0 1 1 1
Predicted label of BLAST 0 0 0 0 0 0 0 0 0
Predicted label of PHP 0 0 0 0 0 0 0 0 0
Predicted label of PB-LKS 1 1 1 0 1 0 1 1 1
Predicted Score of PB-LKS 0.519 0.564 0.519 0.449 0.521 0.489 0.524 0.627 0.625

a‘1’ represents that the interaction of phage φAb124 and the bacteria was predicted as phage–host, ‘0’ represents that the interaction of phage φAb124 and the
bacteria was predicted as phage–nonhost.

alignment-based models and with the wide application scope as
the alignment-free methods.

High performance at the class level of
Antinobacteriophage–host interaction
Actinobacteria is a group of bacteria that exhibits a cosmopolitan
distribution [31], which can cause a variety of bacterial infection-
based diseases, such as tuberculosis [32], leprosy [33] and acti-
nomycosis [34]. To further verify the effectiveness of PB-LKS to
identify the potential therapeutic phages, which target the bac-
teria that cause the above diseases, we narrow down the pre-
diction spectrum from the kingdom level to a specific order of
Actinobacteria. The independent testing dataset was derived from
PhagesDB [27], which included 3455 pairs of Actinobacteriophage–
host interactions. Here, we re-evaluate the above experimentally
identified pairs through PB-LKS to calculate the pick-up rate for
different taxonomies. Results showed that the pick-up rate could
be reached at 92.851% (genus), 93.227% (family), 93.777% (order)
and 94.588% (class), respectively, indicating the good prediction
performance of the PB-LKS model.

Furthermore, the host of 3455 Actinobacteriophages includes
67 bacterial strains, all of which belong to the Actinomycetes
at the class level. Among them, the top five strains contained
over 80% of the phage–bacteria pairs, including Mycobacterium
smegmatis mc2155, Gordonia terrae 3612, Microbacterium foliorum
NRRL B-24224, Arthrobacter sp. ATCC 21022 and Streptomyces griseus
ATCC 10137 (Supplementary Figure 1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The prediction
performance on these strains was systemically evaluated through
PB-LKS (Table 3). Note that, for the most abundant strain of M.
smegmatis mc2155, 1739 phage–bacteria pairs were included and
the pick-up rate for all taxonomy could reach a high level of
98.735%. Similar good performance can be found for the second
and third abundant groups of G. terrae 3612 and M. foliorum NRRL
B-24224, while the pick-up rate could reach 92.823% and 97.268%
at the strictest level of genus, respectively. It is also noted that the
prediction performance was different even on different strains,
the pick-up rate reduced to 77.934% and 89.524% when the data
abundance started to decrease. The above results showed that
PB-LKS could achieve good prediction performance at the class
taxonomy level, the reduced performance on Arthrobacter sp. ATCC
21022 and S. griseus ATCC 10137 might be caused by the following

possible reasons: (i) the biases due to the small amount of data
and (ii) the strains rarely involved in the PB-LKS model (only two
pairs for Arthrobacter available in our dataset). Meanwhile, the
results indicated that further improvements were also needed
when applying the PB-LKS to specific cases.

The potential utility of PB-LKS for clinical practice
The phage therapies used in clinical trials usually need to select
the phage that could lyse the specific bacteria strain, which
requires the accurate prediction of phage–bacteria interaction at
the strain level. Thus, we further evaluate the prediction of PB-
LKS in strain level to testify the potential utility in clinical usage.
Here, the nine tested A. baumannii bacteria were derived from
CRAB-infected patients or in vitro evolution, which were labeled
as B1–B9 (see ‘Supplementary Methods Bacteria Strain isolation
and sequencing’ part, see Supplementary Data available online at
http://bib.oxfordjournals.org/), respectively. Whether previously
reported phage φAb124 could invade and lyse these nine bacte-
ria were evaluated through PB-LKS, which has been experimen-
tally verified (see ‘Supplementary Methods Phage susceptibility
assay’ part, see Supplementary Data available online at http://bib.
oxfordjournals.org/).

We first tested the performance of current available alignment-
free or alignment-based methods on the above phage and bacte-
ria. Results showed that the alignment-free method of PHP [23]
predicted the host of φAb124 as Moritella sp. PE36, which belongs
to the taxonomy level of Bacteria, Pseudomonadota, Gammapro-
teobacteria, Alteromonadales, Moritellaceae and Moritella. How-
ever, B1–B9 are identified as A. baumannii, which belongs to the
taxonomy level of Bacteria, Pseudomonadota, Gammaproteobac-
teria, Moraxellales, Moraxellaceae and Acinetobacter. Thus, the PHP
could only provide correct prediction at the class level. On the
other hand, the alignment-based method of BLAST can correctly
detect the host of φAb124 at the species level by predicting it
as A. baumannii strain AB179-VUB (Supplementary Table 32, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). These two methods give a prediction accuracy of 33.3%
for the interactions between phage φAb124 and bacteria B1–B9,
which predicted all nine pairs as negative (Table 4). This means
that the alignment-based method could provide accurate pre-
diction at the species level but fail to provide the specific host
strains.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae010#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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http://bib.oxfordjournals.org/
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http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae010#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 4. (A) Two MSSs of phage φAb124 screened by PB-LKS between phage φAb124 and bacteria B1–B9. (B) Phage susceptible pattern of nice CRAB
strains to phage φAb124. P1–P4 representing the strains derived from patient 1 to patient 4 in our previous study [28]. (C) The Efficiency of Plating assay
of phage φAb124 on bacteria B1, B2 and B9.

Meanwhile, PB-LKS could successfully predict that the A. bau-
mannii is the host for φAb124. Interaction prediction between
phage φAb124 and bacteria B1–B9 by PB-LKS model was based on
the screened MSSs. The prediction result shows that 2 MSSs on

φAb124 were detected, one in the range from 12 601 to 21 600 for
B7, while the other MSS in the range from 14 401 to 23 400 for B1,
B2, B3, B4, B5, B6, B8 and B9 (Figure 4A). Furthermore, the predicted
scores of PB-LKS illustrated that bacteria B1, B2, B3, B5, B7, B8 and
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Table 5: Feature importance of screened core features at different taxonomy levels

Core features Kingdom Phylum Class Order Family Genus

TAAA 0.017 0.020 0.032 0.019 0.023 0.013
TTAA 0.017 0.015 0.024 0.020 0.020 0.025
TTTA 0.015 0.020 0.024 0.020 0.016 0.017
ATAT 0.014 0.007 0.013 0.011 0.008 0.007
AAAT 0.014 0.013 0.016 0.012 0.017 0.011
GTCG 0.011 0.023 0.017 0.008 0.017 0.014
AATA 0.008 0.008 0.008 0.014 0.010 0.009
TCGA 0.008 0.010 0.009 0.007 0.009 0.005
TTAT 0.008 0.027 0.014 0.016 0.015 0.011
ATTA 0.008 0.013 0.017 0.024 0.013 0.019

B9 were over the threshold (>0.5), while B4 and B6 were below the
threshold (Table 4), which indicates that seven strains were the
potential host for φAb124. The phage lysis experiments indicated
that B1, B3, B4, B7, B8 and B9 were sensitive for phage φAb124,
while B2, B5 and B6 were insusceptible (Figure 4B). Besides B3–
B8 that were validated before [28], bacterial plaque of three new
strains including B1, B2 and B9 were further tested through the
efficiency of plating assay (Figure 4C). The experiments showed
that PB-LKS could give an accuracy of 66.667% (6/9) on all tested
samples, a recall rate of 83.333% (5/6) on all positive samples and
a precision of 71.429% (5/7).

Moreover, the predicted probability score of PB-LKS between
φAb124 and nine bacteria ranged from 0.449 to 0.627, while the
three mispredictions were B2 (score of 0.564), B4 (score of 0.449)
and B5 (score of 0.521), which were located on the fuzzy region
(Table 4). This result is consistent with our independent testing,
while the performance of PB-LKS would be reduced on the fuzzy
region (see Result part ‘High performance of PB-LKS on general
phage–bacteria interaction prediction’). On the other hand, the
correct prediction of B8 and B9 could achieve scores of 0.627
and 0.625, respectively. This indicates the good performance of
the model outside the fuzzy region. Among the tested bacteria,
the pair of φAb124-B8 pair obtained the highest score, indicating
the possible interaction. Moreover, the φAb124-based therapy was
proven with effective lytic activity in vivo for the treatment of
COVID-19 patients with secondary A. baumannii infection of B8
[28], which indicated the potential clinical usage of PB-LKS to
design the pre-optimized phage therapy.

Detecting the important local K-mers for
phage–bacteria interaction
Furthermore, the feature importance of all 256 K-mer features
was screened to detect the important K-mer features, which
represented the core local K-mers that play essential roles in
the phage–bacteria interactions and contributed to the model
prediction. This involved two steps: (i) calculate the statistical
significance of each core K-mer and (ii) calculate the feature
importance of each core K-mer at different taxonomy levels (see
‘Supplementary Methods Core feature screening’ part, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
Considering the interpretability, the feature importance of the
Random Forest classifier was derived for further analysis.

For step i, the essential cores with statistically significant
scores (P value < 0.001) between positive and negative samples
were derived, which included 159 core K-mers (Supplemen-
tary Table 33, see Supplementary Data available online at
http://bib.oxfordjournals.org/). For step ii, the feature impor-
tance of each core K-mer at different levels of kingdom

(Supplementary Table 34, see Supplementary Data available
online at http://bib.oxfordjournals.org/), phylum (Supplemen-
tary Table 35, see Supplementary Data available online at http://
bib.oxfordjournals.org/), class (Supplementary Table 36, see
Supplementary Data available online at http://bib.oxfordjournals.
org/), order (Supplementary Table 37, see Supplementary
Data available online at http://bib.oxfordjournals.org/), family
(Supplementary Table 38, see Supplementary Data available
online at http://bib.oxfordjournals.org/) and genus (Supplemen-
tary Table 39, see Supplementary Data available online at http://
bib.oxfordjournals.org/) were evaluated through sklearn with the
defaulted threshold. Here, 11 overlapped features among all 6
taxonomy levels were derived, involving 10 statistically significant
core K-mers of TAAA, TTAA, TTTA, ATAT, AAAT, GTCG, AATA,
TCGA, TTAT and ATTA. As illustrated in Table 5, the feature
importance of 10 essential core K-mers ranged from 0.005 to
0.032, 1.28–8.19 times than the average feature importance of
3.9 × 10−3 (1/256).

Moreover, according to the assumptions of PB-LKS, the
important local core K-mers should illustrate similar distributions
among the compared genome segments from the phage and
the bacteria in positive samples, while should illustrate random
distribution in negative tones. To test this assumption, the
frequency distribution of 12 core K-mers including the above
10 important ones, and K-mers ranked the last two among 256 K-
mers in our dataset were evaluated.

As illustrated in Figure 5 and Supplementary Figure 2, see
Supplementary Data available online at http://bib.oxfordjournals.
org/, the X-axis illustrated the frequency of corresponding core
K-mers in the phage genome, and the Y-axis illustrated the fre-
quency in the bacteria genome. Results showed that the Pear-
son correlation coefficient (Pcc) of important local core K-mers
between phage and bacteria genome could reach 0.777–0.897.
The core K-mers TAAA could obtain the highest Pcc of 0.897,
which demonstrated the consistent distribution of local similar
genome sequences for phage and bacteria. In negative samples,
the Pcc of all 10 important core K-mers ranged from 0.105 to
0.434, illustrating relatively low and random distribution between
two compared genomes (Figure 5A–H and Supplementary Fig-
ure 2A–L, see Supplementary Data available online at http://bib.
oxfordjournals.org/). In contrast, core K-mers with low contribu-
tions illustrated relatively low correlations in both the positive
group and the negative group. For example, the non-core K-mers
TGGA and CATG with the lowest feature importance among all
256 K-mers showed that the Pcc of these two K-mers is 0.3711
and 0.2021 in positive samples, while that in negative samples is
0.1340 and 0.0247 (Figure 5I–L). The Pcc difference of non-core K-
mer between positive and negative samples is smaller than that of
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Figure 5. The frequency distribution of six K-mers between viral and bacterial genomes on positive samples and negative samples. (A) Frequency
distribution of TAAA among positive samples. (B) Frequency distribution of TAAA among negative samples. (C) Frequency distribution of TTAA among
positive samples. (D) Frequency distribution of TTAA among negative samples. (E) Frequency distribution of TTTA among positive samples. (F) Frequency
distribution of TTTA among negative samples. (G) Frequency distribution of ATAT among positive samples. (H) Frequency distribution of ATAT among
negative samples. (I) Frequency distribution of TGGA among positive samples. (J) Frequency distribution of TGGA among negative samples. (K) Frequency
distribution of CATG among positive samples. (L) Frequency distribution of CATG among negative samples. The Pearson coefficient R2 was calculated
for K-mer frequency in genomes of phage and bacteria.

core K-mer, which implies that the distribution of nonsignificant
features on compared local segments is less relevant between
phage and bacteria.

Model implementation
Workflow of PB-LKS
The package of PB-LKS accepts nucleotide sequence data of both
phage and bacteria as input and outputs the predicted phage–host
relationship classification between input phage and bacteria at
the genus level. The workflow of PB-LKS included the following
three steps.

(1) Data inputting. The PB-LKS accepts .fasta format file of
phage and bacterial genome as input. The examples of input for-
mat were provided in the ‘Example’ folder of the Python package,
and both the file of Bacteria genome.fasta and the file of Phage
genome.fasta were needed.

(2) Descriptor generating. After inputting the genome sequences
of phages and bacteria, PB-LKS will automatically split the
nucleotide sequences into small segments with optimized WL
and SS. Then, the MSS pair was derived and the K-mer-based
descriptors were generated.

(3) Prediction outputting. Finally, PB-LKS used the well-trained
Random Forest classifier to predict the phage–host relationship
between the input two genomes.

Worked example
The example case illustrated the prediction of the relationship
between Aeromonas phage phiO18P and Escherichia coli STEC_94C
through PB-LKS. The genome of Aeromonas phage phiO18P con-
tained 33.985 kbp, and the .fasta file was downloaded from the
NCBI RefSeq database (Accession ID: DQ674738). The genome
.fasta file was named ‘Phage genome. fasta’ under the file folder of
Example, with a file size of 34.1 KB. Escherichia coli STEC_94C (Acces-
sion ID: GCF_000225105.1) is the host bacteria with a genome size

of 5 Mbp, and the .fasta file was named ‘Bacteria genome. fasta’
under the file folder of Example, with a file size of 4.85 MB. Accord-
ing to the README.md file provided at the website of https://
github.com/wanchunnie/PB-LKS, we need to store the PB-LKS
package on the local drive (for example, C:/) before prediction, and
the Scikit-learn package [35], Biopython package [36] and Numpy
package [37] are required to run the PB-LKS package, which can be
installed by invoking pip install. The usage is displayed as follows:

https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
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Table 6: The strictest prediction taxonomy level of current
phage–host interaction prediction tools

Prediction method Prediction
level

Prediction
method

Prediction
level

VirHostMatcher [20] Genus HostPhinder [19] Species
WIsH [24] Genus LMFH-VH [21] Species
PHP [23] Genus ILMF-VH [22] Species

DISCUSSION
Phages could invade and lyse bacteria while being harmless to
mammalian cells. Thus, it has a wide range of application scopes
including identifying bacteria, lysing the food-borne pathogenic
bacteria in the production environment during food process-
ing and serving as a therapy for drug-resistant bacteria. Deter-
mination of the phage–bacteria relationship was important in
the application and screening of phage. For in-silico prediction
of phage–bacteria interaction, the main idea of the algorithm
design is to detect those potential integrated phage gene seg-
ments from the bacteria genome. Previous studies have demon-
strated oligonucleotide frequency as an obvious signal to identify
phage–host interaction [20]. Also, it is worth noting that, besides
genome integration, phage can drive bacterial evolution through
high selective pressures, lysogenic conversion, transduction and
host gene disruption [38], while those usually occur on the par-
tial sequence segment of the genome rather than on the whole
genome sequence. In addition, current tools based on genome
analysis can only predict the host at the genus or species level
(Table 6). Nevertheless, phage therapy requires the recognition
of interactions between therapeutic phages and specific bacteria
strains. Thus, we designed the local K-mer strategy to achieve
phage–host interaction prediction, which aimed to determine the
local similarity of genomes between phages and bacteria, and
has better potential in identifying K-mer dissimilarity between
phages and mutant bacteria at the same species level with host
bacteria. All the possible sequence segments were first split from
the whole genome sequence of both phages and bacteria. Then,
the MSS pair was selected for K-mer scoring construction. To
obtain the optimized WL and SS, different parameter combina-
tions were evaluated to make the balance between the prediction
performance and time complexity. Finally, PB-LKS could predict
the relationship between specific phage and bacteria mutants,
which illustrated potential clinical usage to design phage-related
therapies.

Notably, the major difficulty in model construction is the
design of a negative dataset. The currently released dataset often
contains accurate ‘true positive’ samples that were validated by
the experimental to ensure that the tested positive bacteria is the
host for the specific phage [27, 39]. Meanwhile, it is not certain
that an un-tested bacteria is not the host for any phages. In short,
the absence of evidence is not the same as evidence of absence. To
address that, for negative dataset selection, we carefully choose
those bacteria that are different from the host bacteria at the
genus level. In other words, we excluded all the bacteria within
the same genus level of all validated host bacteria. Considering
the antibacterial spectrum of bacteriophages is often extremely
narrow, with few cross-reaction cases [40, 41], which means that
most bacteriophages are often only useful for one kind of bacteria.
On the other hand, it will be more accurate to expand the selection
of ‘true negative’ from the genus level to the family level or
even the order level, in which the negative ones will be more
‘negative’. However, it is not good for feature extraction and model

construction, because the difference between bacteria from two
Families will be too big, and it is difficult to accurately detect
the K-mer features that could distinguish positive and negative
samples. In addition, considering that the whole background
dataset contains 31 918 bacteria, which is exceedingly larger than
the 671 positive sample set, the potential positive data contained
therein would be very sparse after excluding all bacteria from
the same genus level of the positive bacteria and selecting 671
bacteria from the background dataset containing over 30 000
bacteria. More importantly, for phage therapy, finding the phages
that could interact with pathogenic bacteria is the key. For this
purpose, the missing potential ‘true positive’ is not as important
as ensuring the predicted ‘positive samples’ are correct. Based
on the above reasons, we think that the current way to select
negatives is suitable for model construction.

In addition to the dataset, selecting a suitable model is also
important for the construction of the PB-LKS model. Here, we
tested several widely used machine learning models and deep
learning models that used to predict genome or protein inter-
actions [42]. It is testified that the performance of the DL-based
model is inferior to that of the tree-based model. Furthermore, DL
models with complex architecture such as CNN and RNN exhibit
worse performance compared with simpler ones such as Vanilla-
MLP. Those phenomena may be caused by the following reasons:
(i) tree-based models are more suitable for tabular data than deep
learning approaches because of specific features for tabular data
[43, 44]. (ii) The limited size of the training dataset (2852 pairs of
phage–bacteria interactions) compared with the relatively larger
length of the LKS-based descriptor. A longer feature vector implies
a larger number of parameters in the model, while empirical
evidence and literature suggest that the number of samples used
to train a deep-learning model should be significantly larger than
the number of its parameters [45]. (iii) Complicated architectures
may not always bring better performance if the form of the
training set and the characteristics of the model do not match.
Advanced models such as CNN and RNN are specially designed to
capture temporal or spatial relationships in tasks such as natural
language processing and computer vision [46–48]. However, the
values in the LKS-based descriptor of this work are exclusively
handcrafted features, and there is no such relationship between
features. In that case, a tree-based classifier might be more suit-
able for the Local K-mer strategy, which generates tabular data
as features. Meanwhile, for the tree-based classifier used in this
study, Random Forest is an integrated learning method which
consists of multiple decision trees and shows good interpretability
[49]. Each decision tree is trained independently and the subse-
quent prediction is based on the average or majority vote of all
the decision trees. This process makes it easy to understand by
looking at the information such as decision paths, feature impor-
tance and split point of each decision tree. However, XGBoost uses
gradient boosting techniques to improve the accuracy; each new
decision tree is constructed to make the residuals of the previous
tree smaller, which leads to weak interpretability [50]. Considering
the high prediction performance and more intuitive and concrete
interpretability, to further detect the important K-mer for PB-
LKS, Random Forest was selected as the optimal algorithm. In
the meantime, the XGBoost-based PB-LKS was also provided in
the Python package for users valuing the predictive accuracy
over model interpretability. On the other hand, we noticed that
other deep learning API such as Keras [51] may involve better
selected layers, which hold the potential to give better prediction
performance. It is worth trying multiple deep learning approaches
based on different API to optimize the model of phage–bacteria
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interaction prediction when more data are available in the future.
In that case, we are planning to test multiple models based on
Keras and create a user-friendly webserver of PB-LKS that inte-
grates optimized deep-learning or machine-learning approaches
in the future.

Compared with available alignment-free and alignment-based
models, the PB-LKS model shows better performance with a recall
of 0.80 on the independent testing dataset at the strictest genus
level. Previous studies have demonstrated that the prediction
accuracy of alignment-based algorithms is higher than that of
alignment-free algorithms but with a narrower application scope
[23]. Despite the above, PB-LKS is an alignment-free algorithm but
can perform similar prediction accuracy as the alignment-based
CRISPR model and significantly outperform the alignment-based
BLAST model, which illustrates the advantages of PB-LKS over
existing algorithms. The reliable performance of PB-LKS may take
advantage of the step of comparing the correlation coefficient
between local K-mer frequencies of phage and bacteria genome
before constructing the K-mer features. Also, from feature impor-
tance analysis, we noticed that not all K-mer features contributed
equally to the classification model. Among them, 10 nucleotide
features including TAAA, TTAA, TTTA, ATAT, AAAT, GTCG, AATA,
TCGA, TTAT and ATTA were the core K-mer features screened in
our model. The analysis of those core features would further help
us understand the interaction between phage and bacteria.

The comparison result of PB-LKS and other peer methods on
clinical usage also proves the better performance of our model.
PB-LKS shows 66.7% prediction accuracy at the strain level, while
the BLAST-based method and PHP predict all nine bacteria strains
as negative. In other words, these peer methods can only predict
the candidate host for query phages instead of predicting inter-
action between phages and bacteria strains with gene mutation,
which cannot be applied in clinical phage therapy against bac-
terial infection. Moreover, φAb124 illustrated good clinical utility
in generating phage therapy on COVID-19 patients who suffered
from secondary infection of CRAB [28]. Before phage therapy,
several high-grade antibiotics had been applied to this patient but
had failed to eliminate the bacteria, while the B8 isolated from
this patient showed that φAb124 was the phage with effective
lytic activity in vivo [28]. This result implies that the PB-LKS
model has the potential to predict phage–bacteria interaction
at the strictest criterion at the strain level, which testifies that
PB-LKS could be applied for the development of clinical phage
therapy.

Despite the good performance and potential utility, there are
still several limitations for PB-LKS. At first, the prediction of a
probability score around 0.5, which was defined as the fuzzy
region, may not be correct. Both the high-throughput validation
and experimental test indicated that the rate of incorrect pre-
dictions in the fuzzy region was increased than those in other
regions. Second, the design principle of PB-LKS is that the phage
and its host may share some describable sequence features rather
than simple sequence similarity during their long history of sym-
biosis [14, 15]. In that case, special cases such as the phage-
resistant bacteria inducted through the Next Evolution Phage-
Typing strategy, such as B2 in here, may not be a good target for
PB-LKS. Third, PB-LKS is a training-based model, and thus, there
were the following factors, which might affect the performance
of the in-silico model: (i) the accumulation of bacteria genome
sequences and the detailed annotation of taxonomy classification
(for example, the annotation of species for host bacteria) could
help make more specific model. (ii) The accumulation of diverse
determined phage–bacteria interaction as a training dataset could

further improve model performance. (iii) The integrity of genome
sequencing data and the completed DNA fragment assembly
could make it more accurate in screening the MSS through a
sliding window.

Key Points

• The PB-LKS could predict the phage–bacteria relation-
ship at the strain level and discern bacteria mutants,
which could be useful to the development of phage
therapy.

• The PB-LKS incorporates the local K-mer strategy, which
focuses on the most similar segment detected among
the whole genome to predict the phage–bacteria inter-
action. This strategy could accelerate the detection of
antibacterial phages and pre-optimize the phage therapy
for bacterial infection.

• Ten essential core K-mers were detected in PB-LKS that
could successfully distinguish the positive interactions
and negative ones. Those motifs contain the preference
for phage to infect the bacteria and could help guide the
design of functional phages.

• PB-LKS is applied on the pre-optimized phage therapy
design for A. baumannii and illustrates better perfor-
mance than the current state-of-the-art tools.

• The Python package for PB-LKS is freely available on
GitHub (https://github.com/wanchunnie/PB-LKS).

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.

Supplementary tables and figures. The information of training
set, independent test set and case study set is freely available
on GitHub (https://github.com/wanchunnie/PB-LKS-dataset). The
codes and data to train and test the multiple models mentioned
in this study are freely available on GitHub (https://github.com/
wanchunnie/PBLKS-TrainandTest).

ACKNOWLEDGEMENTS
This work is supported by the Medical Science Data Center of
Fudan University. We also thank the participating CRAB patients,
and the health professionals who providing outstanding patient
care at considerable personal risk, which are from Shanghai Public
Health Clinical Center and Zhongshan Hospital.

FUNDING
National Natural Science Foundation of China (32000470,
32370697); National Key Research and Development Program of
China (2022YFF1101104, 2021YFA0911200); Shanghai Commis-
sion of Science and Technology (20Y11900300).

AUTHORS’ CONTRIBUTIONS
J.X.Q., W.C.N. and T.Y.Q. designed the model, constructed the com-
putational model and wrote the manuscript. H.D. constructed and
validated models based on deep learning methods. J.D. and N.N.W.
perform the phage lysis experiments and bacteria sequencing.
D.Z.L. modified the manuscript. Y.W.W., Y.X.Z., J.T.X. and X.X.T.
validated the model. T.Y.Q. and N.N.W. co-supervised the whole
project.

https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://github.com/wanchunnie/PB-LKS
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae010#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PB-LKS-dataset
https://github.com/wanchunnie/PBLKS-TrainandTest
https://github.com/wanchunnie/PBLKS-TrainandTest
https://github.com/wanchunnie/PBLKS-TrainandTest
https://github.com/wanchunnie/PBLKS-TrainandTest
https://github.com/wanchunnie/PBLKS-TrainandTest
https://github.com/wanchunnie/PBLKS-TrainandTest


PB-LKS | 13

ETHICS APPROVAL AND CONSENT TO
PARTICIPATE
The study using clinically sourced bacterial isolates was approved
by the Ethic Committee of Shanghai Public Health Clinical Center
on 28 March 2019, Approval No. 2017-S027-08.

DATA AVAILABILITY
The whole genome sequence data of nine A. baumannii bacteria
are available in the NCBI Sequence Read Archive database, with
accession number SRR24235333-SRR24235341.

REFERENCES
1. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature.

Bacteriophage 2011;1(1):31–45.
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