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Abstract

Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol
infections of foot and mouth disease virus (FMDV) and various approaches have been used to improve mucosal response to
this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide)) nano/microparticles were used as an intranasal
delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene
as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or
without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C) were generated. The two latter plasmids were
designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of
determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs
and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA
vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-
IL2AP12A3C) developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels
of sIgA (secretory IgA) present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in
pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals). pc-
IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C-
and pc-P12A3C-immunized animals) as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-c by
both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations
with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal
delivery of cationic PLGA nano/microparticles loaded with various FMDV DNA vaccine formulations encoding IL-6 as a
molecular adjuvant enhanced protective immunity against FMDV, particularly pc-IL2AP12A3C with IL-6 gene located before
P12A3C gene.
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Introduction

Foot and mouth disease virus (FMDV) infections following

exposure to contaminated aerosols can be prevented by neutral-

izing mucosal immune responses directed against FMDV antigens,

suggesting that vaccines designed to elicit mucosal FMDV-specific

immunity at major mucosal surfaces can interfere with viral

transmission [1]. Since protection against mucosal infection has

been attributed to the production of anti-FMDV-specific IgA

antibodies [2], elicitation of IgA at these surfaces has been deemed

an important parameter in the development of vaccines designed

to elicit protective immune responses against FMDV [3].

Interleukin-6(IL-6) is a multifunctional Th2-associated cytokine

produced by macrophages, dendritic cells, T cells, endothelial cells

and hepatocytes [4] that plays a role in the terminal differentiation

of B cells, proliferation of lymphocytes and endothelial cells,

regulation of IL-2 receptor expression, differentiation of CTL

responses, up-regulation of acute phase proteins, Th2 differenti-

ation (via the upregulation of IL-4 by precursor T helper cells) and

regulation of Th1-associated cytokines [5].

Since DNA plasmid vaccines used to stimulate mucosal

immunity can be easily degraded by DNases present at mucosal

surfaces, DNA plasmids were adsorbed onto chitosan-coated

PLGA particles that were shown to be protected against enzymatic

degradation [6]. For biodegradable and biocompatible character-

istics, poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles have

been extensively utilized in the sustained and targeted delivery of

various agents, including anticancer drugs [7], plasmid DNA [8],

proteins or peptides [9,10] and low-molecular-weight compounds

[11]. PLGA nanoparticles have hence been used to increase the
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concentrations of drugs crossing various biological barriers,

including the blood-brain barrier, gastrointestinal and mucosal

surfaces and ocular tissues [12]. Because of its cationic nature,

chitosan has been widely tested as a non-viral gene delivery system

[13]. Its mucoadhesive properties and its ability to modulate tight

junction integrity resulting in increased paracellular transport,

make it an ideal candidate for the delivery of DNA vaccines to

mucosal tissues [14]. Furthermore, chitosan-coated PLGA nano-

particles were found to increase the penetration of the encapsu-

lated macromolecules at mucosal surfaces [12,15].

In this study, using chitosan-coated PLGA nanoparticles as a

delivery vehicle, we sought to explore whether plasmids encoding

FMDV capsid protein and bovine IL-6 as mucosal adjuvant, and

the different position of IL-6 among the plasmids can improve the

stimulation of mucosal and systemic immune responses.

Results

Construction and plasmid characterization
Three plasmids were constructed successfully and confirmed by

PCR, enzyme digestion (Figure 1) and sequence analysis. Plasmid

expression was confirmed using an indirect immunofluorescence

assay (Figure 2). Transfected cells were incubated with anti-FMDV

positive sera followed by an incubation with a fluorescein-

conjugated anti-rabbit IgG. As anticipated, cells transfected with

pA, pB or pC fluoresced compared to the negative controls

(Figure 2).

TEM analysis revealed that cells transfected with plasmid pA

(Figure 2E) and pC (Figure 2F) presented with detectable empty

capsid structures but cells transfected with pB did not, perhaps

because P12A protein encoded by plasmid pB harboured three

additional amino acids after 2A protein self-cleavage between IL-6

and P12A protein, including the amino-terminal proline of 2A

protein, upstream of amino-terminal glycine of P1, according to

reports [16,17]. The absorbance values of cells transfected with

plasmids pA, pB or pC decreased, but the negative control and

irrelevant control absorbance values remained unchanged

(Figure 3A). No significant expression level of FMDV capsid

protein between pA, pB and pC transfected cells was observed

when the cell lysis undiluted.

Characterization of IL-6 production following transfection with

either pB or pC produced significantly higher IL-6 levels than

untransfected controls, suggesting that transfection of BHK-21

cells with pB and pC resulted in significant levels of IL-6

production (Figure 3B). However, there is no significantly

difference for expression level of IL-6 between pB- and pC-

transfected cells. In order to confirm the bovine IL-6 reacting well

on rodents, we had predicted the reactivity of IL-6 between

bovine, rat and human through bioinformatics methods, and

concluded that bovine IL-6 may have a well reactivity on rat [18].

However, the reactivity of bovine IL-6 on guinea pig was not

predicted because the sequence of guinea pig IL-6 is not available

from Genbank.

Characterization of microparticles properties
The particle characterization by the scanning electron micro-

scope shows at (Figure 4). The average diameter of the particles

determined by ZetaSizer Nano ZS before and after freeze-drying

was 462.5 nm and 1975 nm, respectively. The zeta potential of

the particles remained unchanged with 41.3 mV at pH 3.0 before

and after freeze-drying. The particles protected plasmid DNA

from DNase I digestion compared to plasmids that were digested if

they were absorbed with the microparticles (Figure 5), suggesting

that plasmids absorbed on particles could be effectively delivered

to mucosal environments without compromising the integrity of

the DNA.

IL-6 as adjuvant increases the level of serum IgG
Immunized guinea pig serum antibody titers reactive against

FMDV strain Asia I were measured by indirect ELISA. Specific

anti-FMDV antibody responses were assessed at 0, 10, 24 and 38

days after the first immunization. Interestingly, the highest

antibody titers were observed in pC-immunized animals that were

statistically higher than titers observed from animals in other

groups at day 38 after the first immunization (p , 0.05) (Figure 6).

IL-6 enhances mucosal immune responses
On day 35 and 42 days after the first intranasal (i.n.)

immunization, sIgA nasal and vaginal responses specific for

FMDV were assessed by ELISA. Our results demonstrated the

presence of significantly elevated levels of FMDV-specific sIgA

antibodies in vaginal wash samples from guinea pigs vaccinated

with pC compared to animals vaccinated with pA or pB (Figure 7).

The FMDV-specific sIgA antibodies in nasal wash samples shown

similar pattern, but there are no significant differences among

guinea pigs vaccinated with pC, pA and pB (data not shown).

sIgA production at mucosal sites
Levels of expression and sites of sIgA production in the lungs,

tracheas and small intestines of animals in the respective vaccine

groups were assessed by immunohistochemical analysis. The

Figure 1. Restriction pattern profiles of digested plasmids. Plasmid pA (gel on left), pB (middle gel) and pC (gel on right) were enzymatically
digested. Digests were subjected to agarose gel electrophoresis. M, DNA ladder; Lane 1, pcDNA3.1; Lane 2, undigested plasmid; Lane 3, EcoRl
digested plasmid; Lane 4, BamHI and XbaI digested plasmid; Lane 5, PCR product of target gene.
doi:10.1371/journal.pone.0027605.g001
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highest levels of sIgA expression were observed in all tissues

harvested from animals immunized i.n. with pC, followed by

animals immunized i.n. with pA and then animals immunized i.n.

with pB (Figure 8), paralleling the serum IgA response described

above. The significant IgA expression in the alveoli and the

intestinal villi supported previous observations [19] suggesting that

of the use of DNA encoding IL-6 as a component of the vaccine

stimulated the production of higher sIgA concentrations at

mucosal sites.

Characterization of T-cell responses in vitro
Single cell splenocyte suspensions were prepared from rat

spleens 7 days after the second immunization. Following

stimulation with FMDV, the highest levels of proliferation were

observed in splenocytes harvested from pB-immunized animals

followed by proliferation of cells harvested from pC- or pA-

immunized animals (Figure 9). Proliferation was significantly

higher in cells harvested from animals in all the vaccine groups

compared to the proliferation observed for cells harvested from the

vector control-immunized group.

Effect of IL-6 on T cell cytokine expression profiles
To understand the effect of IL-6 as a mucosal adjuvant,

splenocytes were isolated 7 days after the second immunization

and stimulated with inactivated FMDV in vitro. Cells were then

double-stained with anti-CD4 and anti-IL-4, anti-CD4 and anti-

IFN-c or anti-CD8 and anti-IFN-c and analyzed in FACS. The

highest percentage of antigen-induced IL-4 and IFN-c producing

CD4+ and CD8+ T cells was observed in splenocytes harvested

from the pB-immunized groups followed by splenocytes harvested

from the pC and pA groups, respectively (Figure 10). In addition,

CD4+CD8 +double-positive cells could be induced because CD4+
IFN-c+ cells or CD8+ IFN-c+ cells are much more numerous than

CD4-IFN-c+ cells or CD8-IFN-c+ cells respectively following rats

vaccinated with pA, pB, pC compared to control group (Figure 10).

CD4+CD8+ double-positive cells induced by vaccination were

also reported by [20,21].

The effect of IL-6 on DC maturation
Since IL-6 is an excellent candidate for enhancing innate

immunity against viral infections [22] and DCs play a critical role

in mediating the initiation of cellular immune responses

compatible with viral clearance, the role of IL-6 in mediating

DC maturation was assessed in the respective vaccine groups.

Forty-eight hours post boost immunization, DCs isolated from rats

immunized with pB had the highest expression levels of CD80,

CD86 and MHC-II followed by expression levels of these markers

on DCs harvested from pC- and then pA-immunized rats

(Figure 11). DCs expressing MHC-II shown the similar pattern,

but there are no significant differences among pA-, pB- and pC-

immunized rats (bar graph not shown).

Characterization of neutralizing viral antibodies
Since the level of neutralizing antibodies correlates with

protection against FMDV infections, the anti-viral neutralizing

serum antibody titers from immunized guinea pigs were assessed

(Figure 12). The highest levels of neutralizing antibody titers were

observed in animals immunized with pB followed by titers in the

serum from animals immunized with pC or pA, respectively.

Neutralizing titers from animals in all of the vaccine groups were

Figure 2. Detection of the FMDV structure protein and FMDV capsid. Immunofluoresence was used to determine the expression levels of
the FMDV structure protein following transfection with either pcDNA3.1(+) (a), pA (b) pB (c) or pC (d). FMDV capsid was observed by TEM of BHK-21
cells transfected with pA (e) or pC (d).
doi:10.1371/journal.pone.0027605.g002
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Figure 3. Characterization of FMDV protein and IL-6 production in BHK-21 cells. (A)Two days after transfection with either pA, pB or pC,
and negative control (PBS) and irrelevant control (Bovine Serum Albumin, BSA) were added; BHK-21 cells were analyzed for expression of FMDV
proteins by sandwich-ELISA. BHK-21 cell lysates were diluted twofold. The data are expressed as the mean OD for each dilution. (B) Expression of IL-6
was determined by assessing IL-6 levels in BHK-21 cell lysates by ELISA two-days after transfection. The data are expressed as the mean OD 6 SEM,
measured in duplicate. Means were compared by non-parametric ANOVA.
doi:10.1371/journal.pone.0027605.g003
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significantly higher than titers observed in serum from animals

immunized with vector alone.

Protection studies
Guinea pigs in all the vaccination groups (n = 5) were

subcutaneously challenged with 0.2 ml 100 TCID50 of live virus

on the left rear foot 2 weeks after the third vaccination. Sixty

percent (3/5) of pB-immunized guinea pigs were protected and

20% (1/5) of pC-immnized guinea pigs were protected from

FMDV challenge (Table 1). Guinea pigs in the remaining vaccine

and control groups developed vesicles in both rear feet 2 days post

challenge. The guinea pigs that did not develop secondary vesicles,

were judged to be completely protected against challenge with

FMDV, suggesting that the pB formulation provided significant

levels of protection.

Discussion

As reported by [23,24], utility of nanoparticles for drug delivery

do not deposit efficiently in the lungs because of exhalation of a

majority of the inhaled dose. Therefore, the nanoparticles-

containing microparticles were formulated through freeze-drying

the nanoparticles with mannitol added in order to embrace the

virtues of both nano- and micro-scale particles, as microparticles

turned into nanoparticles rapidly while the mannitol dissolves into

water in physiological conditions [25]. This strategy is also

regarded as efficient approach to improve the drug absorption

by [25,26].

One question addressed by this study was whether IL-6 is

potential as mucosal adjuvant, therefore, pC was constructed with

IL-6 located between P12A and 3C sequence in contrast to pA

without IL-6 inserted because this strategy is proved to be effective

by [27]. Our study showed that pC vaccination increased the

levels of antigen-specific sIgA (vaginal wash, p,0.05; nasal washes,

p.0.05) that correlated with higher IgA expression levels in the

lungs, trachea and small intestines compared to IgA responses

observed in pA-immunized rats. These higher sIgA levels elicited

Figure 4. SEM analysis of particle morphology. Particles with plasmids before (a) and after (b) freezing-dry. Magnification 20,0006.
doi:10.1371/journal.pone.0027605.g004

Figure 5. Degradation protection assays of particle-loaded
plasmids. Particle-loaded plasmids were incubated with DNaseI. Lane
1, particle loaded plasmid digested with DNase; Lane 2, particle loaded
plasmid in the absence of DNaseI digestion; Lane 3, pure plasmid
digested with DNaseI; Lane 4, undigested plasmid.
doi:10.1371/journal.pone.0027605.g005

Figure 6. Guinea pig anti-FMDV serum antibody responses.
Guinea pigs (n = 5) were immunized with three doses of chitosan PLGA-
loaded pA, pB, pC or pc-DNA3.1 at biweekly intervals. Serum samples
were collected on days 0, 10, 24 and 38 after primary immunization and
the IgG response assessed by ELISA. Data are measured in duplicate and
presented as the mean 6 SEM. Means were compared by non-
parametric ANOVA. Significant results between pA-immunized animals
and control groups are indicated by #,Significant results between pC-
and pA-immunized animals are indicated by *, and between pB-
immunized groups are indicated by **.
doi:10.1371/journal.pone.0027605.g006
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following pC vaccination is also consistent with stronger FMDV

specific antibody responses(p,0.05) and stronger FMDV neutral-

izing antibody responses(p.0.05) compared with that following

pA vaccination, suggesting that the presence of IL-6 as a vaccine

component (acting as a cytokine adjuvant) significantly contributed

to the elicitation of mucosal and humoral immune responses.

Besides, pC-immunized animals also developed more potent cell-

mediated responses, evidenced by the higher percentage of IL-4

(p,0.05) and IFN-c (p,0.05) producing CD4+ cells and IFN-c
producing CD8+ T cells (p.0.05) and DCs that possessed higher

CD80 (p,0.05), CD86 (p.0.05) and MHC II (p.0.05)

expression levels compared to pA-immunized rats. In addition,

one out of five guinea pigs vaccinated with pC was protected

against FMDV challenge, in contrast to none of guinea pigs

vaccinated with pA protected. These data suggested that

incorporation of IL-6 as part of the FMDV DNA vaccine

enhanced mucosal and systemic immune responses specific to

FMDV.

Another question addressed by this study was whether targeting

FMDV capsid protein to endoplasmic reticulum (ER) can improve

the immune responses. Through the signal peptide of IL-6 at the

N-terminus, the FMDV capsid protein produced by pB can be

targeted to ER but that produced by pC can not according to

report [28]. Our results shown that pB vaccination resulted in

higher levels of neutralizing antibody titers (p,0.05), a higher

percentage of cells responding to antigen stimulation measured by

IL-4 (p,0.05) and IFN-c (p.0.05) production by CD4+ T cells

and IFN-c (p.0.05) production by CD8+ T cells, higher CD80,

CD86 and MHC II expression levels from DCs (p.0.05)

compared to similar responses from pC-immunized animals.

And pB i.n.-immunized animals had the highest protection rate

(3/5) compared with (1/5) of pC i.n.-immunized animals.

Consistent with our results, animals vaccinated with plasmid

DNA encoding VP1 protein of FMDV [29], outer surface protein

C of Borrelia burgdorferi [30], HBsAg [31], fragment C of tetanus

toxin [32], ovalbumin [33] and gp120 protein of HIV-1 [34] fused

to the ER-targeting secretory signal peptide induced stronger

immune response compared to that of animals vaccinated with

similar antigen without ER-targeting secretory signal peptide

fused. Secretion of VP1 [29] and P1 [35] protein of FMDV from

cells transfected with plasmid DNA encoding VP1 and P1 fused

with ER-targeting secretory signal peptide were reported,

therefore, it is tempting to speculate that the FMDV capsid

protein could also be secreted from cells transfected with pB but

not pC. An attempt to observe whether there are significant

differences of FMDV capsid protein levels in culture supernatant

of BHK-21 cells transfected with pB and pC was made without

success because of severe cellular death (data now shown). It is

reported that 3C protein of FMDV could lead to the change in cell

morphology closely mimicking FMDV infection leading to

cytopathic effect in vitro [36], but there is no report for cellular

death in vivo due to 3C protein. Taken together, we speculated the

possible mechanism of improving immune responses through ER-

targeting strategy could lies in that secreted FMDV capsid proteins

are more efficient in presenting for B cells and antigen presenting

cells than cytoplasmic FMDV capsid protein.

Interestingly, our results showed that pB vaccination resulted in

lower FMDV-specific antibody IgG (p,0.05), IgA (p,0.05) titers

(vaginal wash) and obvious lower IgA expression levels in the

lungs, trachea and small intestines compared to similar responses

from pC-immunized animals, which is inconsistent with neutral-

izing antibody responses. Similar results have been reported

previously. For example, the ratio of neutralizing antibody

induced by inactivated FMD vaccine containing 146S antigen at

14 and 28 days post first vaccination is 1.41 and 1.45 respectively,

however, the ratio of specific antibody induced by inactivated

FMD vaccine and empty capsid-like particles at 14 and 28 days

post first vaccination are both much higher than 2 [37]. There is

Figure 7. Characterization of FMDV-specific sIgA responses. sIgA FMDV-specific responses were assessed vaginal washes by ELISA. Guinea
pigs (n = 5) were vaccinated i.n. with the respective vaccine formulations on days 0, 14 and 28. Vaginal washes were collected on days 35 and 42. Data
are measured in duplicate and presented as the mean 6 SEM. Means were compared by non-parametric ANOVA. Significant results between pA-
immunized animals and control groups are indicated by #, significant results between pC- and pA-immunized animals are indicated by *, and
between pB-immunized groups are indicated by **.
doi:10.1371/journal.pone.0027605.g007
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Figure 8. Histologic characterization of sIgA production in tracheas, lungs and small intestines of immunized rats (n = 3). Sections
from the respective tissues were obtained from rats that were intranasally vaccinated. Sections were analyzed by immunohistochemistry following
incubation with a labeled anti-IgA antibody. Detection of sIgA in respective samples was examined under light microscopy at 406magnification.
Brown staining is representative of sIgA-positive cells from tracheas (A–D), lungs (E–H) and small intestines (I–L). Sections A, E and I were taken from
unimmunized animals; sections B, F and J represent tissues harvested from rats immunized intranasally with pA; sections C, G and K represent
sections from rats intranasally vaccinated with pB and sections D, H and L represent rats intranasally vaccinated with pC.
doi:10.1371/journal.pone.0027605.g008

Figure 9. Lymphocyte proliferation. Single lymphocyte suspensions were isolated from rats (n = 6) 7 days after the second immunization, plated
in triplicate in a 96-well plate and stimulated in vitro for 48 h with inactivated FMDV, Con A (positive control) or with BSA. Means were compared by
non-parametric ANOVA. Proliferation was analyzed using the MTT colorimetric assay and proliferation expressed as stimulated index. Significant
results between pA-immunized animals and control groups are indicated by #.
doi:10.1371/journal.pone.0027605.g009
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no significant difference between neutralizing antibody induced by

inactivated enterovirus 71 antigen and VP1 protein from

enterovirus 71, while specific antibody titers induced by inactivat-

ed enterovirus 71 are significantly higher than those induced by

VP1 [38]. In addition, there are data showing that unmyristoy-

lated FMDV capsid protein can assembly into 17S particles and

react with monoclonal antibodies against mature virus [39]. Thus,

we speculate that the rapid degradation of un-assembled FMDV

capsid protein may lead to insufficient amounts of native protein

required to induce a strong FMDV specific antibody response.

However, further tests on the efficiency of the 17S capsid protein

to induce immune responses compared with 146S or 75S capsid

protein should be performed in future.

In summary, IL-6 effectively functioned as a mucosal adjuvant

capable of significantly enhancing mucosal and systemic immune

responses especially humoral immune responses. Furthermore,

pB-immunized animals developed a significantly stronger immune

response and provided better protection than animals immunized

with the pC formulation, suggesting that differences in FMDV

protein (and IL-6) targeting to the ER differed between DNA

vaccine formulations. These studies demonstrated that an i.n.

immunization strategy comprised of the pB formulation could be

developed as an FMDV mucosal vaccine for use in animals

following additional testing in protection-challenge experiments

and using an animal model that can test the efficacy of these

formulations following i.n. challenge.

Materials and Methods

Animals
Wistar rats (Lanzhou University, Lanzhou, China) weighing at

200–250 g and guinea pigs (Lanzhou veterinary research institute,

China) weighing at 250–300 g were maintained under pathogen-

free conditions with free access to pathogen-free food and water.

The animal experiments were approved by Gansu Provincial

Science and Technology department in China and conducted

accordingly. Experiments conformed to the local (Regulations for

the administration of affairs concerning experimental animals) and

international (Dolan K. 2007 Second Edition of Laboratory

Animal Law. Blackwell, UK) guidelines on the ethical use of

animals.

Plasmids
The pcDNA3.1(+) plasmid was purchased from Invitrogen

(Carlsbad, CA) and the pMD18-T plasmid purchased from

TaKaRa Co. Ltd (Shiga, Japan). Large-scale plasmid preparations

were carried out by alkaline lysis using Endofree Qiagen Plasmid-

Giga kits (Qiagen, Valencia, CA) according to the manufacturer’s

instructions.

Antibodies and fluorescent dye
Fluorescent-conjugated anti-rat monoclonal anti-IL-4-PE, anti-

IFN-c-FITC, anti-CD4-PE, anti-CD4-FITC, anti-CD8-PE and

the respective isotype controls were purchased from BD

PharMingen (San Diego, CA). Anti-CD11c-FITC, anti-CD80-

PE, anti-CD86-PE and anti-MHC-II-PE were purchased from

eBioscience (San Diego, CA).

Construction of the FMDV DNA vaccine
The FMDV Asia/HeB P12A3C gene fragment was amplified

from the pMD-P12A3C plasmid encoding capsid polypeptide

(P12A) and 3C protease of FMDV maintained in our laboratory.

The bovine IL-6 gene was cloned and inserted into pMD18-T

simple vector (TaKaRa Co. Ltd.) as described in Figure 13.

Transfections
Baby hamster kidney (BHK-21) cells (Boster, Wuhan, China)

(46105) were seeded onto cover slips on six-well plates and

incubated at 37uC in a CO2 incubator until the cells were 80%

confluent. The following day, 10 mg of plasmid DNA in 100 ml of

minimal essential media (MEM) with reduced serum (Thermo

Fisher, Waltham, MA) was mixed with 6 ml of LipofectamineTM

(Invitrogen). The mixture was then incubated at 20uC for 30 min

before adding an additional 800 ml reduced-serum MEM that was

then added to the cells. After incubation for 5 h at 37uC in a

humidified CO2 incubator, 1 ml of medium containing 5% fetal

calf serum was added to each well.

Two days after transfections, cells were analyzed for expression

of FMDV and IL-6 by the indirect immunofluorescence test

(IFAT) and sandwich-ELISA (enzyme-linked immunosorbent

assay) [40,41,42].

For IFAT, cell monolayers were cultured on coverslips and fixed

in cold acetone (220uC for 30 min). Samples were incubated with

rabbit anti-FMDV serum (1:1000 at 37uC for 30 min) in a

humidified chamber and then stained with FITC-conjugated goat

anti-rabbit serum (1:200) for 1 h at 37uC and then observed

microscopically.

For sandwich ELISAs designed to detect FMDV protein, cells

were washed 48 h after transfection, scraped from the wells and

then lysed with lysis buffer (Sangon, Shanghai,China). The lysate

was normalized to the total protein content. The lysate was diluted

1:2 with PBS and added to 96-well flat-bottomed plates (Nunc,

Rochester, NY) coated with rabbit anti-FMDV serum overnight at

4uC as above. Subsequently, plates were washed thoroughly with

PBST (phosphate buffer saline with 1% tween 20) and anti-FMDV

guinea pig sera added to each well. The plates were incubated for

60 min at 37uC and peroxidase-conjugated rabbit anti-guinea pig

IgG (Sigma) at a 1:2000 dilution was added for 1 h at 37uC
followed by the addition of OPD-H2O2. Absorbance was

measured at 492 nm 15 minutes later.

Lysed cells normalized to the total protein content were added

to 96-well flat-bottom plates and detection of IL-6 by ELISA

carried out as described by the bovine IL-6 kit instruction (Thermo

Fisher) just expressing the IL-6 titer from transfected cells in

optical density (OD).

Preparation of plasmid DNA (pDNA)-adsorbed CHT-PLGA
Nanoparticles were prepared using the emulsion-diffusion-

evaporation technique [43]. Briefly, 200 mg of PLGA (50 kDa)

(Shandong institute of medical instruments, China) were dissolved

Figure 10. Analysis of cytokine production resulting from antigen-specific stimulation. T cells isolated and purified from the spleens of
rats (n = 3) following the second immunization with respective FMDV DNA vaccines were stimulated with inactivated FMDV for 6 h in vitro and
analyzed by FACS. The percentage of positive cells is shown in each dot-plot in the upper right corner. Data are a representative from three
independent experiments. Data are presented as the mean 6 SEM. Means were compared by non-parametric ANOVA. Significant results between
pA-immunized animals and control groups are indicated by #, significant results between pC- and pA-immunized animals are indicated by *, and
between pB-immunized groups are indicated by **.
doi:10.1371/journal.pone.0027605.g010
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Figure 11. Analysis of DC maturation by FACS. Rat (n = 3) splenocytes were isolated after the second immunization with the respective FMDV
DNA vaccine formulations. Harvested cells were double-stained for CD80 and CD11c, CD86 and CD11c. The percentage of double-positive cells in the
dot-plot is shown in upper right corner and the gate was set on the CD11c+ cells or events. Data are a representative from three independent
experiments. Data are presented as the mean 6 SEM. Means were compared by non-parametric ANOVA. Significant results between pA-immunized
animals and control groups are indicated by #, significant results between pC- and pA-immunized animals are indicated by *.
doi:10.1371/journal.pone.0027605.g011
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in 10 ml ethyl acetate at room temperature. The organic phase

was added to an aqueous stabilizer mixture containing 100 mg of

Poly(vinyl alcohol) (PVA) (Sigma)and 30 mg of chitosan (75% to

85% deacetylated, 50–190 kDa) (Sigma) in 10 ml water under

stirring. The emulsion was stirred at room temperature for 3 h

before homogenizing at 2 000 g (13500 rpm) for 10 min using an

Ultra-Turrax T18 homogenizer (Janke and Kunkel GmbH KG,

Staufen, Germany). To this emulsion, water was added under

stirring, resulting in nano-precipitation. Stirring was continued in

a water bath maintained at 40uC for 24 h to remove organic

solvents and the solution was then concentrated and resuspended

three times to remove residual PVA. CHT-PLGA nanoparticles

were stored at 4uC.

pDNA-loaded CHT-PLGA nanoparticles were prepared by

mixing the nanoparticles and plasmid (ratio of particles to plasmid

was 120:1(w/w)) at a nanoparticle concentration of 4 mg/ml in

MilliQ-water (pH5). Complex formation were performed at room

temperature and allowed to stand for 10 h to allow complexes to

form. pDNA-loaded CHT-PLGA nanoparticles were stored at

4uC.

The sample made above was prepared for freeze-drying. The

nanoparticles and enough mannitol were added to empty, clean

borosilicate vials to achieve a 1:2 mannitol-to-nanoparticles ratio.

The appropriate volume of purified particle solution was added to

the vial and mixed gently until mannitol was dissolved. The

sample was allowed to freeze-dry at 240uC for 48 hours (Hitachi

Ltd, Japan), followed by a second drying cycle at a temperature of

20uC for about 8 h. The obtained powder was stored under

refrigerated conditions until further use.

Characterization of nano/microparticle properties
Particle characteristics were determined before and after freeze-

drying. Particles were characterized with respect to size and

surface charge by measuring the zeta potential using a ZetaSizer

Nano ZS (Malvern Instruments Ltd., Worcestershire, UK).

Measurements were based on photon correlation spectroscopy at

25uC and a 90 degree scattering angle. All measurements were

performed in triplicate at 25uC using the standard settings for

water as the dispersion medium.

Nanoparticles with plasmid were deposited on glass, dried for

15 min and then sprinkled with gold powder. The characteristics

of the chitosan–plasmid complex surface were then observed using

Field Emission-scanning electron microscope (Jeol Ltd., Tokyo,

Japan).

Nanoparticle-DNA complexes were prepared by mixing

nanoparticles with plasmid at a concentration of 10 mg/ml in

MilliQ-water. Complex formation studies were performed at room

Figure 12. Characterization of FMDV-specific neutralizing antibodies. Serum samples were harvested from guinea pigs (n = 5) on day 38
after the first immunization. Dots represent the level of neutralizing antibodies from each individual animal. Horizontal bars represent the mean
neutralizing antibody levels from respective groups. Means were compared by non-parametric ANOVA. Significant results between pA-immunized
animals and control groups are indicated by #, significant results between pC- and pB-immunized animals are indicated by **. The results are
presented as the mean 6 SEM of neutralizing antibody titer.
doi:10.1371/journal.pone.0027605.g012

Table 1. Protection of guinea pigs (n = 5) against FMDV
challenge.

Groupa Protectionb Prim vesiclesc Sec vesiclesc

A pc-P12A3C 0/5 5/5 5/5

B pc-IL2AP12A3C 3/5 5/5 2/5

C pc-P12AIL3C 1/5 5/5 4/5

D pcDNA 0/5 5/5 5/5

E PLGA 0/5 5/5 5/5

Severity of symptoms was based on daily monitoring until 7 days post
challenge.
aGuinea pigs were challenged 31 days post vaccination.
bNumber of animals without signs of disease/total.
cNumber of animals with signs of disease/total.
doi:10.1371/journal.pone.0027605.t001
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temperature and allowed to stand for 8 h allowing for complex

formation. Nanoparticle-DNA complexes were incubated with

100 units of DNase I at 37uC in 100 ml reaction buffer (40 mM

Tris–HCl, pH 7.5, 8 mM MgCl2, and 5 mM DTT) for 20 min

and stopped by 50 ml stop solution (100 mM EDTA, pH 8.0). The

same conditions without nanoparticle-DNA complexes were used

in the control experiments. The nanoparticle-DNA complexes

were electrophored on agarose gels for 30 min at 5 V/cm. Images

were acquired using a Geldoc 2000 gel documentation system

(Bio-Rad, Munich, Germany) equipped with a UV translumina-

tor.

Immunization procedures
Rats were randomly divided into 5 groups (n = 6) and guinea

pigs randomly divided into 5 groups (n = 5). Animals were

immunized i.n. with either PLGA, pcDNA3.1, pA: pc-P12A3C,

pB: pc-IL2AP12A3C or pC: pc-P12AIL3C on days 0, 14 and 28

(Table 2). Female guinea pigs and rats were vaccinated i.n. with 3

or 2 times administrations of vaccine at 200 mg plasmid (36 mg in

powder) respectively. Female rats were fully anesthetized by

intraperitoneal injection of ketamine before immunization. A

MicroSprayer (PennCentury, Philadelphia, PA) was used for i.n.

liquid delivery. Animals immunized with chitosan-PLGA only

were used as negative controls.

Assessment of humoral responses
ELISAs were used to detect antibody levels against FMDV in

sera, vaginal and nasal washes of immunized rats. Vaginal and

nasal wash samples were collected by washing the vaginal and

nasal cavities of guinea pigs with 100 ml of sterile PBS respectively.

Ninety-six-well microtiter plates were coated with inactivated

FMDV (100 ml/well) in 0.05 M bicarbonate buffer (pH 9.6) at

4uC overnight. Wells were then blocked with 0.1% of FBS (fetal

bovine serum) in 3% BSA (bovine serum albumin)–PBST at 37uC
for 1 h, washed and a 1:50 dilution of guinea pigs serum or a 1:30

dilution of vaginal or nasal washes were added to respective wells.

A secondary antibody, horseradish peroxidase-labeled goat anti-

guinea pig IgG (Genetex, San Antonio, TX) or horseradish

peroxidase-conjugated goat anti-guinea pig IgA (ICL, Inc.,

Oregon, OR), were diluted 1:1000 and added into each well

and incubated at 37uC for 1 h. TMB tablets (10 mg) (Sigma) were

dissolved in 0.025 M phosphate–citrate buffer and added to each

well (100 ml), color development stopped by adding 2 M of H2SO4

after 15 minutes and absorbance determined at 450 nm using a

plate reader (BioTek, Vermont, USA). Antibody reactivity was

reported as OD values.

Immunohistochemical analysis
Trachea, lung and small intestine samples were isolated from

immunized rats and fixed using 4% paraformaldehyde, 0.1%

glutaraldehyde and 0.2% picric acid in 0.1 M PBS (pH 7.2) at room

temperature for 48 h. Serial tissue sections (5 mm thickness) were

obtained after the tissues were embedded in paraffin. Antigen detection

was performed by heating the sections for 10 min at 120uC in 0.1 M

sodium citrate buffer (pH 6.0). Subsequent steps were performed as the

Figure 13. Schematic representation describing the construction of pA, pB and pC.
doi:10.1371/journal.pone.0027605.g013

Table 2. Immunization groups.

Groups Animals Number Vaccinea Adjuvant

A Rat 6 pc-P12A3C Chitosan-PLGA

B Rat 6 pc-IL2AP12A3C Chitosan-PLGA

C Rat 6 pc-P12AIL3C Chitosan-PLGA

D Rat 6 pcDNA3.1 Chitosan-PLGA

E Rat 6 None Chitosan-PLGA

A Guinea pig 5 pc-P12A3C Chitosan-PLGA

B Guinea pig 5 pc-IL2AP12A3C Chitosan-PLGA

C Guinea pig 5 pc-P12AIL3C Chitosan-PLGA

D Guinea pig 5 pcDNA3.1 Chitosan-PLGA

E Guinea pig 5 None Chitosan-PLGA

aPlasmids were purified and formulated in PBS at 1 mg/ml. Guinea pigs and rats
were vaccinated intranasally 3 or 2 times respectively.

doi:10.1371/journal.pone.0027605.t002
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instruction of Cell and Tissue Staining Kit-Goat Kit (R&D Systems

Inc., Minneapolis, US), and goat anti-rat IgA (Novus Biologicals,

Littleton, CO) was used as the first antibody. .Positive cells were

visualized under a light microscope at 406.

T cell proliferation
Six rats from each immunization group (and controls) were

sacrificed and single lymphocyte suspensions were prepared from

their spleens 7 days after the second immunization as described

previously [42,43]. Cells were incubated in triplicate in 96-well

plates at 56104 cells/well in RPMI-1640 plus 5% fetal calf serum

(FCS) at 37uC in a 5% CO2 incubator. The cells were stimulated

for 24 h with 10 mg/ml Con A (positive control), 10 mg/ml

inactivated FMDV, 5 mg/ml BSA (nonspecific antigen control) or

unstimulated (negative control), respectively. T cell proliferation

was evaluated using a Cell Titer 96 aqueous non-radioactive cell

proliferation assay according to the manufacturer’s instruction

(Promega, Madison, WI). MTT solution (Promega) was added to

each well (20 ml each well). Proliferating cells convert MTT to

formazan salt that can be detected after 4 h incubation. Formazan

formation correlates with cell growth and can be measured by

determining the OD at 595 nm using a plate reader as described

above. Data are expressed as stimulation index (SI), calculated as

the mean reading of triplicate wells of antigen-stimulated cells

divided by the mean reading of triplicate wells from unstimulated

(negative control) wells.

Intracellular cytokine staining
Three rats from each immunization group were sacrificed 7

days after the second immunization. Single-cell splenic suspensions

(56105 cells/200 ml) were stimulated in 96-well plates with

inactivated FMDV (5 mg/ml) and anti-CD28 (eBioscience, San

Diego, CA) (5 mg/ml) mAb for 12 h at 37uC in 5% CO2, followed

by the addition of the monensin (BD PharMingen, San Diego, CA)

(2 mg/ml) for 4 h and then washed twice with PBS. Cells were

blocked with 1 ml of Fcc mAb (Abcam, Cambridge, UK) (0.5 mg/

ml) for 30 min at 4uC and fixed with 4% paraformaldehyde at 4uC
for 15 min before permeabilization with 0.1% saponin (Sigma) at

4uC for 10 min. After rinsed once with PBS, the cells were

incubated with anti-CD4-FITC and anti-IL-4-PE, or anti-CD8-

PE and anti-IFN-c-FITC, or anti-CD4-PE and anti-IFN-c-FITC

(or with the corresponding isotype controls) for 30 min at 4uC.

The fluorescense intensities were measured using a FACS Calibur

flow cytometry and the data analyzed using Cell Questpro

Software (BD Biosciences, San Jose, CA).

DC cell surface co-stimulatory molecules staining
Three rats of each group were sacrificed 7 days after the second

immunization, single-cell suspensions (16106 cells/200 ml) from

the spleens were blocked with 2 ml of Fcc mAb (0.5 mg/ml) for

30 min at 4uC. After one PBS wash, cells were used to stain with

isotype controls, or double staining with anti-CD11c-FITC and

anti-CD80-PE, or anti-CD11c-FITC and anti-CD86-PE, or anti-

CD11c-FITC and anti-MHC-II-PE. The fluorescense intensities

were measured using a FACS Calibur flow cytometry and the data

analyzed using Cell Questpro Software (BD Biosciences, San Jose,

CA).

Detection of specific neutralizing antibodies against
FMDV

Serum samples taken from guinea pigs on 38 days after first

immunization were analyzed for neutralizing antibody titers using

a neutralization assay with monolayers of BHK-21 cells [44].

Doubling dilutions of serum samples were reacted with 100

TCID50 of FMDV Asia/HeB at 37uC for 1 h. Cells were then

added as indicators of residual infectivity. Endpoint titers were

determined after 72 h incubation at 37uC and were calculated as

the reciprocal of the final serum dilution that resulted in the

neutralization of the virus activity by 50% (ND50). Titers are

expressed as the reciprocal of this serum dilution step.

Animal infections
Thirty-eight days after primary immunization, guinea pigs were

challenged subcutaneously and intradermally in one of rear leg

with 0.2 ml 100ID50 of FMDV (Asia I strain) and examined for

protection against FMD over the following 7 days. Guinea pigs

that showed FMD-compatible lesions only at the original injection

site were judged to be protected, and those that showed any FMD

clinical signs in the other three feet were judged to be unprotected

[45].

Statistic analysis
The data were analyzed to express the mean 6 standard errors

of the mean (SEM). Differences were considered to be statistically

significant at p,0.05.
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