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Abstract

Background: Differential co-expression analysis is an emerging strategy for characterizing disease related
dysregulation of gene expression regulatory networks. Given pre-defined sets of biological samples, such analysis
aims at identifying genes that are co-expressed in one, but not in the other set of samples.

Results: We developed a novel probabilistic framework for jointly uncovering contexts (i.e. groups of samples) with
specific co-expression patterns, and groups of genes with different co-expression patterns across such contexts. In
contrast to current clustering and bi-clustering procedures, the implicit similarity measure in this model used for
grouping biological samples is based on the clustering structure of genes within each sample and not on
traditional measures of gene expression level similarities. Within this framework, biological samples with widely
discordant expression patterns can be placed in the same context as long as the co-clustering structure of genes is
concordant within these samples. To the best of our knowledge, this is the first method to date for unsupervised
differential co-expression analysis in this generality. When applied to the problem of identifying molecular subtypes
of breast cancer, our method identified reproducible patterns of differential co-expression across several
independent expression datasets. Sample groupings induced by these patterns were highly informative of the
disease outcome. Expression patterns of differentially co-expressed genes provided new insights into the complex
nature of the ERa regulatory network.

Conclusions: We demonstrated that the use of the co-clustering structure as the similarity measure in the
unsupervised analysis of sample gene expression profiles provides valuable information about expression regulatory
networks.

Background
Examination of genome-wide patterns of gene expres-
sion levels is frequently used to characterize differences
and similarities between biological samples at molecular
level, and to elucidate underlying biological pathways
and molecular networks. The analysis of gene expression
profiles commonly focuses on either differential expres-
sion or co-expression [1]. In the former case, the goal is
to identify genes whose expression level varies between
two or more sample types or conditions. In contrast,
co-expression (cluster) analysis is used to group together
genes with similar expression patterns across different
samples, and to group samples with similar global
expression profiles.

Methods for co-expression analysis of gene expression
data have been extensively researched, and numerous
clustering algorithms have been developed and tested in
this setting [2,3]. The clustering of both genes and sam-
ples using the same expression data is commonly
termed as two-way clustering [4]. On the other hand, an
entire class of unsupervised machine learning proce-
dures has been developed for identifying bi-clusters
(subsets of genes similarly expressed in a subset of sam-
ples) in gene expression data [3,5-8], and gene expres-
sion modules, which in addition to bi-clustering
structure also incorporate information about gene
expression regulation [9-12].
More recently, differential co-expression [13-15] has

been used to characterize dysregulation of gene expres-
sion regulatory networks in prostate cancer [16], leuke-
mia [17,18], or muscle growth [19]. In such analyses,
genes which are co-expressed within one biological
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context (e.g. normal prostate tissue samples) but not
within another context (e.g. prostate tumor samples) are
said to be differentially co-expressed. These studies
demonstrated that some of the known disease related-
genes, which could not be identified by differential
expression analysis, were actually differentially co-
expressed [16,17,19]. A particularly straightforward
example of such an analysis comes from gene expression
comparisons of developing muscle tissue in a bovine
animal model (Wagyu cattle) and the double-muscled
model (Piedmontese cattle) expressing a version of the
myostatin (MSTN) transcription factor known to carry
the causal mutation for the observed phenotype. Since
the expression of the myostatin gene itself is not
affected by the mutation, differential expression analysis
fails to identify it as being functionally relevant. How-
ever, this gene is implicated through a differential co-
expression analysis since the functional version (in
Wagyu model) is co-expressed with its regulatory targets
such as MYL2 while the non-functional version (in
Piedmontese cattle) is not [19]. Differential co-expres-
sion analysis methods to date require the definition of
biological contexts within which the co-expression is to
be compared.
Here we present a novel probabilistic approach for

uncovering contexts (i.e. groups of samples) with speci-
fic co-expression patterns and sets of genes that are dif-
ferentially co-expressed between such contexts. Our
probabilistic differential co-expression infinite mixture
(DCIM) model implicitly defines a new similarity mea-
sure for biological samples based on the similarity of the
gene co-expression structure within each sample. Two
samples are deemed similar according to this measure if
the same groups of genes are co-clustered in both sam-
ples regardless of the overall similarity of the gene
expression patterns in the classic sense, such as those
implied by high correlation and small Euclidean dis-
tance. This makes our procedure fundamentally differ-
ent from currently used clustering and bi-clustering
methods. To the best of our knowledge, this is the first
time that patterns of co-expression derived from gene
expression data, and not gene expression levels them-
selves are being used to cluster biological samples, and
the first framework for unsupervised analyses of differ-
ential co-expression, where co-expression is defined in
such general terms.
Our DCIM model is based on Bayesian semi-para-

metric Dirichlet process mixtures [20], also referred to
as the infinite mixture model [21]. This methodology
has been applied in clustering gene expression data
[22,23] and has been shown to effectively circumvent
the difficult issue of specifying or estimating the “cor-
rect” number of clusters [23-25]. The context specificity
of the gene co-expression patterns is defined as in the

context-specific infinite mixture (CSIM) model [26]. We
have previously shown that a-priori knowledge of parti-
tions of samples into contexts with differential gene co-
expression patterns can be exploited to improve the
functional coherence of resulting gene clusterings [26]
and transcriptional modules [27]. Here we expand this
model to de-novo partitioning of samples into contexts
of differential co-expression. To facilitate the de-novo
search for contexts, we impose additional Dirichlet pro-
cess-like priors on the membership of samples in differ-
ent contexts. The use of infinite mixtures allows us to
avoid specifying the number of global and local gene
expression clusters as well as the number of contexts.
Co-expression relationship and co-memberships in the
same context are estimated by integrating over all possi-
ble values of these key parameters.
In the case of breast cancer, studies of genome-wide

patterns of gene expression levels have lead to the dis-
covery of distinct molecular subtypes differing in clini-
cal, histological, and molecular characteristics, as well as
treatment response and disease outcome [28-31]. They
point to a diverse etiology of the disease with distinct
molecular signatures involving numerous biological pro-
cesses. Some of these findings are currently used in clin-
ical trials aiming to improve patient prognosis and
treatment [32]. Using the new methodology, we revisit
the problem of identifying molecular subtypes of breast
cancer. We find that the patient groupings induced by
the differential co-expression strongly predict disease
outcome. Differentially co-expressed genes as well as the
patterns of differential co-expression are highly reprodu-
cible across independent expression datasets. The differ-
ential co-expression ‘signal’ identified in our analysis is
complementary to other predictive parameters such as
estrogen receptor (ER) status, lymph node (LN) status,
and AURKA expression as well as the ‘signals’ contained
in the clusters of samples created using traditional simi-
larity measures.

Results
Context-specific infinite mixture model
The DCIM model is based on the assumption that glo-
bal gene clusters, consisting of genes with similar
expression patterns across all samples, are grouped
further into local clusters within each context consisting
of samples with identical co-expression structure. In Fig-
ure 1A samples (i.e. columns) are organized into three
contexts, and genes (i.e. rows) form four global clusters.
Within context X, global clusters 1 and 3 are further
grouped into a single local cluster and global clusters 2
and 4 are grouped into another local cluster. Conse-
quently, within context X all gene expression profiles
form only two local clusters. Similarly, within context Y,
gene clusters 1 and 4 form a local cluster and gene
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Figure 1 Simulation study results. A) Genes grouped into global gene clusters, marked 1-4, are further grouped locally within respective
biological contexts, marked X, Y, and Z. Conversely, biological samples are in the same biological context if they have the same groupings of
co-clustered genes. Differential co-expression score (DCS) is displayed in the right hand side-panel. B) Average ROC curves were obtained for
repeatedly simulated data with noise levels ranging from s = 0.4 0.8, with s = 0.5 displayed here, by averaging the FPRs (incorrectly co-
clustered pairs of samples) and TPRs (correctly co-clustered pairs) for each distinct tree cut level. C) To summarize ROC curves over all
simulations at a given noise level s, we compute the area under the curve (AUC) for each simulation and plot the average AUC against s.
D) The context structure is same as in A, but expression patterns within each context are modified. E) and F) same as B and C but for the
clustering structure in D. Groupings based on traditional similarity measures no longer corresponded to the underlying context structure. DCIM
algorithm continues to correctly identify the underlying contexts.
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clusters 2 and 3 form a local cluster. Since the local
clustering of genes is different between groups of sam-
ples X and Y, these two groups form two different con-
texts. As a result, each context is characterized by a
unique co-clustering structure of genes.
The DCIM model is specified in terms of a Bayesian

Network [33]. A directed acyclic graph (DAG) specifying
conditional dependences in terms of the directed Mar-
kov property is shown in Figure 2. The local probability
distributions for the key variables specifying the alloca-
tion of genes into global clusters (C), the allocation of
global clusters into local clusters within each context (L)
and the allocation of samples into different contexts (D)
are given in terms of the priors derived from the respec-
tive Dirichlet processes. The joint posterior distribution
of all parameters specified by the Bayesian Network is
estimated using a Gibbs sampler. Marginal posterior dis-
tributions of the three key allocation variables (C, D, L)
are summarized in terms of the posterior pair-wise
probabilities (PPPs) of global and local co-expression for
each pair of genes and the PPPs of belonging to the
same context for each pair of samples.
Using the local PPPs of co-expression derived from

the model, we apply a heuristic algorithm to search for
differences between the local gene clusterings and
identify genes that are differentially co-expressed
between two contexts. The higher the resulting differ-
ential co-expression score (DCS) is for a gene, the
higher the likelihood that this gene’s co-clustering
partners are different between the two contexts. In
Figure 1A, genes with high DCS between contexts X
and Y+Z contexts are indicated by the thick blue bar
on the right-hand side of the heatmap. Genes in clus-
ter 1 distinguish context Y from contexts X and Z,

genes in cluster 2 distinguish context X from contexts
Y and Z. Taken together, they define all three contexts.
Technical details are provided in Methods and Addi-

tional file 1; Supplemental Methods (support website
http://eh3.uc.edu/gimm/dcim). Computational proce-
dures for fitting the model are implemented in the R
package gimmR which can be downloaded freely from
http://ClusterAnalysis.org. Using our DCIM algorithm
we also performed a large scale cluster analysis and
functional annotations of the results for virtually all
human, mouse and rat GeoDataSets [34]. Results of
these analysis can be accessed through Genomics Portals
http://GenomicsPortals.org[35].

Recovery of simulated contexts
We first evaluate our method using a series of simulated
datasets at different noise levels with the data structure
shown in Figure 1A. Receiver Operating Characteristics
(ROC) curves summarizing the true and false positives
rates of co-clustered pairs of samples for each clustering
imply favorable performance of the DCIM algorithm in
comparison to traditional hierarchical clustering meth-
ods (Figure 1B). The average area under the ROC curve
(AUC) is consistently higher for our DCIM algorithm
when compared to traditional clustering algorithms
(Figure 1C), indicating a higher level of precision in
reconstructing sample grouping across the whole range
of noise levels.
To further accentuate the conceptual difference

between the sample groupings based on our context-
building algorithm and traditional similarity measures,
we modified the simulation procedure (Figure 1D) leav-
ing the co-expression structure unchanged but modify-
ing the relative expression levels. For example, all

Figure 2 Directed acyclic graph describing the DCIM computational model. Nodes represent random variables and edges indicate
dependencies between nodes such that each random variable is conditionally independent of its non-descendents given its parent nodes (local
Markov property).
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“samples” in the first context still have identical co-
expression structure, but the mean expression profile of
the first two “samples” is different from the mean
expression profile of the last three “samples”. As
expected, groupings based on traditional similarity mea-
sures no longer correspond to the underlying context
structure. In contrast, the DCIM algorithm continues to
correctly identify the underlying contexts (Figures 1E
and 1F). These results indicate that, in general, DCIM
can be expected to produce groupings of biological sam-
ples that will be different from the groupings con-
structed using the traditional similarity measures.
This clear difference between DCIM and other clus-

tering methods was also evident when we re-analyzed
the e bovine animal model data [19] comparing wild
type cross (Wagyu × Hereford) and double muscle cross
(Piedmontese × Hereford) at 10 developmental time
points (Additional file 1; Figure S1.A). Here, much like
genes in clusters 3 and 4 in Figure 1, one transcription
factor (myostatin) has similar expression levels across all
samples. However, its transcriptional targets such as
MYL2 are differentially co-expressed at certain develop-
mental stages due to the mutated myostatin in Pied-
montese cattle (like clusters 1 and 2 Figure 1). The
resulting two top level sample contexts split into pre-
natal and post-natal time points. In contrast, simple
hierarchical clustering methods (Euclidean distance,
Pearson correlation) consistently grouped the same time
points (e.g. Piedmontese and Wagyu cattle at 280 days)
as pairs of most similar samples, but no obvious separa-
tion of time points (Additional file 1; Figure S1.B-D).
The comparison of top DCS genes identified in our
unsupervised analysis for Piedmontese vs. Wagyu cattle
and the 85 DE genes identified in the original paper [19]
showed statistically highly significant overlap(Fisher
p-values 1.6 × 10-12 and 6.7 × 10-20 for the top 85 and
top 200 DCS genes). All but one DE gene (CYP4B1)
had above median DCS. We then repeated the func-
tional analysis reported by Hudson et al. [19] and found
similar significantly enriched categories related to mus-
cle structural components. Both findings indicate that
the differentially co-expressed genes indeed are likely to
be transcriptional targets of myostatin.
Similarly to traditional clustering procedures, tradi-

tional bi-clustering procedures applied to data with a
co-clustering structure as in Figure 1D should also fail
to reconstruct underlying contexts. For example, sam-
ples with different mean expression profiles in context Z
in Figure 1D have low pair-wise correlation and rela-
tively high Euclidean distance. Consequently, they
should not be grouped together to form bi-clusters.
Since bi-clustering procedures are not designed to clus-
ter all samples, we cannot construct equivalent ROC
curves. Instead, we attempted to make this point by

performing bi-clustering analysis of two “easy” (low-
noise) examples from our simulation study. Results are
shown in Additional file 1; Figure S2. The performance
of the two-way hierarchical procedures (Euclidean dis-
tance, Pearson’s correlation and DCIM) on these two
examples was as expected (Additional file 1; Figure S2.
A and C). Also as expected, all five bi-clustering meth-
ods tested as implemented in the Biclustering Analysis
Toolbox v2.2 [36] produced groupings of samples that
did not correspond to context structure for the scenario
in Figure 1D (Additional file 1; Figure S2.D). While the
behavior of bi-clustering procedures generally was pecu-
liar for even the simple clustering structure, only one of
the methods (BiMax) produced reasonably shaped
bi-clusters (after adjusting the discretization parameter
to match the simulated clustering structure; Additional
file 1; Figure S2.B). However, the point of the compari-
sons shown here is not to claim that DCIM is “better”
than traditional clustering and bi-clustering procedures,
but to show that it produces sample groupings based on
an implicit similarity measure which by design is “differ-
ent” from traditional similarity measures.

Identifying molecular subtypes in breast cancer gene
expression data
We now examine the biological importance of uncover-
ing differential co-expression structure by performing
alternative molecular sub-typing of breast cancer sam-
ples in a recent breast cancer gene expression dataset
[37]. Figure 3A shows the resulting hierarchical cluster-
ing of patient samples based on PPPs and the expression
patterns of the 200 most differentially co-expressed
genes. Two distinct sample groups or contexts are
noticeable. A closer examination of the samples in two
dominant contexts revealed a high correlation with key
clinical parameters such as estrogen receptor (ER) sta-
tus, tumor grade, and tumor size (Additional file 1;
Table S1). The membership in two contexts was also
highly predictive of the disease outcome as indicated by
Kaplan-Meier survival curves (Figure 4A) (logrank
p-value = 5.1 × 10-5) and statistically significant
differences in 10 year survival rates (60.9% vs. 81.2%,
p-value = 3.4 × 10-3). Traditional similarity/distance
measures induced considerably different sample group-
ings (Additional file 1; Table S2) which had little or no
correlation with the disease outcome (Table 1).

Differentially co-expressed genes
The functional analysis of the 200 genes most differen-
tially co-expressed between the two major contexts
revealed enrichment for genes both positively and nega-
tively associated with ER status (Figure 3A). Genes nega-
tively associated with ER status were tightly co-regulated
within the “poor-prognosis” samples in context 1, but
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Figure 3 DCIM derived contexts and related differentially co-expressed genes. DCIM was used to identify contexts and differentially co-
expressed genes in a breast cancer dataset [37] A) Hierarchical clusterings of patients based on differential co-expression PPPs and the heatmap
of 200 most differentially co-expressed genes between two contexts marked (1) and (2). The bottom panel shows the average expression profile
for the three global gene clusters marked in the heatmap with corresponding color sidebars. The right-hand panel shows significantly enriched
functional categories for these genes as determined by CLEAN [55] where red indicates the corresponding cluster is significantly enriched by the
category and green indicates no significant cluster enrichment. Complete CLEAN results for all possible gene clusters can be interactively
browsed using the FTreeView software at the support website http://eh3.uc.edu/gimm/dcim. B) Empirical distribution of all pairwise gene-gene
correlation coefficients (Pearson correlation) for the 154 genes marked by the left sidebar in A. The top right plot shows correlations for
154 randomly selected genes in the same two contexts while the bottom right plot shows correlations for the same genes but with randomly
reassigned context labels.
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Figure 4 DCIM derived contexts in breast cancer data are predictive of patient survival. DCIM was used to identify the top two contexts
marked (1) and (2) in Figure 3 and survival analysis was performed. A) Kaplan-Meier curves for the two contexts. B) Clinical, molecular, and
computational parameters and their pairwise combinations were used to fit one-parameter and two-parameter Cox regression and the model fit
was assessed using the Akaike Information Criterion (AIC). The model combining DCIM contexts and AURKA expression defined patient groups
best predicts patient survival (red box) http://eh3.uc.edu/gimm/dcim.
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showed no co-expression within context 2. This cluster
was also enriched for ERa regulatory targets as estab-
lished in recent ChIP-chip experiments [38]. Genes
positively associated with ER status are also tightly co-
regulated, forming a large cluster (clusters marked by
blue, red and green bars combined) within context 1.
These same genes are generally less co-regulated (red
cluster) or not at all co-regulated (blue and green clus-
ters) within context 2. This combined cluster was also
enriched for Cell Adhesion, Cell Communication, and
Mammary Gland Development genes (Figure 3A). These
differential co-expression patterns are reflected in the
distribution of pairwise correlations shown in Figure 3B.
Within context 1, the Pearson correlation coefficient
between gene pairs is significantly higher than within
context 2. Complete results of functional analysis for the
200 most differentially co-expressed genes are provided
in Additional file 2; Table S9.
As in the second scenario of our simulation study

(Figure 1D), sample groupings based on differential co-
expression of these 200 genes with the highest DCS
were considerably different than sample groupings gen-
erated by traditional similarity measures on these same
genes. Furthermore, the differences in disease outcomes
were much smaller for the sample groupings generated
by the traditional hierarchical clustering methods and
k-means algorithm (Additional file 1; Table S3). This
indicates that our method not only identifies function-
ally important genes, but the implicit similarity measure
based on the differential co-expression is necessary to
optimally utilize expression patterns of these genes in
predicting the disease outcome.

Comparison to other outcome predictors
We compared the strength of association between dis-
ease outcome and the patient groupings induced by the
DCIM algorithm to several alternative groupings based

on important clinical and molecular parameters, as well
as unsupervised clustering of patient samples based on
the traditional similarity measures (Table 1). Among the
parameters with statistically significant correlation with
disease outcome were tumor grade and aurora kinase A
(AURKA) gene expression, a proliferation associated
gene shown to be a powerful predictor of survival in
breast cancer [39]. Tumor size and ER status did not
yield patient groups significantly different with respect
to the disease outcome for this dataset. Given the high
level of enrichment of ER status related genes among
differentially co-expressed genes, it is particularly inter-
esting that in this dataset ER status on its own was not
strongly associated with the disease outcome. This indi-
cates that the expression patterns of genes identified
based on the differential expression between ER+ and
ER- samples can be more predictive of the disease out-
come in the context of differential co-expression
analysis than ER status is on its own. Among the unsu-
pervised computational methods we compared, the
k-Means algorithm and Euclidean distance based hier-
archical clustering resulted in patient groups with mar-
ginally statistically significant differences in disease
outcome. The unsupervised analysis based on our differ-
ential co-expression measure yields the highest statistical
significance for differences in survival between sample
groupings.
To assess the independent contribution of the differ-

ential co-expression signature to the predictive models
based on other variables, we systematically evaluated the
benefit of combining two classification methods using
Cox regression. We found that the model significantly
improved when including DCIM based classification as
compared to using any other variable alone. In particu-
lar, the model combining DCIM and AURKA expression
had the lowest overall Akaike Information Criterion
(AIC) (395.3) indicating the best model fit (Figure 4B).

Table 1 Associations with the survival outcome using different clinical, molecular, and computational methods
(Schmidt et al. dataset [37])

Parameter Size of patient groups logrank p-value

poor survival favorable survival

Clinical Tumor size (≤ 2 cm, >2 cm) 88 112 0.17

Tumor grade (G1, G2/G3) 165 35 3.7 × 10-3

Molecular ER status 38 162 0.12

AURKA expression <, > median 100 100 4.1 × 10-3

k-Means (k = 2) 62 138 8.7 × 10-5

Computational Hierarchical clustering Pearson correlation 71 129 0.16

Euclidean distance 18 182 0.037

k-Means clustering 64 136 0.043

DCIM 65 135 5.1 × 10-5

Freudenberg et al. BMC Bioinformatics 2010, 11:234
http://www.biomedcentral.com/1471-2105/11/234

Page 8 of 15



Reproducibility of differential co-expression signature
across independent datasets
The reproducibility of results was assessed by repeating
the analysis on two additional breast cancer datasets
[40,41]. The high correlations between DCS measures
(Figure 5A) and the highly significant overlaps between
the lists of genes with highest DCS (Figure 5B and 5C)
for different datasets indicate the reproducibility of dif-
ferential gene co-expression. Using information from all
three datasets, we constructed a “differential co-expres-
sion signature set” by selecting a list of the 500 common
genes that had a top-ranking DC score in each of the
three datasets. Using only these genes to re-analyze all
three datasets the DCIM algorithm yielded remarkably
consistent patterns of differential co-expression (Figure
6). Similar results were obtained when using the top 200
DCE genes shown in Figure 3A (Additional file 1; Figure
S3). Despite the fact that the Miller et al. dataset [40]
also contained samples from lymph node positive
patients (Additional file 1; Table S4), the overall gene
expression patterns in the two contexts were concordant
to expression patterns in the other two datasets. The
lymph node status was in this case the strongest single
predictor of the disease outcome, but the co-expression
signal together with the lymph node status provided for
the best model fit in explaining the disease outcome
among all 2-predictor combination (Additional file 1;
Figure S4).

Meta-analysis based on the differential co-expression
signature
The predictive potential of the differential co-expression
signature was then tested in the analysis of a ‘super’-set
(989 samples) comprised of the three independent data-
sets described above and additional three studies
[30,42,43]. Using the DCIM algorithm to cluster sam-
ples based on the 500 DC signature genes (Figure 7A),
we again observe patient groupings with significantly
different disease outcomes (logrank p = 3.8 × 10-3),
highly significant correspondence to the groupings
found when analyzing the data sets individually (Addi-
tional file 1; Table S5, odds ratio = 15.9, Fisher p-value
= 1.6 × 10-77), and high correlation to ER status and
tumor grade (Figure 7).

Estrogen receptor alpha and oncogenic pathway analysis
Given the strong correlation of the contexts induced by
our algorithm and the ER status of the samples, we
examined the differentially co-expressed gene clusters in
the context of ERa transcriptional targets. We distin-
guished four different sets of genes dysregulated by
ERa: Primary and overall transcriptional effects elicited
by stimulating the ER positive MCF-7 breast cancer cell
line with estradiol [44], and effects elicited after

Figure 5 Reproducibility of differential co-expression scores
(DCS) in independent datasets. A) Pair-wise correlations between
DCS for all genes shows high correlation for both Pearson’s and
Spearman’s correlation coefficients B) Statistical significance of pair-
wise overlaps between lists of top 1-1000 most differentially co-
expressed genes shows high level of concordance. All three curves
are peaking above Fisher’s Exact Test p-value of 10-150 C) Relative
pair-wise overlaps in terms of log-odds ratios show non-trivial level
of overlaps (log-odds ratio > 2) throughout the range (1 to 1000
most differentially co-expressed genes).
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stimulating the ER negative MDA-MB-231 breast cancer
cell line with estradiol with and without re-expressing
ERa [45]. We also examined correlations with the tran-
scriptional targets of four oncogenes (E2F3, HRAS, SRC
and MYC) elicited after transfecting cultured primary
human mammary epithelial cells with adenovirus
expressing one of the four oncogenes [46]. The overall
DC signature gene set was enriched for genes up-regu-
lated in E2 treated, cycloheximide-pretreated and not
pre-treated MCF-7 cells (CHX+E2 and E2), E2 treated
MDA-MB-231 after ERa re-expression, and after HRAS
and E2F3 induction. It was also enriched for genes
downregulated in CHX+E2 treated MCF-7 cells, and
after HRAS, SRC and MYC induction (Figure 7C).
By splitting the signature into 7 clusters of co-

expressed genes we further refined the correlation
between different expression patterns within the DC sig-
nature and these six biological systems (Figure 7D). For
example, both Clusters 2 and 5, despite their opposite
expression patterns, were enriched by genes upregulated
by estradiol treatment in the presence of functional
ERa, while Cluster 3 was enriched by genes upregulated
in two oncogenic pathways (E2F3 and RAS), but not by
estradiol. Clusters 1 and 2, which showed similar

expression pattern in the left context, but not in the
right context, were enriched by primary estrogen targets
were regulated in opposite direction by E2 treatment of
MCF7 cell line.

Discussion
We have developed an analytical procedure for unsuper-
vised differential gene co-expression analysis. The
DCIM algorithm produces two-way hierarchical cluster-
ings of all genes and samples. The implicitly defined
similarity measure between biological samples is based
on the similarities in the clustering structure encoded in
the DCIM model. As demonstrated in the simulation
study and analysis of the bovine myostatin data, this
similarity measure is fundamentally different from tradi-
tional measures of similarity between gene expression
profiles used by clustering and bi-clustering algorithms
to date.
Breast cancer sample groupings based on differential

co-expression were more strongly correlated with the
disease outcome than the sample groupings produced
by traditional clustering techniques. Differentially co-
expressed genes identified by our algorithm are func-
tionally related to the etiology of breast cancer and are

Figure 6 Heatmaps of top 500 DCS gene signature in three breast cancer studies. Expression patterns are remarkably consistent across
different datasets. DCIM sample clusterings are highly correlated with ER status. Gene expression profiles and functional annotations can be
accessed and examined interactively at the support web-site http://eh3.uc.edu/gimm/dcim.
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reproducible across independent breast cancer datasets.
A large portion of these genes are directly regulated by
the ERa transcription factor and reside at the intersec-
tion of various oncogenic pathways. Our analysis estab-
lishes the ERa status as the dominant factor defining
contexts of differential co-expression in breast cancer
samples.
The complex sets of transcriptional signatures recov-

ered by our algorithm separating ER positive and ER
negative breast cancer samples can be explained by the
complex nature of ER regulation of its transcriptional
targets. This regulation is highly context-specific and it
is generally believed to be driven to a large extent
by the complex interactions of ER with different co-
factors [47]. The most striking difference in ER

transcriptional regulation in two different biological
contexts is demonstrated by the opposite effects its
activation has in ER positive cell cancer lines such as
MCF-7, where it stimulates proliferation and growth,
and in ER negative cell cancer lines, where re-expres-
sing ERa facilitates the anti-proliferative effects of
estradiol [45]. In breast cancer samples with a func-
tional ERa gene, sets of differentially co-expressed
genes with distinct expression patterns are regulated
through ERa interactions with different co-factors. In
samples without the functional ERa gene, these genes
are “less” regulated and their expression patterns
are simplified into three dominant expression patterns
indicated in Figure 7 by cluster numbers 1-4 ("up”),
5-6 ("down”) and 7 ("unchanged”).

Figure 7 DCIM analysis of the top 500 DCS signature in the combined dataset. A) Expression patterns are consistent with the results for
the individual datasets. B) ER status, tumor grade, and the expression levels of the ERa transcription factor. DCIM sample groupings are highly
correlated with all three variables. C) LRpath analysis [56]of enrichment by the genes up- and down-regulated by E2 and oncogenic pathways
genes for the whole DCE signature. D) Separate LRpath analysis of enrichment for seven distinct sub-clusters. Gene expression profiles and
functional annotations can be accessed and examined interactively at the support website http://eh3.uc.edu/gimm/dcim.
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Gene expression profiling of breast cancer samples has
been used to derive numerous distinct, but often over-
lapping gene lists that are predictive of the disease out-
come [32]. On the other hand, it has been shown that
the general “proliferation” signature underlies predictive
ability of many of such lists [48] and that gene expres-
sion profile of a single proliferation marker gene
(AURKA) can serve as a surrogate for the predictive
ability of such lists [39]. In our analysis, DCE-based clas-
sification of samples into different contexts was comple-
mentary to other clinical, pathological and molecular
predictors including AURKA gene expression. We also
found that our 500 gene DCE signature has a significant
overlap with the experimentally derived list of “intrinsic
genes” [31] (Additional file 1; Table S6). The “intrinsic
genes” signature consisting of genes with high between-
to-within-tumor ratio of expression variability, has
served as a gold standard for molecularly classifying
breast tumors [31,49,50], and has also been shown to
contain predictive ability independent of the clinical
parameters.

Conclusions
The biological relevance of both sample groupings and
differentially co-expressed genes identified in our analy-
sis suggest that our DCIM framework can produce use-
ful new insights into the gene expression regulatory
networks.

Methods
Differential co-expression infinite mixture (DCIM) model
Suppose X is the N × M expression data matrix where
xij is the expression level of gene i in sample j. Accord-
ingly, xi = (xi1, xi2, ..., xiM) is the global expression profile
for gene i and xj

T = (x1j, x2j, ..., xTj)
T is the expression

signature for sample j.
C = (c1, c2, ..., cN)

T is the vector of gene allocation
variables assigning genes to underlying expression pro-
files; ci = q means that expression profile xi is generated
by the underlying pattern q represented by the M-
dimensional multivariate normal distribution NM(μq, Σq).
Groups of genes generated by the same distribution
form a global gene cluster.
Likewise, D = (d1, d2, ..., dM) is the M-dimensional

vector of allocation variables assigning each sample to a
context; dj = r means that expression signature xj

T

belongs to context r. Global expression patterns which
are indistinguishable within a context are further
grouped into local clusters. The local gene clustering
structure is represented by the matrix L where lqr = t
means that, within context r, global cluster q is grouped
into local cluster t.
The joint distribution of data and model parameters is

specified by a Bayesian network. The Directed Acyclic

Graph (DAG) in Figure 2 specifies conditional indepen-
dencies in terms of the directed Markov property [33].
Given the DAG and conditional probability distributions
of each node given its parents, the joint probability dis-
tribution is

p X C D L M M a p X C M p C p M L D M( , , , , , *, , , , , , , , ) ( | , , ) ( | ) ( | , , *Σ Σ     a = ))

( | , ) ( | ) ( | ) *| , )

( ) ( ) ( ) ( ) ( ) (

p p L a p D p M

p p a p p p p p

Σ    
    

a (

a) ( ))

where M = {μ, ..., μQ} and Σ = {Σ1, ..., ΣQ} are the
mean vectors and variance-covariance matrices defin-
ing the expression patterns xi. The prior probability
distributions for the random variables defining the glo-
bal gene clustering C, local gene clustering L, and
sample to context assignment D are derived from the
Dirichlet process priors and do not require specifica-
tion of the number of groups [23,26]. The prior prob-
ability that a sample j will be placed in already existing

context r is p d r Dj
n j r

M( | , ) ,= = −
− +a a1

while the prior

probability of j being placed in a new context is

p d d j j Dj j M( , ’ | , )’≠ ≠ = − +a a
a1

where n-j,r is the num-

ber of samples currently in context r without j.

Fitting the model
Inference about gene clusters and sample contexts is
based on the marginal posterior distribution of para-
meters C, L, and D. These distributions are derived
from the joint posterior distribution of the model para-
meters given data p(C, D, L, M, M*, Σ, a, b, j, a, a, l, τ|
X) which is estimated using a Gibbs sampler [51]. The
Gibbs sampler iteratively draws values from the condi-
tional posterior probability distributions for each ran-
dom variable in the model given all other variables and
the data. The resulting Markov Chain converges to the
joint posterior distribution. In particular, the posterior
conditional probability for placing sample j into existing
context r is given by

p r
M
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i
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Estimated posterior marginal distributions of C, L, and
D are summarized by calculating posterior pair-wise
probabilities of co-groupings as the proportion of Gibbs
sampler cycles in which two genes or samples were
grouped together. Hierarchical clusterings of genes and
samples are created by using PPPs as the similarity mea-
sure and applying the average linkage agglomeration
method. All prior and conditional posterior probability
distributions that specify the model and facilitate the
estimation of the posterior distribution of model
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parameters are provided in Additional file 1; Supple-
mental Methods.

Differential co-expression score
Given two contexts, we consider a pair of genes differ-
entially co-expressed (DCE), if they are co-clustered in
one context, but not in the other. A differential co-
expression score (DCS) can be derived from the differ-
ences in local posterior pairwise probabilities of gene
co-expression between the two contexts. Given two con-
texts c1 and c2, we compute the gene-specific DCS as
follows:

1) For each context c,
a. Compute the N × N posterior pairwise prob-
ability (PPP) matrix of any two genes being co-
clustered within c
b. Construct a hierarchical tree Tc by applying
average linkage hierarchical clustering with the
local PPP matrix as similarity measure

2) Calculate the N × N matrix Diff = (d)N, N = abs
(PPPc1-PPPc2) of absolute differences between the
two PPP matrices
3) For each context c,

a. Cut Tc at all possible levels to obtain a list of
gene clusters Gc where cutting Tc at level (1-p)
induces a gene clustering such that the average
PPP between each pair of genes within a result-
ing cluster is greater than p.
b. For each gene cluster g in Gc

i. For each gene i, compute the score
DCScluster(i, g, c)
DCScluster(i, g, c) = Σdij/(|g|-1), if genes i, j are
in g, i ≠ j, and |g| is size of cluster g.
DCScluster(i, g, c) = 0, if i is not in g.

4) For each gene i, compute the gene-specific score
DCSgene(i) = max{g, c}(DCScluster(i, g, c))

Simulation study
The simulation study was performed by generating ran-
dom datasets with the clustering/context structure as
depicted in Figures 1 at various levels of “noise”. For
each noise level, 100 random datasets were generated
and analyzed. ROC curves and areas under the curves
were calculated by averaging over all 100 random data-
sets for each scenario.
Each simulated N × M data matrix X comprises four

gene clusters and three contexts. Clusters 1 and 2 each
have 20 genes while clusters 3 and 4 each have
80 genes. Each of the three contexts has five samples.
Thus, M = 15 and N = 200. Each gene expression
profile xi is generated by one of four underlying
patterns representing the four gene clusters such that xi

~N(μc, s2), μc = (μc1, ..., μcM) and gene i is generated by
pattern c. For clusters 3 and 4, μc is identical for all
samples, that is “low” (= 0) and “high” (= 1), respec-
tively. In contrast, for cluster 1, μc is “high” for samples
1-5 and low for samples 6-15 while for cluster 2, μc is
“high” for samples 6-10. Thus, only gene clusters 1 and
2 are informative in distinguishing the three contexts.
The noise parameter s is the same for all clusters and
context ranging from 0.4 to 0.8. Each simulation is
repeated 100 times. Figure 1A shows a heatmap of one
of the simulated datasets at the s = 0.5 noise level. For
the simulation scenario in Figure 1D, we modify the
mean expression profiles so that the mean μc is set to -1
instead of 1 for samples 1-2, 6-8, and 11-12, thus leaving
the co-expression patterns (and contexts) intact but
changing the expression levels in some samples.

Breast cancer studies
Data preprocessing and gene selection
Raw data files for six human breast cancer datasets were
RMA-preprocessed [52] separately using the Entrez
Gene-based custom CDF (version 10) [53] and centered
around their respective median. A mild variation filter
using Cancer Outlier Profiler Analysis (COPA, 95th per-
centile) [54] was applied to select the top 10,000 genes
to be analyzed.
Survival analysis and other statistical analyses
Where multiple end points were available we chose
disease-specific or metastasis-free survival rather than
overall survival (Additional file 1; Table S4). Survival
times were censored at 10 years. For the Cox regression
analysis variables were dichotomized as follows. Tumor
size: ≤/> 2 cm; tumor grade: grade 1/grades 2 and 3; ER
status: +/-; AURKA gene expression (median): ≤/> med-
ian after preprocessing; AURKA gene expression (k-
Means): cluster 1/cluster 2; computational methods:
cluster 1/cluster 2.
Gene clusters were functionally analyzed using the

CLEAN methodology [55], and the enrichment of DCE
genes by estrogen regulated and oncogenic pathway
genes was assessed using LRpath methodology [56].
Additional details are available in Additional file 1; Sup-
plemental Methods.

Additional file 1: Supplemental materials 1. Word DOC containing
Table S1-S6 and Figures S1-S4.

Additional file 2: Supplemental material 2. XLS containing Table S7-
S10.
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