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Background: Mechanical ventilation (MV) inflicts stress on the lungs, initiating or
increasing lung inflammation, so-called ventilator-induced lung injury (VILI). Besides
overdistention, cyclic opening-and-closing of alveoli (atelectrauma) is recognized as a
potential mechanism of VILI. The dynamic stretch may be reduced by positive end-
expiratory pressure (PEEP), which in turn increases the static stretch. We investigated
whether static stretch modulates the inflammatory response of rat type 2 alveolar epithelial
cells (AECs) at different levels of dynamic stretch and hypothesized that static stretch
increases pro-inflammatory response of AECs at given dynamic stretch.

Methods: AECs, stimulated and not stimulatedwith lipopolysaccharide (LPS), were subjected
to combinations of static (10, 20, and 30%) and dynamic stretch (15, 20, and 30%), for 1 and
4 h. Non-stretched AECs served as control. The gene expression and secreted protein levels of
interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage
inflammatory protein 2 (MIP-2) were studied by real-time polymerase chain reaction (RT-
qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The effects of static and
dynamic stretch were assessed by two-factorial ANOVA with planned effects post-hoc
comparison according to Šidák. Statistical significance was considered for p < 0.05.

Results: In LPS-stimulated, but not in non-stimulated rat type 2 AECs, compared to non-
stretched cells: 1) dynamic stretch increased the expression of amphiregulin (AREG) (p <
0.05), MCP-1 (p < 0.001), and MIP-2 (<0.05), respectively, as well as the protein secretion
of IL-6 (p < 0.001) and MCP-1 (p < 0.05); 2) static stretch increased the gene expression of
MCP-1 (p < 0.001) and MIP-2, but not AREG, and resulted in higher secretion of IL-6 (p <
0.001), but not MCP-1, while MIP-2 was not detectable in the medium.

Conclusion: In rat type 2 AECs stimulated with LPS, static stretch increased the pro-
inflammatory response to dynamic stretch, suggesting a potential pro-inflammatory effect
of PEEP during mechanical ventilation at the cellular level.
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INTRODUCTION

Mechanical ventilation (MV) is a lifesaving therapy in respiratory
failure. During conventional MV, positive pressure is used to
overcome the resistive and elastic properties of the respiratory
system, leading to stretch, and strain of lung units. Stress and
strain are crucial to keep the homeostasis of the lungs (Hubmayr
and Kallet, 2018). Stretching of alveolar epithelial cells (AECs), also
during MV, is a trigger of surfactant turnover and release (Abreu
et al., 2008). However, MV may also cause injury, amplifying the
lung-specific inflammatory response in both healthy and injured
lungs, with release of cytokines, and damage to the alveolar integrity
(Xuan et al., 2015; Rentzsch et al., 2017).

Lung injury due to MV, so-called ventilator-induced lung
injury (VILI), has different pathophysiological mechanisms (Loza
et al., 2015; Pelosi et al., 2018; Abreu et al., 2019). These include
tidal overdistension, or volutrauma, and cyclic opening and
closing of atelectatic lung units, termed atelectrauma (Rocco
et al., 2012). Excessive cell stretching increases the release of
surfactant proteins (Bartolák-Suki et al., 2017), production of
inflammatory cytokines, and other pro-inflammatory molecules
through different pathways by modulation of gene expression
(Santos and Slutsky, 2000). Thereby, such events also cause
numerous cellular and biochemical events in the pathogenesis
of acute respiratory distress syndrome (ARDS) (Sipahi, 2014).

Mechanisms of mechano-transduction constitute the basis of
the epiphenomenon generally referred to as biotrauma. In clinical
practice, positive end expiratory pressure (PEEP) is used in an
attempt to protect lungs from atelectrauma (Dreyfuss et al., 1988;
Vlahakis et al., 1999; Huhle et al., 2018). However, PEEP
strategies have yielded conflicting results regarding lung
protection (Spieth et al., 2009; Bugedo et al., 2017). While the
effect of PEEP on lung macrostructure is better defined, i.e., the
stabilization of lung units and a more even distribution of
mechanical stress (Rentzsch et al., 2017), little is known about
how static stretch, resulting from use of PEEP, impacts the
inflammatory response of AECs under dynamic stretching.
Studies revealed that, in cultured AECs, non-variable cyclic
stretch, in contrast to non-stretched resting conditions,
induces the production of cytokines (Vlahakis et al., 1999; Li
et al., 2003), reactive oxygen species (Chapman et al., 2005) and
promotes cytoskeleton remodeling (DiPaolo et al., 2010),
rendering these cells a valuable model for studying these
aspects in vitro. Therefore, in the present study, we aimed to
investigate the inflammatory response of rat type 2 AECs cell line
to different conditions of stretching. We hypothesized that static
stretch increases the pro-inflammatory response of AECs to
dynamic stretch.

MATERIALS AND METHODS

The detailed methodology of the experiments is described in the
Supplementary Figure S1.

Cell Culture Stretch and Pre-Stretch
AECs L2 cell line CCL-149™ from rats (ATCC, Wesel,
Germany), were grown on BioFlex six-well plates (Flexcell
International Corporation, Hillsborough, United States) at a
density of 1.3 × 105 cells/well in DMEM (Biochrom, Berlin,
Germany) containing 10% fetal bovine serum (FBS, Thermo
Fisher Scientific, Bremen, Germany) and 50 μg/ml gentamycin
sulfate (Biochrom, Switzerland). Cells were incubated in this
medium at 37°C and 6.5% CO2 for a period of 24 h. After,
16–20 h before stretch experiments, cells were washed twice
with sterile phosphate buffered saline (PBS) and incubated
with DMEM containing 1% FBS, 50 µg gentamycin sulfate/ml,
4 mM L-alanyl-L-glutamine, and 10EU/mL FBS
supplementation. Before each stretch experiment, cells were
preincubated 1 h with 2 μg/ml LPS (Escherichia coli O111:B4,
SIGMA-Aldrich, St. Louis, United States). Plates were
stretched by 10, 20, or 30% static and 15, 20, and 30%
dynamic stretch for 1 and 4 h. Stretching frequency was
0.5 Hz with a stretching/relaxation ratio 1:1 (sinusoidal
pattern).

Stretching Device
The custom designed and made stretching device, three
cylindrical intenders were used to apply a homogeneous
stretch on three membranes of a BioFlex Culture six-well plate
(Flexcell International Corporation, Hillsborough, United States),
while three served as non-stretched controls. A stepper motor
(Maxon Motor AG, Sachsen, Switzerland) performed a vertical
motion of the intender on the plate. A custom program,
(LabView, National Instruments, Austix, TX, United States),
was used to control the driving stepper motor and allowed the
adjustment of the stretching parameters, time, frequency, the
stretching amplitude (Figures 1A–B).

Cell Viability Assay
Cell viability assay was performed using the Cytotoxicity
Detection Kit Plus (Roche, Mannheim, Germany). Cell
viability was assessed by measuring lactate dehydrogenase
(LDH) activity in the culture supernatant.

RNA Extraction
Total RNA was extracted using the peqGOLD Total RNA Kit
(VWR, Dresden, Germany) and reverse transcribed with the
qScript cDNA SuperMix (Beverly, United States). In both
cases, we followed the manufacturer’s instructions.

Gene Expression Analyses
The gene expression of amphiregulin (AREG), interleukin-6
(IL-6), chemokine (C-X-C) motif ligand 2, known as monocyte
chemoattractant protein-1 (MCP-1), chemokine (C-C motif)
ligand 2, known as macrophage inflammatory protein 2 (MIP-
2) were detected by quantitative polymerase chain reaction
(qPCR). The house-keeping genes, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and hypoxanthine-
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guanine phosphoribosyltransferase (HPRT) were used as
controls. For Real Time PCR, PerfeCTa SYBR Green
FastMix (Quanta Biosciences Inc., Gaithersburg,
United States) was used. cDNA products were analyzed by
semiquantitative RT-PCR using the delta delta threshold
cycles CT (ΔΔCT) method (Rao et al., 2013). The primers
(Eurofins Genomics, Ebersberg, Germany) used are listed in
Table 1. The chosen primer pairs were double-checked in the
primer blast tool, to ensure specificity for the target gene.

qRT-PCRs were run on the PCR MyiQ™ 2 Cycler (Biorad,
Kabelsketal, Germany), using the IQ 5 software (version:
2.1.97.1001). qRT-PCR was performed in triplicate cDNA
samples under the following conditions: 95°C for 30 s,
followed by 45 cycles at 95°C for 5 s, 58°C for 15 s, and
extension at 68°C for 10 min.

Cytokine and Chemokine Determination
Supernatant was centrifuged at 1,000 g for 5 min to remove the
cells debris. Protein secretion of IL-6, MCP-1, and MIP-2 were
detected using available commercial Enzyme-linked
Immunosorbent Assay ELISA kits (Thermo Scientific;
Invitrogen, Darmstadt, Germany).

Immunostaining and Microscopy
First, L2 AECs were washed with phosphate buffered saline
(PBS), fixed with 4% (w/v) paraformaldehyde in PBS (15 min
at room temperature/RT), and washed with PBS (2 × 3 min).
Afterwards, cells were permeabilized with ice-cold 0.1% (v/v)
Triton X-100 in PBS (5 min, RT), washed with PBS (2 × 3 min),
and then blocked with 3% (w/v) bovine serum albumin source in
PBS (20–30 min, RT). Then, cells were incubated with Phalloidin-

FIGURE 1 | Stretching device for L2 alveolar epithelial cells. (A) Stretch chamber device used in the experiments with (1) brushless motor driver and (2) vertical
cylindrical indenter. (B) Patterns of the tidal stretch ΔSA (estimated change in cell surface area) with the time (s) of L2 AECs performed on the flexible silicone elastomer
membrane with a non-variable static stretch patterns of 0, 10, 20, and 30% with dynamic stretch of 15, 20, and 30%.
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Alexa 488 (1:500) (Molecular Probes, Invitrogen Corporation,
Waltham, Massachusetts, United States), which labels
filamentous actin, or with a primary antibody against Zonula
Occludens Protein (ZO-2) (1:300) (#Sc-8148 Santa Cruz
Biotechnology Inc., Dallas, United States), or anti-Surfactant
Protein C (1:200) (#AB3786 Millipore Corporation,
United States) a specific L2AECs marker, 1 h at RT, washed
with PBS (2 × 3 min), and labelled with the secondary antibody
Alexa-Fluor-488 goat anti-rabbit (1:500) (Thermo Fischer
Scientific, Waltham, Massachusetts, United States) and DAPI
(1:200) (Sigma-Aldrich Chemie GmbH, Munich, Germany),
during 30 min at room temperature. Subsequently, cells were
washed with PBS (2 times × 3 min) and mounted on microscope
slides using MOWIOL (Calbiochem/Merck, Darmstadt,
Germany). L2 AECs were imaged using an Olympus SD-OSR
Spinning Disc Confocal Microscope equipped with a 60x
numerical aperture N.A. = 1.4 oil DIC objective (Carl Zeiss
Microimaging, Jena, Germany) at the Imaging Facility
“Medizinisch -Theoretisches Zentrum” at Technical Dresden
University, Z-stacks were acquired with 1 µm or 30 µm
intervals between consecutive focal planes. Images were
analyzed, processed, and quantified with ImageJ (Rasband and
ImageJ, 2021), and Acrobat Photoshop® 2022 (Adobe,
United States). Actin filament orientation was analyzed using
the OrientationJ Plugin (Rezakhaniha et al., 2012) and their
intensity and length, as well as tight junction intensity, were
assessed using FiloQuant (Jacquemet et al., 2017; Jacquemet et al.,
2019). The 3D renditions were obtained from 1 µm Z-sections
using the ImageJ 3D Viewer plugin (volume view) (Rasband and
W.S.; Schneider et al., 2012; Schindelin et al., 2015).

Statistical Analysis
Data is given as mean ± standard deviation (SD), unless
otherwise indicated. Comparisons among groups were
conducted with three-way general linear model ANOVA for
factors condition (LPS, Stretch, LPS + Stretch), static (0, 10, 20,
and 30%) and dynamic stretch (15, 20, 30%). Main effects for
each model were assessed as marginal means (Dessau and
Pipper, 2008; Lenth, 2016) with p-value adjustment according
to Šidák for planned comparisons: for each dynamic stretch
between available static stretches; and for each combination of

static and dynamic stretch levels between LPS + non-Stretch
and LPS + Stretch. Cell survival was tested using logistic
binomial GLM with factors group (Control, Stretch, LPS or
LPS + Stretch), time, dynamic and static stretch. All statistics
were performed using R Statistical Programming Language (R
Core Team, 2021). Statistical significance was accepted at
p < 0.05.

RESULTS

Cell Typification
The lineage of type 2 AECs was confirmed by immunostaining
with an antibody against Surfactant Protein C (SP-C), a specific
marker for these cells (Supplementary Figure S2).

In vitro Stretch, Tight Junctions, and Cell
Viability
As shown in Supplementary Figures S3–S5, and Supplementary
Figure S8 the static and dynamic stretch did not affect the
organization or intensity of ZO-2-positive intercellular tight
junctions in any of the studied experimental conditions.
Cytoplasmic actin filaments were intact at a dynamic stretch
of 15% (Supplementary Figure S6) or 20% (Supplementary
Figure S7). In contrast, a significant reduction in actin filament
length, an increase in their intensity, and a change in their
orientation, i.e., more actin bundles (Figure 2C, D, G, H),
compared to the parallel filaments observed in control cells
(Figures 2A, B, E, F), were seen at a dynamic stretch of 30%
(Supplementary Figures S9–S11).

The cell survival of L2 AECs submitted to 1 h or 4 h of static
and dynamic stretch was not affected by any of the respective
conditions (Supplementary Figures S12A–C).

Gene Expression of Cell Mechanical Stress
and Pro-Inflammatory Cytokines
The expression of AREG was significantly increased in LPS-
stimulated cells under stretch (p < 0.05), when compared with
non-stimulated L2 AECs (Figure 3A, Figure 4A). AREG

TABLE 1 | Primers used for quantitative polymerase chain reaction (qPCR).

Primer Sequence (59-39) Length
of cDNA product

Transcriptnumber in ensembl

GAPDH s AAC TTT GGC ATC GTG GAA GGG CT 138 bp ENSRNOT00000050443
GAPDH as ACC AGT GGA TGC AGG GAT GAT GTT
HPRT s TTT CCT TGG TCA AGC AGT ACA GCC 89 bp ENSRNOT00000045153
HPRT as TGG CCT GTA TCC AAC ACT TCG AGA
IL-6 s GAC AAA GCC AGA GTC ATT CAG AG 165 bp ENSRNOG00000010278
IL-6 as TTG GAT GGT CTT GGT CCT TAG CC
MIP-2 s AGA ACA TCC AGA GCT TGA CGG TG 108 bp ENSRNOG00000002792
MIP-2 as GGG CTT CAG GGT TGA GAC AAA CT
MCP-1 s ATG ATC CCA ATG AGT CGG CTG GAG 104 bp ENSRNOT00000007159
MCP-1 as GCA CAG ATC TCT CTC TTG AGC TTG
AREG s AAG AAT CCG TGT GCC GCC AAG TTT 124 bp ENSRNOG0000002754
AREG as TTT CTC CAC ACC GTT CGC CAA AGT
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expression was lower at 4 h than at 1 h in LPS-treated cells, in
all studied conditions. Dynamic, but not static, stretch
increased AREG expression, irrespective of the duration of
experiments or LPS stimulation. The expressions of IL-6 and
MCP-1, but not MIP-2, were higher in LPS stimulated cells
under different combinations of static and dynamic stretch,
compared to non-stimulated, cells (Figures 3B–D; Figures
4B–D). Stretch duration did not affect the expression of IL-6
or MCP-1, but the expression of MIP-2 was higher at 4 h (p <
0.05) compared with 1 h. All data points were normalized to
non-stretched, non-LPS treated cells.

Protein Concentrations of
Pro-Inflammatory Cytokines in the Medium
In LPS-stimulated cells, the release of the pro-inflammatory
cytokines IL-6 and MCP-1 was generally higher under different
combinations of static and dynamic stretch, compared to non-
stretch L2 AECs (p < 0.05) (Figures 5, 6). The secreted protein
concentrations of IL-6 andMCP-1were higher at 4 h than at 1 h (p<
0.001). In contrast to IL-6 release, which was increased by both static
and dynamic stretch (p < 0.05), MCP-1 secretion was only increased
by dynamic (p < 0.05), but not by static stretch. MIP-2 protein levels
were below the detection level in the analysed medium
(Supplementary Figure S13).

DISCUSSION

The main findings of this study were that, in LPS-stimulated,
compared to non-stimulated rat type 2 AECs: 1) dynamic stretch
increased the expression of AREG, IL-6, MCP-1, MIP-2, as well as
the protein concentration of IL-6 and MCP-1 in the medium; 2)
static stretch increased gene expression of MCP-1 andMIP-2, but
not AREG, and resulted in higher protein secretion of IL-6, but
not MCP-1. To our knowledge, this is the first study addressing
the effects of static stretch on the pro-inflammatory response of
in vitro L2 AECs submitted to dynamic stretch.

Our experiments combining static stretch with different
dynamic stretch conditions were conducted in type L2 AECs,
because they can easily grow under controlled conditions, and are
the main cell type involved in the immune response of the lung
alveolar epithelium (Kang and Kim, 2017). A major strength of
our study is that neither dynamic nor static stretch, nor the LPS
used for stimulation, generated any significant changes in cell
survival, thus allowing us to directly assess the pro-inflammatory
response. Importantly, static and dynamic stretch were designed
to mimic the mechanical stress patterns that AECs are submitted
to in vivo, during MV, since there is a considerable body of
evidence that mechano-transduction plays a key role in VILI
(Chen et al., 2018).Changes in alveolar epithelial cell deformation
during modifications of lung volume have been described in vivo

FIGURE 2 | Cytoskeleton organization in L2 AECs undergoing stretch, with and without LPS for 4 h. Arrows show changes in actin filament organization in cells
undergoing a 30% dynamic stretch and (A,E) non-stretch, (B,F) non-stretch + LPS, (C) 0% static stretch, (D) 0% static stretch + LPS, (G) 10% static stretch, or (H) 10%
static stretch + LPS. Cells were fixed and analysed by confocal microscopy. Single channels are displayed in grey scale for DAPI (DNA) and phalloidin (actin filaments);
Merge: phalloidin (green) and DAPI (blue). Data are displayed as projections of 1 μm Z-sections (n = 3). Scale bars: 30 μm.
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(Bartolák-Suki et al., 2017). Studies in isolated lungs suggest that,
if the lung volume increases by 40–100% of the total lung
capacity, the basal surface area of alveolar epithelial cells
increases by 34–35% (Tschumperlin and Margulies, 1999;
Tschumperlin et al., 2000; Wirtz and Dobbs, 2000).

On the other hand, if a single alveolus or even the whole lung is
modelled as a sphere, it can be shown that an increase of alveolar
surface area (SA) by factor a, yields an increase of corresponding
volume V by a3/2. Therefore, during spontaneous breathing in
humans, at a functional residual capacity (FRC) of 30 ml/kg body
weight, a tidal volume of 7 ml/kg body weight results in an

increase of lung volume of 23% and an increase of ~15% of
ASA. To increase lung volume from FRC to lung total capacity
(TLC) (80 ml/kg body weight) would correspond to a 166%
volume increase and a 92% increase of SA. In rats, however
during anesthesia a FRC of 11 ml/kg has been reported (Schulz
and Muhle, 2000). Ventilation with a tidal volume of 6 ml/kg
body weight results in a 54% increase of LV and a 30% increase of
SA. Accordingly, an increase of lung volume from FRC to TLC
(42 ml/kg body weight in rats) yields a volume increase of 270%
and an increase of SA of 140%. Thus, in our experiments a
maximal total increase of SA of 45% mirrored dynamic and static

FIGURE 3 | Gene expression of AREG, IL-6, MCP-1, and MIP-2 in L2 alveolar epithelial cells treated with LPS and undergoing stretch for 1 h. (A) Amphiregulin
(AREG), (B) Interleukin-6 (IL-6), (C) monocyte chemoattractant protein-1 (MCP-1), and (D) macrophage inflammatory protein 2 (MIP-2). mRNA was isolated from cells
treated as indicated and analyzed by real-time polymerase chain reaction (RT-qPCR). Data represents the X-fold expression of mRNA compared to control non-treated
cells (n = 4). Results were normalized to control non-stretch, non-stimulated cells. Differences were considered statistically significant at p < 0.05.
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FIGURE 4 | Gene expression of AREG, IL-6, MCP-1, and MIP-2 in L2 alveolar epithelial cells treated with LPS and undergoing stretch for 4 h. (A) Amphiregulin
(AREG), (B) Interleukin-6 (IL-6), (C) monocyte chemoattractant protein-1 (MCP-1), and (D) macrophage inflammatory protein 2 (MIP-2) mRNA was isolated from cells
treated as indicated and analyzed by real-time polymerase chain reaction (RT-qPCR). Data represents the X-fold expression of mRNA compared to control non-treated
cells (n = 4). Results were normalized to control non-stretch, non-stimulated cells. Differences were considered statistically significant at p < 0.05.
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mechanical strain occurring during low to low tidal volume
ventilation in rats at low PEEP.

Mechanical ventilation may induce an inflammatory response
in the lung tissue (Santos and Slutsky, 2000), leading to ARDS
(Birukova et al., 2012; Sipahi, 2014). In ARDS patients, high levels
of PEEP are used to reduce VILI (Briel et al., 2010). Mechanical
ventilation with low tidal volumes and higher PEEP reduced the
incidence of pulmonary complications in patients without acute
lung injury (Neto et al., 2012). In contrast, other clinical studies
have indicated that the level of PEEP is unrelated to the mortality
of the ARDS patients (Walkey et al., 2017; Group et al., 2020).
Recent data have also shown that higher PEEP promoted higher
lung inflammation than lower PEEP, at comparable low tidal
volumes and driving pressures (Ding et al., 2013; Ochiai, 2015;
Hamlington et al., 2016; Silva et al., 2016). For this reason, we
have asked if static stretch (which in vivo is increased by PEEP)
modulates the inflammatory response. To mimic in AECs the
pathophysiology of clinical ARDS (Costa et al., 2017), we used
LPS, frequently utilized to induce inflammation in vitro (Dreyfuss
et al., 1988; McRitchie et al., 2000; Birukova et al., 2012; Wong
and Johnson, 2013) or ARDS, in rats, in vivo (Pugin et al., 1998;
Ding et al., 2013).

We found that, neither dynamic stretch, static stretch, nor LPS
significantly affected cell junctions and cell monolayer
organization, as previously shown (Rentzsch et al., 2017;
Knudsen and Ochs, 2018). Actin filament organization was
not modified at lower dynamic stretch (Rentzsch et al., 2017;
Knudsen and Ochs, 2018) but only at a 30% dynamic stretch,
which corresponds to a high increase in total lung capacity.
Previous studies have shown that MV modulates the lung
inflammatory response, either through direct cell rupture or
through the so-called “mechano-transduction” mechanism,
which is not yet fully understood (Santos and Slutsky, 2000;
Sutherasan et al., 2014; Tian et al., 2016). Recent data (Tian et al.,
2016) suggest that long term (28–72 h) stretching or LPS
exposure of cultured human pulmonary artery endothelial cells
affect cell junctions and disrupted cell monolayers, a process
mediated by RhoA kinase (Marshall et al., 2010). This is in
agreement with the changes in actin filament organization we
observed at a high dynamic stretch, changes that could be
mediated by Rho GTPase (i.e., RhoA) signaling, and could
involve crosstalk with extracellular matrix–dependent integrin
signaling via SRC (Tehrani et al., 2007). Future studies are
necessary to clarify these aspects.

FIGURE 5 | IL-6 and MCP-1 secretion in L2 alveolar epithelial cells treated with LPS and undergoing stretch for 1 h. Cells were treated, stretched with different
static, and dynamic conditions 1 h, and then culture supernatants were collected: (A) Interleukin-6 (IL-6) and (B)monocyte chemoattractant protein-1 (MCP-1) protein
levels were evaluated using Enzyme-linked Immunosorbent Assay (n = 4). Differences were considered statistically significant at p < 0.05.
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AREG, a protein with tissue protective effects during
inflammation (Zaiss et al., 2013), and is involved in the
response to mechanical loading in various mesodermal-derived
tissues (Deacon and Knox, 2010; Marshall et al., 2010; Shao and
Sheng, 2010). We found that AREG expression was increased in
LPS-stimulated cells submitted to different dynamic stretch
conditions, at 1 h. However, further stimulation (4 h) reduced
AREG expression, suggesting that its tissue protective effects may
be reduced after long-term stretching. This decrease in AREG
expression may be due to reduced transcription, and/or increased
mRNA degradation (Nakayama et al., 2013), controlled by cell
signaling pathways, as previously observed in other systems
(Zhang et al., 2009; Terry et al., 2010; Keren, 2011; Latasa
et al., 2012; Zaiss et al., 2013).

The focus of our study was to understand if and how PEEP
modulated the inflammatory response (Rentzsch et al., 2017;
Knudsen and Ochs, 2018). We have found that, in LPS-
stimulated L2 AECs, dynamic and static stretch levels
influenced both the expression and secretion of specific
cytokines (i.e. IL-6, MCP-1, and MIP-2). This is in agreement
with in vivo studies in mice, showing increased expression and

release of IL-6 (Tremblay et al., 2002; Heise et al., 2011; Goldman
et al., 2014), MCP-1 or MIP-2 (Hegeman et al., 2010; Hawwa et al.,
2011; Herbert et al., 2016; Jia et al., 2016; Zhu et al., 2016) during
MV. Specifically, in LPS-stimulated L2 AECs, the expression of IL-
6, MCP-1, and MIP-2 was significantly increased after static
stretch, compared to non-LPS treated cells. Our data are in
agreement with in vivo studies showing that the expression of
several cytokines (including IL-6, MCP-1, or MIP-2) was
significantly enhanced after exposure to LPS (Heise et al., 2011)
and that, mechanical ventilation synergistically amplified the
release of IL-6, MIP-2, IL-1β, and TNF-α in rats treated with
LPS (Pugin et al., 1998; Ding et al., 2013). In addition, our data
shows that MCP-1 behaves differently than the other cytokines,
i.e., its release fromLPS-treated cells was enhanced by dynamic, but
not by static stretch, suggesting that the two types of stretch may
differentially influence the immune response. Moreover, these
findings support previous evidence that plasma membrane
tension affects the release of inflammatory cytokines, by
orchestrating complex aspects of cell trafficking and motility
(Keren, 2011), and modulating cell signaling (Tremblay et al.,
1997; Ranieri et al., 1999).

FIGURE 6 | IL-6 and MCP-1 secretion in L2 alveolar epithelial cells treated with LPS and undergoing stretch for 4 h. Cells were treated, stretched with different
static and dynamic conditions 4 h, then culture supernatants were collected: (A) Interleukin-6 (IL-6) and (B)monocyte chemoattractant protein-1 (MCP-1) protein levels
were evaluated using Enzyme-linked Immunosorbent Assay (n = 4). Differences were considered statistically significant at p < 0.05.
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Possible Implications of the Findings
Our findings indicate that the mechanical tension produced by static
stretch of AECs, which for example results from the use of PEEP,
affects the cellular signalling pathways of inflammation. Therefore,
physicians should be aware that not onlymacro structural changes of
lungs that result from PEEP, but also microstructural changes that
modulate cellular stretching might play a role in VILI. This finding
supports the use of lower PEEP levels in patients with mild lung
injury and ventilated with a low protective tidal volume, a concept
known as “permissive atelectasis” (Guldner et al., 2016; Pelosi et al.,
2018).

Limitations
Our study holds several limitations. Firstly, in vitro conditions do not
fully reproduce the complex environment of the lung parenchyma.
However, none of the available ARDS animal models replicates the
complex pathophysiological changes seen in patients, although,
similarly to our model, they were essential for advancing the
knowledge in the field (Spieth et al., 2009; Rentzsch et al., 2017;
Braune et al., 2019). Secondly, to mimic inflammation, we have used
LPS, a complex compound that may contain bacterial DNA, lipo-
proteins, etc., and thus has a high cytotoxicity. However, LPS is a
valuable inflammatory inducer, largely used in this type of studies.
Thirdly, the induced stretch transmitted through an elastic
membrane to the epithelial cells differs significantly from in-vivo
situations, where the stretching force is applied through epithelial
cells onto the extra-cellular matrix.

CONCLUSION

Static stretch increased the pro-inflammatory response of
dynamically stretched LPS-stimulated type L2 AECs which is
suggestive of a potential pro-inflammatory effect of PEEP during
mechanical ventilation at the cellular level.
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