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Abstract: The main cause of death in Mexico and the world is heart disease, and it will continue to
lead the death rate in the next decade according to data from the World Health Organization (WHO)
and the National Institute of Statistics and Geography (INEGI). Therefore, the objective of this work
is to implement, compare and evaluate machine learning algorithms that are capable of classifying
normal and abnormal heart sounds. Three different sounds were analyzed in this study; normal
heart sounds, heart murmur sounds and extra systolic sounds, which were labeled as healthy sounds
(normal sounds) and unhealthy sounds (murmur and extra systolic sounds). From these sounds,
fifty-two features were calculated to create a numerical dataset; thirty-six statistical features, eight
Linear Predictive Coding (LPC) coefficients and eight Cepstral Frequency-Mel Coefficients (MFCC).
From this dataset two more were created; one normalized and one standardized. These datasets were
analyzed with six classifiers: k-Nearest Neighbors, Naive Bayes, Decision Trees, Logistic Regression,
Support Vector Machine and Artificial Neural Networks, all of them were evaluated with six metrics:
accuracy, specificity, sensitivity, ROC curve, precision and F1-score, respectively. The performances
of all the models were statistically significant, but the models that performed best for this problem
were logistic regression for the standardized data set, with a specificity of 0.7500 and a ROC curve of
0.8405, logistic regression for the normalized data set, with a specificity of 0.7083 and a ROC curve
of 0.8407, and Support Vector Machine with a lineal kernel for the non-normalized data; with a
specificity of 0.6842 and a ROC curve of 0.7703. Both of these metrics are of utmost importance in
evaluating the performance of computer-assisted diagnostic systems.

Keywords: heart sounds; heart disease; classification methods; evaluation metrics

1. Introduction

The heart is one of the most important organs of the human body since it pumps
the blood that is distributed to the entire organism through the circulatory system. This
pumping process is due to the electrical and mechanical activity of the heart, which
produces electrical and acoustic signals that offer information of the health of the heart and
can be analyzed by physicians. By analyzing cardiac activity, it is possible to detect if the
heart is working properly or if it has any pathology that is affecting the blood flow.

According to data from the World Health Organization, cardiovascular diseases
(CVDs) are the leading cause of death worldwide. Annually more people die from CVDs
than from any other cause, accounting 17.9 million deaths in 2016, which represent the
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26.7% of the total mortality rate [1]. In Mexico, the National Institute of Geography and
Statistics also reported that the main cause of death in the country was heart diseases
in 2018, 149,368 deaths were registered, which represent a prevalence of the 20.6% of
the mortality rate of the country [2]. For the next few years, it is estimated that CVDs
will continue to be leading causes of death nationally and globally. The cardiovascular
diseases can be occasioned by risk factors such as unhealthy diet and obesity, diabetes,
sedentary habits, smoking and alcoholism [3]. These factors and the CVDs can be prevented
and detected, an early detection and management using counseling and medicines, as
appropriate, could save many lives.

Several medical devices and methods are used to detect and diagnose the CVDs
both individually and together, but due to its qualities, properties and its low cost of
implementation the stethoscope is still the first screening tool utilized by primary care
providers for auscultatory examination [4,5]. It is an inexpensive, widely available tool in
the detection of heart disease. The use of the stethoscope requires an adequate technique
to hear the cardiac cycle, extensive knowledge of normal sounds and an auditory training
to identify the presence of heart diseases [6]. It is easy for an experienced physician to
interpret normal and abnormal sounds, but most primary care providers are unable to
identify and interpret heart sounds accurately, leading to missed diagnosis of CVDs on
first contact with the patient [7–9].

The electronic stethoscope was created to improve cardiac auscultation; it implements
digital signal processing and audio enhancement techniques so that the physician is capable
to hear heart sounds more clearly. Some of its advantages are that it amplifies heart
sound 24–30 times, eliminates up to 85% of ambient noise, reduces friction noise between
device and patient on auscultation, stores acquired audios and displays a cyclostationary
signal called phonocardiogram (PCG) that represents the recorded sounds [10,11]. Using
electronic stethoscopes requires to have the right technique, knowledge, and a trained ear
to identify and interpret heart sounds. Furthermore, both classic and electric stethoscope
are operator dependent, that is, the user must have knowledge and experience in the area
to make a diagnosis [12]. In some cases, many patients with heart disease are not detected
promptly [13–15], because primary care providers are not trained to diagnose them. In
other cases, these diseases are detected at very advanced stages [16,17], in which even with
the proper treatment it is difficult to reverse the damage caused by various diseases [18].

In addition to the problems presented by auscultation devices, the human auditory
system is not capable to perceive all the sounds emitted by the heart; it only detects a
small part of the acoustic energy generated by cardiac activity [19]. Only a small part of
the sound pressure levels produced by heart sounds and murmurs in different frequency
ranges can be heard, which are above the audible limit of the human auditory system [20].

Given the limitations of the human auditory system and the improper techniques in
the use of the stethoscope, there is a high probability of misinterpreting heart sounds and
giving erroneous diagnoses. The Institute of Medicine defines a diagnostic error as the
failure to establish an accurate and timely explanation of the patient’s health problem(s) [21],
while Schiff and colleagues define it as any mistake or failure in the diagnostic process
leading to a wrong diagnosis, which occurs when one disease is diagnosed instead of
another because they have similar signs and symptoms; a missed diagnosis, which refers
to a patient whose medical complaints are never explained, as well as patients with more
specific complaints that are never accurately diagnosed; or a delayed diagnosis, a case
where the diagnosis is not on time, causing the disease to worsen [22].

In order to avoid diagnostic errors on cardiac auscultation, it is necessary to develop
low-cost automatic diagnostic systems, known as computer-aided diagnostic
(CADx) [23,24]. Its use has increased in recent years, due to the support they provide
to physicians and other health care professionals in the interpretation and diagnosis of tests
that the patient has undergone. The CADx have the potential to become a cost-effective
screening and diagnostic tool in the primary care setting. However, it is pertinent to con-
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tinue investigating and developing these systems to reduce human factor error in diagnosis
of heart disease.

Computed-aided heart auscultation (CAA) is a system of automated heart sound
analysis, which allows to record, visualize, store and analyze phonocardiograms [19,25–29].
It is also known as computerized assisted auscultation, and it has several advantages
over the auscultation performed by physicians with a classic stethoscope: It helps doctors
to make a more accurate and objective diagnosis of the patient’s heart health, since it is
likely to outperform the auscultation skills and subjective interpretation of humans [30]; it
facilitates cardiac auscultation, since not only doctors are capable of performing it, but also
other health care providers can inspect correctly the patients; it has an important use in
telemedicine since a physician that is somewhere in the world can diagnose the patient’s
heart health in real time who is somewhere else [27,31]; the analysis results can be stored
in a electronic patient record, which can be retrieved for subsequent patient appointments
or for teaching and training purposes with medical students [32,33].

Computer assisted heart auscultation systems have different methods to analyze
and classify heart sounds; it depends on the setting that the researcher believes is most
convenient for the performance of the system and which provides the best results accord-
ing to the intended purpose. However, there are steps that could be fundamental for a
computer assisted heart auscultation system: pre-processing, which involves the filtering
and enhancement of the cardiac sound signal, noise reduction; feature extraction, to charac-
terize the signals; modeling, for signal reconstruction; classification, to predict whether the
analyzed heart sound is normal or abnormal; and evaluation, where the performance of
the classification model is measured.

The present work focuses on computer-assisted diagnosis to determine the presence or
absence of heart diseases. Six Machine Learning classification methods with different meta-
parameters were implemented, evaluated and compared bought each other, to determine
which of them better diagnoses heart audio signals as normal or abnormal sounds accord-
ing to the results obtained in various evaluation metrics. The methods implemented were
k-Nearest Neighbors (k-NN), Naive Bayes (NB), Decision Trees (DT), Logistic Regression
(LR), Support Vector Machine (SVM) and Artificial Neural Networks (ANN).

The structure of this paper is divided into Introduction in Section 1, Materials and
Methods in Section 2, Results in Section 3, Discussion in Section 4 and Conclusions in
Section 5.

2. Materials and Methods

In this section are described in detail dataset, features, classification methods and
evaluation metrics. The methodology that was carried out in this work is represented by
the flowchart showed in the Figure 1. At first, the data is recovered from the Classifying
Heart Sounds Challenge. The data was pre-processed for the extraction of temporal and
frequency features, which were used to classify the acoustic signals of the heart with
different machine learning classification methods. Finally, the classifiers were evaluated
with several metrics to analyze them from different perspectives.

Figure 1. Flowchart of the methodology proposed.

2.1. Database Acquisition

Classifying Heart Sounds Challenge public database [34] was used to classify nor-
mal and abnormal heart sound, and it is available in http://www.peterjbentley.com/
heartchallenge/#taskoverview, accessed on 25 July 2018. This database contains a total
of 312 audio heart files, which were recorded with a digital stethoscope DigiScope and
gathered from different individuals who underwent clinical trials in hospitals. The audio

http://www.peterjbentley.com/heartchallenge/#taskoverview
http://www.peterjbentley.com/heartchallenge/#taskoverview
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files were saved in “.wav” format and divided in three different categories depending on
the state of health or heart disease; 200 files are labeled as normal heart sounds, 66 as heart
murmur sounds and the remaining 46 as extra-systolic sounds.

2.2. Database Pre-Processing

In order to have a classification of the data as healthy or unhealthy cases, the normal
heart sounds were considered as healthy heart cases, and the murmur and extra-systolic
sounds as unhealthy heart cases. Since the number of healthy cases (200) almost double
the unhealthy cases (112), 88 audios of normal heart sounds were randomly deleted to
balance the dataset. Only 112 audios of the 200 audios of healthy sounds were considered,
providing an equal number of cases of healthy and unhealthy heart sounds for analysis.
In addition, because all audio files have different duration, a sub-sampling of the total
audio data was performed. For practical purposes in feature extraction, the audios whose
duration exceeded four seconds were selected and the rest of the audios were discarded.
After this sub-sampling, the number of audios per category was as follows: 83 normal
heart sounds, 47 heart murmur sounds and 31 extra-systolic sounds, that is, 83 healthy
cases and 78 unhealthy cases (161 observations in total).

2.3. Feature Extraction

Eighteen statistical features were extracted for each of the 161 audio samples in time
domain, such as mean, median, standard deviation, variance, coefficient of variation,
inverse coefficient of variation, kurtosis, skewness, min value, max value, dynamic range,
1st percentile, 5th percentile, 95th percentile, 99th percentile, 1st quartile, 3th quartile and
interquartile range. The same statistical features were extracted from each audio signal in
frequency domain, to get a total of 36 statistical features per observation. In addition, 8
MFCC and 8 LPC coefficients were extracted.

Linear Predictive Coding (LPC) is based on the fact that each audio sample can be
predicted or represented by a linear combination of several samples passed, that is, that
each audio sample s(n) at a time n, can be approximated as a linear combination of the
previous audio samples:

s(n) ≈ a1s(n − 1) + a2s(n − 2) + · · ·+ aps(n − p), (1)

where p is the prediction order and a1, a2, · · · , ap are the prediction coefficients that must
be calculated. The basic diagram for calculating LPC is composed of three blocks according
to Ferue et al. [35] pre-processing, autocorrelation and LPC analysis, as shown in Figure 2.

Figure 2. Block diagram for the calculation of the Linear Predictive Coding (LPC) coefficients.

In this research, no pre-processing stage was performed in order not to modify the
audio signals acquired by the stethoscope. Each of the 161 audios were autocorrelated
to analyze the periodicity of the samples that comprise them. Once autocorrelated, each
audio was converted into a set of LPC coefficients by the Levinson–Durbin autoregressive
algorithm. Eight LPC coefficients were calculated per audio sample, which represent
the information of the short-time spectral envelope of the audio signals according to
Wang et al. [36].

Cepstral Frequency–Mel Coefficients (MFCC) is a feature extraction technique that
is based on the perception of the human auditory system, specifically the variation of the
bandwidths of the critical frequencies of the human ear. The basic method for the extraction
of the MFCC is composed of four blocks according to Mascorro et al. [37]: Fast Fourier
Transform (FFT), filter bank, logarithm transformation and Discrete Cosine Transform
(DCT), as shown in Figure 3.
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Figure 3. Block diagram for the calculation of the Cepstral Frequency–Mel Coefficients (MFCC).

In this extraction technique, as in LPC, no pre-processing stage was performed either.
In the first block, the FFT of each of the cardiac audio signal was calculated, and its
magnitude and power spectral density (PED) were obtained. This transformation was
performed to identify which frequencies each of the audio signals contains. The DSP
frequencies must be grouped into regions and added together to find out how much energy
exists in those regions. This was done by means of a Mel filter bank, made up of triangular
filters that are distributed in Mel scale. The filter bank was calculated with the Equation (2).

B(m, k) =


0 si k > f (m − 1),

k− f (m−1)
f (m)− f (m−1) si f (m − 1) ≤ k ≤ f (m),

f (m+1)−k
f (m+1)− f (m)

si f (m) ≤ k ≤ f (m + 1),
0 si k > f (m + 1),

(2)

where B(m, k) is the matrix of the filter bank, m the number of bank filters and k the number
of analysis windows (one in this case). A filter bank was obtained for each audio signal.
The first filter obtained is very narrow and indicates how much energy exists near 0 Hz.
As the frequencies increase, the filters expand and the variations are smaller. To know the
energy of the filter banks, we must multiply each bank of filters by the power spectral
density windows and then add the coefficients:

E(m, k) =
M

∑
m=1

B(m, k)P(k) k = 1, (3)

where P(k) is the power spectral density and k represents the number of windows again.
Subsequently, the logarithm of the filter bank energies was calculated. This operation
makes the obtained characteristics a closer match to what humans actually hear.

Elog(m, k) = log

(
M

∑
m=1

B(m, k)P(k)

)
(4)

In the last block, the discrete cosine transform of the logarithm of the filter bank
energies was calculated to obtain the MFCC [38]. The use of the DCT is used to reduce
computational complexity [39], and it is defined by

MFCC(n) =
M

∑
m=1

Elog(m, k)cos
[

n
(

m − 1
2

)
π

M

]
, (5)

where M represents the total number of MFCC coefficients that varies with respect to n, m
represents the number of filters in the bank, and k represents the number of the analysis
window. As in LPC, 8 MFCC coefficients were calculated per audio signal.

Once the 36 statistical features, the 8 LPC coefficients and the 8 MFCC coefficients for
each of the cardiac audio signals were calculated, they were used to form a dataset of 52
features and 161 observations. From this dataset, two more were obtained, one normalized
and one standardized. In the normalized dataset, the values of each feature are in a range
from zero to one and were obtained according to the Equation (6).

Xnorm =
X − min(X)

max(X)− min(X)
(6)

where Xnorm is the normalized value, and X is the value without normalization. The
standardized dataset was obtained with/ the z-score method, in which the values of each
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feature do not have a defined minimum or maximum value but a mean always equal to
zero. The z-score standardization is obtained with the Equation (7)

Xstand =
X − µ

σ
(7)

where Xstand is the standardized value, and X is the value without standardization, µ and σ
are the mean and the standard deviation of the value without standardization, respectively.
These three datasets were used to classify heart sounds, using 75% of the data for training
and 25% for testing.

2.4. Classification Methods

Six different classification methods were implemented in the programming language
R to classify cardiac sounds as healthy or unhealthy:

• k-Nearest Neighbors: This classifies unlabeled examples according to known classified
neighbors. The letter k represents a variable term that specifies the number of closest
neighbors. This number starts with a value of k equal to an odd number approximately
equal to the square root of the number of training examples; the odd number is used
to eliminate the possibility of ending with a tie [40–43]. For the implementation of this
classification method, the class library and the knn function were used. Seven different
k-neighbors were used: 1, 5, 11, 13, 15, 21 and 27.

• Naive Bayes: This uses training data to calculate an observed probability of each
outcome based on the evidence provided by the values of the characteristics When
the classifier is later applied to unlabeled data, it uses the observed probabilities to
predict the most probable class for the new characteristics. Naive Bayes model was
implemented using the e1072 library and the naiveBayes function. Two configurations
were made for this classifier, one with a Laplacian estimator and the other without
it. This estimator adds a small number to each of the values in the frequency table
to guarantee that each characteristic has a probability other than zero for any of the
classes.

• Decision Trees: This is a powerful classifier that uses a tree structure to model the
relationship between features and potential outcomes. A decision tree classifier uses a
branching decision structure, which pipes examples to predict a final class value. The
c50 library was used to implement the decision trees model. Three different decision
tree configurations were set: one with indefinitely growing of the branches, one with
a post-pruning of the branches to reduce the size of the tree and another with a cost
error in the confusion matrix in order to avoid false negatives.

• Logistic Regression: It studies the relationship between a categorical dependent
variable and a set of independent variables. It is so named because the dependent
variable has only two possible values, 0 and 1 or “yes” and “no”. This technique
uses the one versus the rest (OvR) scheme to predict the probability of a categorical
dependent variable [44–46]. A function of generalized linear models glm with a logistic
regression setup was implemented.

• Support Vector Machine: This can be thought of as a surface that defines a boundary
between several data points representing examples drawn in multidimensional space
according to their characteristic values. The goal of an SVM is to create a flat boundary,
called a hyperplane, which leads to fairly homogeneous data partitions on both
sides [47–51]. To implement the Support Vector Machine model, the kernlab library
and the ksvm function were applied, and four different seed kernels were used to
compare different perspectives of the data distribution: linear, radial basis, polynomial
and hyperbolic tangent sigmoid.

• Artificial Neural Networks: This is an information processing method based on the
system that the brain involves to process information. It models the interconnections
of neurons in a brain using artificial neurons known as nodes, which relate an input
signal and an output signal. Each node contains an activation function that has the
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function of thresholding the values of the nodes to take them to any of the possible
results [52–56]. The neuralnet library was used to implement the Artificial Neural
Networks model. Three different ANN architectures were configured: a ANN with
one hidden layer and one neuron, a ANN with one hidden layer and seven neurons,
and a ANN with two hidden layers and twelve neurons in the firs layer and four in
the second. The three topologies had the same number of input neurons (fifty two)
and output neurons (two). The three ANNs used the same linear activation function.

2.5. Evaluation Metrics

For the evaluation of the six classification models with their different configurations,
the gmodel, pROC and caret libraries were used, with which it was possible to calculate the
following metrics:

• Accuracy is the percentage of classifying positive and negative samples correctly [57,58].
It is calculated as shown in the Equation (8).

Accuracy =
TruePositives + TrueNegatives

TotalExamples
(8)

• Sensitivity (true positive rate) measures the proportion of true positives that are
correctly identified as such, that is, of all patients who are sick, how many are correctly
detected as sick [59,60]. It is calculated as shown in the Equation (9).

Sensitivity =
TruePositives

FalseNegative + TruePositives
(9)

• Specificity (rate of true negatives) measures the proportion of real negatives that are
correctly identified as such, that is, of all patients who are not sick, how many were
correctly detected as not ill [61]. It is calculated as shown in the Equation (10).

Speci f icity =
TrueNegatives

FalsePositive + TrueNegative
(10)

• Precision (positive predictive value) measures the consistency of results when mea-
surements are repeated [62–64]. It is calculated as shown in the Equation (11).

Precision =
TruePositives

FalsePositive + TruePositives
(11)

• F1 score is the harmonic mean of the precision and sensitivity [65,66]. It is calculated
as shown in the Equation (12).

F1S = 2
Precision ∗ Sensitivity
Precision + Sensitivity

(12)

• ROC curve (Receiver Operating Characteristics) provides a global measure of diag-
nostic precision, independent of the cut-off point and prevalence. It is obtained by
representing the sensitivity (percentage of true positives) on the ordinate axis and
1-Specificity (percentage of false positives) on the abscissa axis, for different cut-off
points applied to the quantitative result of a test [67,68].

3. Results

The obtained results by each classifier in the different evaluation metrics are presented
in three different tables: Table 1 shows the results of the dataset with the values of the
extracted features (for convenience it will be called original dataset); Table 2 shows the
results of the data set with the normalized values, and Table 3 shows the results of the data
set with the standardized values. The three tables contain the same number of columns, the
first one correspond to the name of the classification method, the next six to the evaluation
metrics; accuracy, specificity, sensitivity, area under the curve (ROC), precision and F1-score,
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respectively, and the last one to the mean of the evaluation metrics (EM Mean) for each
classifier. The tables also have the same number of rows, which represent each classification
method: k-nearest neighbor (k-NN) with seven different number of neighbors (k); Naive
Bayes with laplacian (NB with ∆) and without it (NB w/o ∆); Decision Trees without
pruning (DT w/o P), with pruning (DT with P), and with a cost in the confusion matrix
(DT with C); Logistic Regression (LR); Support Vector machine with four different kernels,
linear (SVM linear), radial (SVM radial), polynomial (SVM polynomial) and hyperbolic
tangent (SVM HT); and Artificial Neural Networks, with one hidden layer and one neuron
(ANN 1HL 1N), with one hidden layer and seven neurons (ANN 1HL 7N), and with two
hidden layers and 12 neurons in the first layer and 4 in the second (ANN 2HL 12N 4N).

Based on literature [69–76] in the biomedical area, a comparison was made between
the different models implemented according to evaluation metrics described in this area of
knowledge, taking into consideration that the values of these metrics are considered better
as closer they are to unit.

According to the results of the evaluation metrics obtained by the classifiers in the
original dataset shown in the Table 1, the highest accuracy value 0.7073 was presented in
three classifiers; SVM with a polynomial kernel, SVM with a linear kernel and K-NN with
k = 27. Furthermore, SVM with a linear kernel had the highest values of ROC 0.7703 and
EM Mean 0.7293, and K-NN with k = 27 got the highest value of F1-score 0.7692. Naive
Bayes classifier with and without Laplacian presented the highest values of specificity and
precision, 0.8667 and 0.8333, respectively. The highest value of sensitivity 1 was obtained
by ANN 1HL 1N, but it also got the worst specificity, ROC and precision values. The lowest
accuracy was obtained by K-NN with k = 5 and ANN 1HL 7N, in addition, K-NN with
k = 5 obtained the lowest EM Mean and ANN 1HL 7N the lowest values of sensitivity and
F1 score.

Table 1. Evaluation metrics for each classifier of the original dataset.

Classification Method Accuracy Specificity Sensitivity ROC Precision F1-Score EM Mean

k-NN, k = 1 0.6585 0.6667 0.6522 0.6594 0.7143 0.6818 0.6721
k-NN, k = 5 0.561 0.5556 0.5652 0.5604 0.6190 0.5909 0.5753

k-NN, k = 11 0.6585 0.6111 0.6957 0.6534 0.6957 0.6956 0.6683
k-NN, k = 13 0.6098 0.5556 0.6522 0.6039 0.6522 0.6521 0.6209
k-NN, k = 15 0.6098 0.5556 0.6522 0.6039 0.6522 0.6521 0.6209
k-NN, k = 21 0.6098 0.5000 0.6957 0.5978 0.6400 0.6666 0.6183
k-NN, k = 27 0.7073 0.5000 0.8696 0.5978 0.6897 0.7692 0.6889

NB w/o ∆ 0.5897 0.8667 0.4167 0.6417 0.8333 0.5555 0.6506
NB with ∆ 0.5897 0.8667 0.4167 0.6417 0.8333 0.5555 0.6506
DT w/o P 0.6383 0.8261 0.4583 0.6422 0.7333 0.5641 0.6437
DT with P 0.617 0.6364 0.6000 0.6182 0.6522 0.625 0.6248
DT with C 0.6383 0.3333 0.8846 0.609 0.6216 0.7301 0.6361

LR 0.6327 0.7222 0.5806 0.7204 0.7826 0.6666 0.6841
SVM linear 0.7073 0.6842 0.7273 0.7703 0.7273 0.7272 0.7293
SVM radial 0.6829 0.5789 0.7727 0.7344 0.6800 0.7234 0.6953

SVM polynomial 0.7073 0.6316 0.7727 0.7536 0.7083 0.7111 0.7141
SVM HT 0.6341 0.6316 0.6364 0.6053 0.6667 0.6511 0.6375

ANN 1HL 1N 0.5854 0.1053 1.0000 0.5526 0.5641 0.7213 0.5881
ANN 1HL 7N 0.561 0.8421 0.3182 0.6352 0.7000 0.4375 0.5881

ANN 2HL 12N 4N 0.6829 0.7895 0.5909 0.6902 0.7647 0.6666 0.6974

Abbreviations: ROC: Receiver Operating Characteristics curve, EM: evaluation metrics, k-NN: k-nearest neighbor, k: number of neighbors,
NB: Naive Bayes, ∆:laplacian, w/o: without, DT: Decision Trees, P: pruning, C: cost in the confusion matrix, LR: Logistic Regression, SVM:
Support Vector Machine with linear, radial, polynomial and hyperbolic tangent (HT) kernels, ANN: Artificial Neural Networks, HL: hidden
layers and N: number of neurons per hidden layer. Numbers in bold represent the maximum values obtained for each evaluation metric by
the different classifiers.
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Table 2. Evaluation metrics for each classifier of the normalized dataset.

Classification Method Accuracy Specificity Sensitivity ROC Precision F1-Score EM Mean

K-NN, k = 1 0.6531 0.5833 0.7200 0.6517 0.6429 0.6792 0.6550
K-NN, k = 5 0.6327 0.5417 0.7200 0.6308 0.6207 0.6666 0.6354
K-NN, k = 11 0.6327 0.5000 0.7600 0.63 0.6129 0.6785 0.6356
K-NN, k = 13 0.6122 0.5417 0.6800 0.6108 0.6071 0.6415 0.6155
K-NN, k = 15 0.6122 0.5417 0.6800 0.6108 0.6071 0.6415 0.6155
K-NN, k = 21 0.6531 0.4167 0.8800 0.6483 0.6111 0.7213 0.6550
K-NN, k = 27 0.6531 0.3750 0.9200 0.6475 0.6053 0.7301 0.6551

NB w/o ∆ 0.6923 0.8000 0.5789 0.6895 0.7333 0.6470 0.6901
NB with ∆ 0.6923 0.8000 0.5789 0.6895 0.7333 0.6470 0.6901
DT w/o P 0.6383 0.8261 0.4583 0.6422 0.7333 0.5641 0.6437
DT with P 0.617 0.6364 0.6000 0.6182 0.6522 0.625 0.6248
DT with C 0.6383 0.3333 0.8846 0.609 0.6216 0.7301 0.6361

LR 0.7317 0.7083 0.7647 0.8407 0.6500 0.7027 0.7330
SVM linear 0.6585 0.4211 0.8636 0.7512 0.6522 0.7307 0.6795
SVM radial 0.7073 0.4737 0.9091 0.7871 0.6667 0.7692 0.7188

SVM polynomial 0.6829 0.4737 0.8636 0.7512 0.6552 0.7450 0.6952
SVM HT 0.6098 0.7368 0.5000 0.6364 0.6875 0.5789 0.6249

ANN 1HL 1N 0.7073 0.5333 0.8077 0.6308 0.7500 0.7777 0.7011
ANN 1HL 7N 0.5854 0.6667 0.5385 0.6308 0.7368 0.6222 0.6300

ANN 2HL 12N 4N 0.6098 0.5333 0.6538 0.6821 0.7083 0.68 0.6445

Abbreviations: ROC: Receiver Operating Characteristics curve, EM: evaluation metrics, k-NN: k-nearest neighbor, k: number of neighbors,
NB: Naive Bayes, ∆:laplacian, w/o: without, DT: Decision Trees, P: pruning, C: cost in the confusion matrix, LR: Logistic Regression, SVM:
Support Vector Machine with linear, radial, polynomial and hyperbolic tangent (HT) kernels, ANN: Artificial Neural Networks, HL: hidden
layers and N: number of neurons per hidden layer. Numbers in bold represent the maximum values obtained for each evaluation metric by
the different classifiers.

Table 3. Evaluation metrics for each classifier of the standardized dataset.

Classification Method Accuracy Specificity Sensitivity ROC Precision F1-Score EM Mean

K-NN, k = 1 0.4694 0.5600 0.3750 0.5276 0.4828 0.5660 0.4968
K-NN, k = 5 0.6341 0.6250 0.6400 0.6325 0.7273 0.6808 0.6566
K-NN, k = 11 0.6341 0.6250 0.6400 0.6325 0.7273 0.6808 0.6566
K-NN, k = 13 0.6341 0.6250 0.6400 0.6325 0.7273 0.6808 0.6566
K-NN, k = 15 0.6531 0.5217 0.7692 0.6455 0.6452 0.7017 0.6560
K-NN, k = 21 0.6098 0.5000 0.6800 0.5900 0.6800 0.6800 0.6233
K-NN, k = 27 0.6341 0.5625 0.6800 0.6212 0.7083 0.6938 0.6499

NB w/o ∆ 0.6667 0.7727 0.5294 0.6511 0.6429 0.5806 0.6405
NB with ∆ 0.6667 0.7727 0.5294 0.6511 0.6429 0.5806 0.6405
DT w/o P 0.6383 0.8261 0.4583 0.6422 0.7333 0.5641 0.6437
DT with P 0.617 0.6364 0.6000 0.6182 0.6522 0.6250 0.6248
DT with C 0.6383 0.3333 0.8846 0.609 0.6216 0.7301 0.6361

LR 0.8049 0.7500 0.8571 0.8405 0.7826 0.8181 0.8088
SVM linear 0.7073 0.6364 0.7895 0.6962 0.6522 0.7142 0.6993
SVM radial 0.6585 0.5455 0.7895 0.6986 0.6000 0.6818 0.6623

SVM polynomial 0.7073 0.6364 0.7895 0.6962 0.6522 0.7142 0.6993
SVM HT 0.4146 0.2273 0.6316 0.5646 0.4138 0.5000 0.4586

ANN 1HL 1N 0.6341 0.7778 0.5217 0.7029 0.7500 0.6153 0.6669
ANN 1HL 7N 0.6341 0.6667 0.6154 0.6308 0.7619 0.6808 0.6700

ANN 2HL 12N 4N 0.7073 0.8000 0.6538 0.7513 0.8500 0.7391 0.7502

Abbreviations: LR: Logistic Regression, DT w/o P: Decision Trees without pruning, ANN 2HL 12N 4N: Artificial Neural Networks with
two hidden layers and twelve neurons in the first layer and four in the second, J48: algorithm based on decision trees, MLB: Multi Layer
Perceptron, N.BPM: algorithm based on the number of beats per minute. Abbreviations: ROC: Receiver Operating Characteristics curve,
EM: evaluation metrics, k-NN: k-nearest neighbor, k: number of neighbors, NB: Naive Bayes, ∆:laplacian, w/o: without, DT: Decision
Trees, P: pruning, C: cost in the confusion matrix, LR: Logistic Regression, SVM: Support Vector Machine with linear, radial, polynomial
and hyperbolic tangent (HT) kernels, ANN: Artificial Neural Networks, HL: hidden layers and N: number of neurons per hidden layer.
Numbers in bold represent the maximum values obtained for each evaluation metric by the different classifiers.
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Analyzing the results of the evaluation metrics of each classifier in the normalized
dataset (shown in Table 2), the classifier with the highest accuracy value 0.7317 was Logistic
Regression, which also obtained the highest ROC 0.8407. Decision trees without pruning
was the method with the best specificity 0.8261, but it obtained the lowest values in terms
of sensitivity and F1 score. The classifier with the best sensitivity 0.92 was K-NN with
k = 27, but got the lowest precision and a poorly specificity. ANN 1HL 1N obtained the
highest values of precision 0.75 and F1-score 0.7777. ANN 1HL 7N got the lowest accuracy
value. DT with C got the lowest specificity and ROC values. The lowest EM Mean was
obtained by K-NN with k = 13 and k = 15.

The results of the evaluation metrics obtained by the classifiers in the standardized
dataset (shown in Table 3) were similar to ones obtained in the normalized dataset. It was
found that the Logistic Regression model had the highest values in EM Mean and three
metrics: accuracy 0.8049, ROC 0.8405 and F1-score 0.8181. For specificity, the highest value
was 0.8261 obtained by the model DT w/o pruning, and DT with C had the best sensitivity
0.8846. ANN 2HL 12N 4N got the best precision value 0.85, and this method obtained
values above 0.7 in all metrics, with the exception of 0.6538 in sensitivity. SVM HT got the
lowest values of accuracy, specificity, precision, F1- score and obviously EM Mean. The
k-NN with k = 1 had the lowest sensitivity and ROC values.

4. Discussion

According to the results shown in Table 1, the best classifier for the original dataset
was SVM with a linear kernel. It had the highest accuracy, ROC and EV mean values, and
the other values obtained were above the mean of all classifiers. For the normalized dataset,
the best classifier was the Logical Regression model. This method also got the maximum
values of accuracy, ROC and EV mean as SVM with a linear kernel in the original dataset.
A very similar case happened with the standardized dataset; the best classifier was Logistic
Regression. In addition to obtaining the maximum values in the same evaluation metrics as
in the previous datasets, the maximum value of F1-score was also obtained by this method.

Accuracy and ROC are important metrics in computer-assisted diagnosis, since the
first represents the percentage of normal and abnormal heart sounds classified correctly,
and the second represents globally the precision of the diagnosis, that is, how many healthy
sounds were diagnosed as such and how many not healthy were diagnosed as such.

Another very important metric for CADx, which is directly related to the ROC curve
is specificity, since it indicates the proportion of actual healthy sounds that are correctly
identified as such. This metric is important, since it is better to tell a healthy person that is
sick than to tell a sick person that is healthy. Since this would complicate the illness or cause
death. However, the classifiers that had the maximum values of specificity had in turn
a very insignificant value of sensitivity Naive Bayes with and without Laplacian for the
original dataset and Decision Trees without pruning for the normalized and standardized
datasets. This means that there may be abnormal heart sounds classified as normal.

Comparing the results obtained by the best classifier of each of the three datasets, it
was found that Logical Regression model in the standardized dataset performs better in
most of the evaluation metrics values respect to Logical Regression model in the normalized
dataset and Support Vector Machines with a linear kernel in the original dataset. Only the
ROC value was identical for the Logistic Regression in the normalized and standardized
datasets. Furthermore, it was found that the ANN 2HL 12N 4N improved considerably its
evaluation metrics values in the standardized dataset compared to the other two datasets.
It is important to highlight that although the logistic regression algorithm is the simplest
of the implemented algorithms, it presented the best results according to the evaluation
metrics. This may be due to its nature of finding a positive and a negative class.

Using the same audio database Ferreira and Pereira [77] got a 0.4566 precision using
an algorithm based on decision trees (J48), while using an Artificial Neural Network with
multiple layers (MLB-Multi Layer Perceptron) got a 0.5566 precision. Deng and Bentley [78]
also used the same audio database and classified the audio files according to their number
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of beats per minute (N. BPM) by setting a heartbeat threshold for each heart sound class;
they got a 0.4377 precision. However, these two works made a classification of three classes:
normal, extrasystolic and murmur sounds, unlike our classification that was of two classes:
normal and abnormal heart sounds. For a comparison from the same approach of the three
works, the results obtained in the precision evaluation metric are shown in Table 4.

Table 4. Comparison of our results with respect to other works that used the same audio database.

LR DT w/o P ANN 2HL 12N 4N J48 MLB N. BPM

Precision 0.7826 0.7333 0.8500 0.4566 0.5566 0.4377
Abbreviations: LR: Logistic Regression, DT w/o P: Decision Trees without pruning, ANN 2HL 12N 4N: Artificial
Neural Networks with two hidden layers and twelve neurons in the first layer and four in the second, J48:
algorithm based on decision trees, MLB: Multi Layer Perceptron, N.BPM: algorithm based on the number of beats
per minute. Number in bold represents the maximum values obtained for each evaluation metric by the different
classifiers.

Table 4 shows the precision values obtained in the standardized database of three
classifiers, Logistic Regression, Decision Trees without Pruning and Artificial Neural
Networks with two hidden layers, which are better compared to those obtained by the
J48 and MLB approaches of Ferreira and Pereira and the N. BPM approach of Deng and
Bentley. The precision values presented by these two works were obtained from each of
the classes: precision of normal, precision of murmur and precision of extrasystolic sounds.
Therefore, the average of them was calculated to be comparable with the precision values
obtained in our classification models. The LR classifier was compared since it was the one
that presented the best results, and the DT w/o P and ANN 2HL 12N 4N classifiers were
compared because they present similar approaches to those used by Ferreira and Pereira.

In both works with which ours is being compared, pre-processing and processing of
the audio signals is carried out, and the results obtained are below those obtained by our
work. The fundamental contribution of this work lies in the fact that the classification of
cardiac audio signals as normal or abnormal is done without the signal acquired by the
stethoscope being modified in the pre-processing or processing stages; only temporal and
frequency characteristics are extracted from the nature of the cardiac acoustic signal. This
directly reduces computational expense, and in turn, allows new cardiac audio signals to
be classified in the same way.

As it can be observed in Table 5, the values obtained of specificity and sensitivity in
this work are better respect to the ones of the other two research. However, they cannot be
compared directly since in our case, both training and test sets are balanced; that means that
have approximately the same number of sick cases and controls, and all evaluation metrics
were obtained from the complete test set, while the other two investigations consider only
the subgroup of patients with heart disease to calculate the specificity and sensitivity. This
allows to generalize that our work simulates a scenario close to reality, where it is unknown
whether the patient to be analyzed is sick or not, in order to avoid biases and overfitting
problems.

Table 5. Sensibility and Specificity values.

LR DT w/o P ANN 2HL 12N 4N J48 MLB N. BPM

Sensitivity 0.8571 0.4583 0.6538 0.22 0.19 0.5085
Specificity 0.75 0.8261 0.8000 0.82 0.84 0.5882

Abbreviations: LR: Logistic Regression, DT w/o P: Decision Trees without pruning, ANN 2HL 12N 4N: Artificial
Neural Networks with two hidden layers and twelve neurons in the first layer and four in the second, J48:
algorithm based on decision trees, MLB: Multi Layer Perceptron, N.BPM: algorithm based on the number of beats
per minute.
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5. Conclusions

Despite the fact that various methods have emerged to try to classify heart dis-
eases [25], this study has advantages such as that the sounds used have the characteristics
that real-time models would face, since it was avoided to use pre-processing, to generate an
environment closer to reality. It allows to accelerate the analysis process and the possibility
of using this type of classification method in devices not so complex to use, in order to make
them affordable for health personnel, even in marginalized areas, for easy, accurate and
timely identification of heart diseases, where it is unlikely that there will be specialists in
these pathologies, and at the same time, it will contribute to carrying out the timely referrals
to the second and third levels of health, as appropriate, avoiding unnecessary shipments
or the absence of timely referrals to the specialist [30], on the other hand, expedites the
consultation of first contact, reducing workloads on health professionals.

After having tested the classification methods, to determine if a patient is healthy or
sick, it is clear that the results obtained (see Tables 1–3) are statistically significant, which
allows the experiments carried out in this work to be reproducible. By following the same
steps and using the same data, the same results can be obtained. However, as mentioned
in the literature, there is controversy in the term reproducible and replicable [79], but
taking one or the other, what stands out is that the experiments can obtain the same results,
following the same steps with different data (heart sounds). That is, with the methodology
proposed in this work, it is intended to be scalable so that in the future, a computer-assisted
diagnosis may be available, in which health personnel introduce sounds as an input source,
and the system provides a true diagnosis.

Some of the limitations that can be faced when implementing these classification
methods in real life are the following: Specialized equipment is required such as electronic
stethoscopes, as well as a computers with the R software and the required packages
(described in materials and methods) installed to implement each of the classifiers and
diagnose the patient as healthy or sick. Another limitation is the data with which they
were worked, which could present population biases, so the models would benefit from
having a more robust training database that includes patients of all ages and physiological
conditions such as pregnancy and old age, among others. In the future, tools that allow the
physician–machine interaction can be designed to improve user usability, and this allows it
to be used in real time as a support for computer-assisted diagnosis.

In order to improve the results obtained in this work, it is necessary to add a feature
selection stage using genetic algorithms. This would allow us to consider the most sig-
nificant features and improve the performance of the classifiers. In addition, using deep
learning classification models would also allow us to improve the classification of heart
sounds; however, it would increase computational expenditure and would be reflected in
real-time diagnosis.
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