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Abstract The primary cause of preventable death in many
hospitals is the failure to recognize and/or rescue patients from
acute physiologic deterioration (APD). APD affects all hospi-
talized patients, potentially causing cardiac arrest and death.
Identifying APD is difficult, and response timing is critical -
delays in response represent a significant and modifiable pa-
tient safety issue. Hospitals have instituted rapid response sys-
tems or teams (RRT) to provide timely critical care for APD,
with thresholds that trigger the involvement of critical care
expertise. The National Early Warning Score (NEWS) was
developed to define these thresholds. However, current trig-
gers are inconsistent and ignore patient-specific factors.
Further, acute care is delivered by providers with different
clinical experience, resulting in quality-of-care variation.
This article documents a semi-Markov decision process model
of APD that incorporates patient and provider heterogeneity.
The model allows for stochastically changing health states,
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while determining patient subpopulation-specific RRT-activa-
tion thresholds. The objective function minimizes the total
time associated with patient deterioration and stabilization;
and the relative values of nursing and RRT times can be mod-
ified. A case study from January 2011 to December 2012
identified six subpopulations. RRT activation was optimal
for patients in “slightly concerning” health states (NEWS>
0) for all subpopulations, except surgical patients with low
risk of deterioration for whom RRT was activated in
“concerning” states (NEWS>4). Clustering methods identi-
fied provider clusters considering RRT-activation preferences
and estimation of stabilization-related resource needs.
Providers with conservative resource estimates preferred
waiting over activating RRT. This study provides simple prac-
tical rules for personalized acute care delivery.

Keywords Acute physiological deterioration - Early warning
scores - Semi-Markov decision process model - Cluster
analysis

Mathematics Subject Classification (MSC) Code 60J28
(Applications of continuous-time Markov processes on discrete
state spaces)

1 Introduction

Patient physiology can change unpredictably and dynamically
over the course of a hospitalization. Every patient who is
admitted to the hospital is at risk of experiencing acute phys-
iological deterioration (APD), defined as acute and persistent
abnormality in one or multiple physiological measures, poten-
tially resulting in cardiac arrest, unscheduled intensive care
unit (ICU) admission, or death. Major challenges are that
APD is difficult to identify, response timing is critical, current
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measures for evaluating patient condition are not consistent,
and rules for involvement of critical care expertise are ignor-
ing patient characteristics.

Patient rescue is a complex problem. The acute care of
patients experiencing APD relies on early recognition and
rapid response to stabilize the patient’s condition. Medical
emergency/rapid response systems are composed of periodic
monitoring of physiologic status with critical thresholds that
trigger the involvement of early critical care expertise during
APD with the goal of preserving health and preventing unde-
sired health outcomes. Early Warning Systems (EWSs) are
quantitative scoring systems that assign values to selected
physiological measures to detect abnormalities and inform
clinical decision making in cases of APD [1, 2]. However,
there is little standardization with respect to the best use of
these scores and current critical thresholds are based primarily
on subjective clinical judgement.

Physiological deterioration is characterized by notable
changes in vital signs. Routinely collected vital signs can in-
form recognition of these changes. Increasing complexity of
care delivery processes and the fragmented nature of health
care delivery are some of the main challenges that lead to lack
of or delayed recognition and response to APD. Failure to (or
delay in) recognize and respond to APD remains a challenge
for health care systems. The National Patient Safety Agency
reports that 11 % of serious hospital incidents arise through
failure to act on deterioration, with failure to recognize the
importance of physiological deterioration as one of the prima-
ry reasons [3].

The uncertainty in physiological deterioration and recovery
processes during hospitalization can be modeled as a sequen-
tial decision problem under uncertainty. EWS-based dynamic
decision models can inform acute-care practice at the point of
care delivered by medical emergency teams with critical care
expertise, such as a Rapid Response Team (RRT) [4, 5].
Clinical guidelines classify physiological condition using
EWSs and suggest RRT activation for scores above critical
thresholds [1]. Predictive performance of EWSs for undesired
incidents during hospitalization is well studied; however, sev-
eral gaps remain in the literature [6—11]. The individualized
use of EWSs to identify personalized resuscitation interven-
tions, such as RRT activation, is a natural extension of this
literature with a focus on the impact of patient-specific risk.

While RRTs have been widely implemented in health care
systems, evidence to support their effectiveness is insufficient
[12]. Several studies focused primarily on patient outcomes to
assess the RRT effectiveness; however, the findings are mixed
[13—15]. A major multi-center controlled trial (the Medical
Early Response Intervention and Therapy (MERIT)) study
investigated whether RRT implementation reduces the inci-
dence of cardiac arrests, unplanned admissions to intensive
ca re units (ICU), and deaths [13]. The study was unable to
provide sufficient evidence to demonstrate effectiveness of
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RRTs. The results of the study showed that RRT implementa-
tion was not associated with a decrease in cardiac arrests, ICU
admissions, or deaths. Chan et al. (2010) conducted a meta-
analysis of 18 studies (1950 through 2008) to assess the effect
of RRTs on reducing cardiopulmonary arrest and hospital
mortality rates, and reported mixed results [14]. While some
studies showed a reduction in cardiopulmonary arrest rates in
adults outside the ICU, the reductions were not associated
with lower hospital mortality rates. Jones et al. (2009)
reviewed several studies to assess whether RRT dose (i.e.,
RRT calls per 1,000 patient admissions or discharges) impacts
patient outcomes [15]. The findings suggested a greater effect
in patient outcomes (e.g., reduction in the rate of cardiac ar-
rests) with a greater dose of care from RRT. Leach and Mayo
(2013) conducted a qualitative analysis of RRT effectiveness
and identified RRT management challenges including incon-
sistency of team members from day to day, limited opportu-
nity for RRT members to develop team skills, and greater need
for team training compared to clinical teams that work togeth-
er regularly under less time pressure to perform [12]. In con-
clusion, measurement of RRT effectiveness and management
remains a challenge, and quantitative metrics focusing on ear-
lier recognition of physiological decline and better utilization
of limited RRT resources may support capturing the impact of
RRT implementation in clinical practice.

An effective EWS-based decision model needs to address
the impact of both patient and provider heterogeneity to ac-
curately capture the dynamics of APD and identify optimal
RRT-activation policies. APD impacts the heterogeneous pa-
tient population with different reasons for admission and dif-
ferent clinical trajectories. Existing EWSs ignore this hetero-
geneity. For example, existing RRT activation criteria are the
same for all patients and do not differentiate the intervention
based on patient characteristics. Further, neglecting patient
heterogeneity may translate to unnecessary activation of
RRT, resulting in suboptimal use of limited personnel re-
sources, and inaccurate estimation of resource needs.

In addition to patient heterogeneity, acute care is delivered
by diverse care provider teams including physicians, critical
care nurses, and respiratory therapists. The team composition
may differ by facility and may be subject to changes over time
within the same facility. Heterogeneity in provider teams may
result in clinical practice variation, impacting the evaluation of
patient resource needs. This variation may impact RRT acti-
vation decisions. Understanding the dynamics of APD asso-
ciated with heterogeneity at the patient and provider levels and
the stochastic nature of the health system is necessary to foster
personalized medical decision making.

In this article, we develop a semi-Markov decision process
(SMDP) model for the management of a patient’s physiolog-
ical condition. The model allows for stochastically changing
health states (the main source of uncertainty) while determin-
ing patient subpopulation-specific National Early Warning
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Score (NEWS)-based RRT activation thresholds. The objec-
tive is to minimize the total time associated with patient dete-
rioration and stabilization, including the times associated with
clinical distress from the providers’ (decision maker’s) per-
spective, nursing activities, RRT activities, and stabilization.
Further, to incorporate the impact of provider heterogeneity
we develop a modified SMDP model that examines the worst-
case scenarios in terms of nursing and RRT time (by
weighting these times) and using the maximum time (instead
of actual times) of nurse and RRT resources to associate a
relative value between the two types of resources. The goal
of modifying the nursing and RRT times and the relative
values between nursing and RRT effort is to represent provider
heterogeneity in the response to APD. Using clustering
methods, we identify categories of providers with distinct
RRT-activation preferences and distinct valuation of resource
needs of patients.

1.1 Main contributions of this article

The main contributions of this article are the following: (i) for-
mulation and implementation of a stochastic decision model that
explicitly takes into account both patient and provider
heterogenity; and (ii) formulation and evaluation of optimal per-
sonalized RRT-activation policies and total expected
stabilization-related time. We have analyzed large datasets con-
taining over 50,000 patient records to identify clinically relevant
patient subpopulations and populate the SMDP model.
Considering the heterogeneity and uncertainty in acute-care sys-
tems, including patients and providers, we hypothesize that the
differences in provider valuation of RRT resource requirements
and patient nursing needs influence the RRT activation decision
making. However, we hypothesize that clusters of providers may
be identified which have common RRT strategies.

An outline of the remainder paper is as follows. First, an
overview of the relevant literature is presented. Using findings
from our previous work, we present the baseline SMDP model
illustrated on a retrospective case study including 55,385 pa-
tients hospitalized at a single facility (self-identifying name of
the facility omitted) from January 2011 to December 2012.
Next, provider heterogeneity is modeled in the modified
SMDP model. We discuss the findings and their implications.

1.2 Previous literature on SMDP models in health care

A Markov Decision Process (MDP) model provides a frame-
work for representing multi-stage decision problems in the
presence of uncertainty. Markovian models are commonly
used in health care to support screening, diagnosis, and treat-
ment decisions for chronic conditions, patient flow, and hos-
pital operations optimization [16—19]. For continuous-time
MDPs, the Markov property ensures that the time spent in a
state before a transition occurs, i.e., the sojourn time, follows

an exponential distribution. However, in cases of physiologi-
cal deterioration and recovery, the sojourn time may not be
exponentially distributed. A semi-Markov decision process
(SMDP) model is a generalization of an MDP in which the
state transitions follow a Markov chain; however, the sojourn
time is a random variable following an arbitrary distribution
[20-22]. SMDP models have been applied in health care since
the early 1970s to model the following: (i) resource planning
and personnel scheduling within hospitals [23, 24]; (ii) model-
ing patient condition during hospitalization such as recovery
processes of acute leukemia patients [25], coronary patients
[26], and end-stage renal disease patients [27]; and (iii) patient
flow in a maternity service unit [28]. Unfortunately, this re-
search ignores patient and provider heterogeneity as well as
the impact of the sojourn time and its role in clinical decision
making. Further, (self-identifying reference omitted) used a
National Early Warning Score (NEWS)-based continuous-
time SMDP model to develop subpopulation-specific resusci-
tation thresholds [29]. However, their study did not consider
provider heterogeneity, did not assign weights to time-based
metrics and their relative values, did not differentiate between
different types of stabilization, and did not use clustering
methods. Our study bridges this gap in the literature to capture
patient heterogeneity by identifying subpopulations based on
patient characteristics, and using optimization and clustering
methods to incorporate provider heterogeneity.

2 Methods
2.1 Identifying patient subpopulations

Subpopulations within a heterogeneous patient population are
identified to enable patient-centered decision making. Our
methodology for selecting patient characteristics to identify
statistically significantly different subpopulations is described
in (self-identifying reference omitted), who identified two pa-
tient characteristics for classifying subpopulations: risk of de-
terioration (ROD) during hospitalization (i.e., low, moderate
or high ROD based on the Braden skin score, which is a risk
assessment tool commonly used at admission); and admission
type (i.e., medical or surgical) [29]. Medical admission refers
to the patients admitted for symptoms of discomfort or illness
and admitted for a reason other than surgery. Surgical patients
are admitted for a surgical procedure. In this article, we use six
subpopulations defined by ROD and admission type:

» subpopulation (A) — medical patients with low ROD;
» subpopulation (B) — surgical patients with low ROD;
» subpopulation (C) — medical patients with moderate ROD;
» subpopulation (D) — surgical patients with moderate ROD;
» subpopulation (E) — medical patients with high ROD; and
* subpopulation (F) — surgical patients with high ROD.
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Figure 1 summarizes our methodological approach.

2.2 Baseline SMDP model

The baseline SMDP model, defined by the set of elements (S,
T,A,P,r,F), represents the progress of a patient’s physiological
condition as a continuous-time stochastic process: a finite set
of health states S, an infinite time horizon 7, a finite set of
actions A, state transition probability P (defining probablistic
movement between states conditional on the current state and
action), stabilization and resource time r(s,d(s)) associated
with performing the action d(s) in state s, and the sojourn time
cumulative distribution function, F(#|s,d(s)) for a patient in
state s and when action d(s) is taken. For a given stationary
policy 7 in the set of I7 of feasible policies, the minimum total
expected discounted stabilization and resource time for health
state s is given by the value function

Voo (8)=mineerr {var(s)},
where

Var(s) = r(s,d(s) +Z P(jls, d(s) Jwe"”F(dt\s, d(s)) var(f),
0

And 7* denotes the optimal stationary policy. We use con-
tinuous discounting denoted by e~ with v=0.03 correspond-
ing to a commonly used discrete discounting factor [30].

Identify statistically significantly different
patient subpopulations (6 subpopulations
1dent1fled)

‘,'/Maximum
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Fig. 1 Methodological approach for stochastic acute-care decision opti-
mization considering patient and provider heterogeneity. The squares on
the left represent each modeling step, and boxes with dashed borders on
the right represent corresponding methods
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2.2.1 Decision epochs

The stochastic process starts at the beginning of a hospitaliza-
tion episode. This can be a general ward admission, or a return
to the general ward from a higher-level care unit. A decision
epoch is defined as a point in time corresponding to a provider
team assessment during regular hospital rounding that iden-
tifies a change in the patient’s health condition. Thus, a new
decision epoch in the continuous-time stochastic model occurs
only when the patient’s health condition differs from the im-
mediately preceding evaluation.

2.2.2 Health states

Health states focus on features of the patient’s condition. The set
of states S is the same for all six subpopulations. The core
continuous-time stochastic process, {X;, £>0} represents the pa-
tient’s current health state measured by the NEWS [1]. Model
states X;=s€S5={1,2,3,4f,4s,5,6} are ordered such that a lower
value of NEWS is associated with better health (Table 1). The
classification of NEWS values and their clinical interpretation in
Table 1 are derived from clinical guidelines [1].

The states {4f,4s,6} are model extensions of clinical guide-
lines to capture stabilization and discharge conditions. State 6
includes all outcomes that result in the patient leaving the
general ward, including transfer to a higher-level care, dis-
charge alive, admission to hospice, and death. State 5 repre-
sents a patient who has not been observed with NEWS >0
since the start of the current hospitalization episode. State 4f
represents returning to NEWS =0 following APD. Based on
expert medical opinion, we assume that maintaining NEWS
=0 for at least 1 h following APD represents stabilization, i.e.,

Table 1  Health states in the baseline SMDP and the corresponding
clinical interpretation [1]

NEWS Health state  Clinical interpretation

- 6 Discharged from the general ward

0 5 Stable (NEWS has not exceeded
0 since start of hospitalization
episode)

0 4s Stabilized after deterioration,
i.e., maintained NEWS=0
for>1h

0 4f Returned to NEWS=0 after
deterioration

1-4 3 Slightly concerning

5-6 or individual 2 Concerning

physiological
parameter with
significant
abnormality
>7 1 Distress
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remaining in state 4/ for at least 1 h results in a movement from
4f'to the stabilized state 4s.

2.2.3 Actions

Care provider actions are allowed only at decision epochs (i.e.,
are prompted by changes in patient condition) and include
waiting, 1.e., d(s)=1, postponing the RRT activation until the
next clinical assessment, or activating the RRT immediately,
i.e., d(s)=2. Waiting refers to the case when the bedside pro-
vider decides to provide necessary acute care for the patient
without using critical care (RRT) resources for guidance.
Activating RRT refers to the case when the bedside provider
decides to obtain critical care guidance by calling the RRT
immediately. Waiting is allowed in all states, whereas activat-
ing the RRT is allowed only in states {1,2,3} , which are
associated with NEWS>0. The state-dependent action space
is chosen for the following reasons: (i) the historical data did
not show any RRT activation in states {4f,4s,5}; (ii) the stabi-
lized condition of patients with NEWS =0 typically does not
need bedside critical care evaluation; and (iii) activating the
RRT in discharged state 6 is not possible because RRT pro-
vides critical care only for the patients in the general ward.

2.2.4 Transition probabilities

The state transition probabilities govern changes in health
state as a function of the subpopulation. Figure 2 illustrates
the possible state transitions.

In Fig. 2, the patient’s health states are classified into three
groups: states {4f,4s,5} corresponding to NEWS =0, states {1,
2,3} with NEWS >0 and an absorbing state 6. Dashed arrows
are bidirectional state movements, and solid arrows represent
unidirectional state movements. For example, given the cur-
rent state is 1, the next state is in the set {2,3,4f,6}. Because 6
is an absorbing state, it is not possible to leave state 6, so the
arrow 1 — 6 is solid, whereas the arrow from state 1 to a state
in {2,3,4f} is dashed, i.e., state movements 1 — {2,3,4f} —1
are allowed.

Fig. 2 State transition diagram showing possible movements between
model states

2.2.5 Sojourn times

We assume that the patient’s physiologic condition is observed
retrospectively at decision epochs. Owing to changes in the pa-
tient’s physiological condition that are observed via irregular
monitoring of patients in the general ward, the time between
decision epochs is a random variable. Sojourn times in the
SMDP model are estimated from empirical distributions condi-
tional on subpopulation, current state, action, and next state, as
derived from electronic medical records (EMRs) (Appendix 1,
Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17).

2.2.6 Stabilization and resource time parameters

The stabilization and resource time accumulated between two
decision epochs, (s,d(s)), includes the following components:
Ynurse($); YRRT(S), Time to Stabilization (TTS) and Failure to
Rescue (FTR). The nurse time, v,use(S), refers to the average
additional time in hours to provide care for a patient in health
states as derived from the nursing records provided by (self-
identifying name of the facility omitted) compared with aver-
age nursing needs in state 5. The term rr1(s) is the average
RRT resource time in hours from activation until departure
from the patient’s bedside, given the patient was in state s at
the time of RRT activation. We assume that no RRT and nurse
times are accumulated after discharge for the purposes of
modeling APD in the general ward.

TTS refers to time from the start of APD until the patient is
stabilized. Start of APD is defined by expert medical opinion
as the point in time when the deviation from the normal range
for any physiological measure included in NEWS exceeds
30 min. Therefore, TTS includes the following:

* recovery (i.e., the current state is s€ {1,2,3}, and next state
is j={4f});

» successful stabilization (i.e., movement out of the current
state s={4f} occurs after 1 h so that next state is j={4s});
and

» unsuccessful stabilization (i.e., movement out of the cur-
rent state s={4f} occurs in less than 1 h, and next state is
je{1,2,3,6}).

FTR refers to the case when NEWS remains > 7 (i.c., the
patient is in distress or model state 1) for at least 1 h without
RRT activation. Current NEWS guidelines recommend that:
(1) a NEWS value of 5-6 should trigger a medium-level clin-
ical alert, i.e., an urgent clinical review; (ii) a NEWS value of 7
or more should trigger a high-level clinical alert, e.g., an RRT
activation, and (iii) an extreme weight in any one physiolog-
ical parameter should trigger a medium-level alert [1].

The objective of the baseline SMDP model is to minimize
the sum of the stabilization time (TTS), time in a critical clin-
ical condition (FTR), and resource use (including nurse and
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RRT time). Final expressions of the stabilization and resource
time functions are presented below. The function, r(s,d(s)), is
given by:

r(s,d(s)) =0 fors {5, 4s},d(s) = {1}, (1a)

r(5,d(s)) = Ynune(s) + 1(d(s) = 2) Yrrr(s)

+ J { J e“’-l-P(4f|s,d(s))dt] Asd(sye 0%du - (1b)
oL Jo

forse{2,3}, j = {4f}, d(s)e{l, 2},

}"(S, d(S)) - 7nurse(s)

o0 u
+ J [ J e .1 P(4f|s,d(s))dt} )\S_’d(s)ef)‘s-”@” du
ol Jo

+ J Zjes[ J e(wt.l-P(j|s,d(s))dt] )‘s,d(s)ei’\‘"d“)”du
1 0

for se{1}, jeS, d(s) = {1},
(lc)

r(s,d(s)) = fYnurse(S) + ’YRRT(S)

) U
+ [ [ [ e"‘"-l-P(4f\s7d(s))dt} Aed(s)€ 40" du (1d)
Jo J o

forse{l}, j = {4f}, d(s) = {2},

(5, d(5)) = Vnures)
+ _[02;5{14273,6}”@41’7 d(4f),Z < 1){ J

1 0
+e | e 1dt
Jo
for se{4f}, d(s)e{1}

u

ef”’-l-dt} Aze M dy

(Te)

where: (i) I(d(s)=2) is the indicator function for the condition
in the outermost parentheses so that /(d(s)=2)=1 if the condi-
tion d (s)=2 is true, and I/(d(s)=2)=0 if d(s)#2; (ii) the term
Asd(s) 1s the state- and action-dependent rate parameter for the
sojourn time distribution in state s until the next decision epoch;
(i) A g5)=2 jes, #sAs.dis); Where g g 18 the rate corresponding
to the exponential time spent in s before a transition to j would
occur, given action d(s); and (iv) Z=min {Hyzy45,:7=11,2,3,6} }
is exponential with rate parameter Az=) (1 23,6 \zaap,; Where
Hyy a4y, represents the potential time to make the transition 4/—
Jj. Derivation of the expressions of the stabilization and resource
time are discussed in detail in Appendices 2, 3 and 4.

2.3 Modified SMDP model

Most of the literature on MDPs assumes that the model parame-
ters such as state transition probabilities and costs are known to
the decision maker [31]. However, in practice, the model param-
eters must be estimated from data. For Markovian models,
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deriving model inputs from data may cause errors in estimation
of model parameters [32]. Several studies address uncertainty in
state transition probabilities [31, 33, 34]. Fewer studies focus on
uncertainty in cost [32, 35]. In our study, because time is critical
in the response to APD, time is considered as the “cost”. The
acute-care provider team may consist of different providers and
the team composition dynamically changes over time. In addi-
tion, providers may have different degrees of clinical experience
and there may be variations in response to APD from one team to
the next. It is particularly important to account for variation in the
providers’ valuation of stabilization and resource time associated
with health states and actions. The modified SMDP model incor-
porates the following: (i) the classification of care providers into
clusters having similar characteristics; and (ii) the determination
of the impact of provider heterogeneity on optimal RRT-
activation policy as well as stabilization and resource time.

2.3.1 Provider heterogeneity parameters

Provider heterogeniety is captured by identifying groups of
providers with similar time perception characteristics, defined
as clusters. We introduce two state-dependent model parame-
ters: p(s) and &(s). In the modified SMDP model, providers
assign weights to average and maximum nurse and RRT
times, with the maximum nurse and RRT times representing
the worst-case scenario. The parameter p(s) takes values in [0,
1] and the stabilization and resource time function 7/(s,d(s)),
given state s and action d(s), is:

r (s, d(s)) = pls)r(s,d(s)) + (1=p(s))F(s, d(s))-

The term 7(s,d (s)) is the “worst-case” stabilization and
resource-time function in which the average additional nurse
time and average RRT resource time are replaced with the
corresponding maximum values for each model state as de-
rived from EMRs. The term r(s,d(s)) is as defined in Eq. (1a—
e). The final expressions for 7(s, d (s)) are presented below .
The function 7(s, d (s)) is given by:

7(s,d(s)) = Vnurse(s)  forse{s, 4s},d(s) = {1},

7(s,d(s)) = Fnuse(s) + 1 (d(s) =2) Trrr(s)
+ Jo [ Joefa"-l-P(4f|s7 d(s))dt} )\S‘d“)eﬂ”-"(””du
forse{2, 3}, j = {4f}, d(s)e{l, 2},
7(S7d(s)) = Wnurse(s)

o0 u
+ J [ J e‘”-l-P(4f|s,d(s))dt] /\S,d@)e*’\»‘*d(“')”du
ol Jo

+ Jl Z_/es{ Joe”’-l-PU|s,d(s))dt] )\Svd(s)eﬂs‘d“)”du

for se{l}, jeS, d(s) = {1},
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?(S7 d(s)) = ﬁnurse(s) + WRRT(S)

+ J { J e L1-P(4f S,d(S))dt} A (o) € 0
0 0

for SE{I}, i= {4f}v d(s) = {2},
7(5,d(5)) = Vnurse ()

# X Pt danz < | |

u

e"”-l-dt} Aze M du
0

1
+ev J e “.1.dt
0

for se{4f}, d(s)e{1}.

where Wnurse (S) = max {P)/nurse(s) : SES} and WRRT (S) = max
{Yrrr(s) : s€S} as observed in the EMRs. We assume that a
care provider who is more conservative regarding nurse and
RRT resource needs in state s assigns a higher weight to 7(s, d
(s)), i.e., a lower value to p(s). For states corresponding to
NEWS = 0 or discharge, we assume that providers do not
assign a positive weight to 7(s, d(s)), i.e., p(s)=1 for s {4f,
4s,5,6}. This is supported by the assumption that for a stable,
stabilized, or discharged patient, nurse- and RRT-related aver-
age time parameters derived from EMRs are considered a
good approximation of the true patient needs according to
clinical expert opinion. Derivation of the expressions of 7
(s,d(s)) are in Appendix 2, Eq. (2a—2¢) and (3b-3f).

The term £(s) is a ratio representing the care provider’s
perception of the workload associated with RRT time relative
to nurse time for a patient in health states s€S:

[(d(s) = 2) . timeRRT(s)
Vnurse (S)

£(s) =

The term timeggr(s) represents the actual RRT time ob-
served from activation until departure from the patient’s bed-
side given the patient was in health state s at the time of RRT
activation. In other words, the higher &(s), the more the pro-
vider values RRT-related resource time compared with the
additional nurse time for stabilizing a patient in state s.
Because RRT calls are not allowed in health states {4f,4s,5,
6},&(s), takes the value zero in these states.

2.3.2 Modeling care provider heterogeneity

We define a care provider profile as a set of weights {p(s),s€
S} representing the care provider’s resource time-based per-
ception of resource requirements and ratios {£(s),s€S}
representing the care provider’s valuation of RRT evaluation
and assessment time relative to nurse time for a patient in a
given health state s. The inverse transformation method is
used to simulate 100 care provider profiles. The simulation
refers to sampling time-perception measures p(s) and &(s)
from probabilistic distributions. The parameter p(s) is gener-
ated from a Uniform [a(s)], b(s) distribution by selecting a

state-dependent range [a(s), b(s)], determined by clinical ex-
pert opinion, from which the provider is equally likely to
choose weights p(s) for s € {1,2,3}. Based on clinical expert
opinion, the range [a(s), b(s)] is greater in states 2 and 3 com-
pared with the range in state 1. The health states 2 and 3
represent slightly concerning and concerning conditions due
to the elevated NEWS; however, in many cases a patient’s
condition can move in either direction (i.e., the patient can
recover on their own, stabilize, or further deteriorate). This
uncertainty is reflected by a wider range for the weights.
Further, a Weibull [0(s), ¢(s)] distribution with state-
dependent shape parameter 6(s) and scale parameter p(s) is
used to generate &(s). The Weibull distribution is identified as
a good fit for the simulated data from (self-identifying name of
the facility omitted). The input parameters for the distributions
are summarized in Table 2.

Once the input parameters are identified, we generated sets
of p(s) and &(s) for s € S {1,2,3} to represent care provider
profiles which are divided into groups using cluster analysis.

2.3.3 Classifying care providers

Cluster analysis is a method for partitioning data into groups
of objects such that objects in the same cluster are more sim-
ilar to each other than to objects residing in other clusters [36].
In this study, the objects are the provider profiles defined as a
set of random variables [p(s), £(s)] with s € S. A cluster is a
homogenous group of provider profiles with similar resource
time perceptions. The clusters are identified with hierarchical
clustering algorithms using the distance between objects to
identify the clusters. A modified SMDP model is developed
for each cluster using the corresponding cluster average values
for p(s) and &(s). Three Baseline Scenarios and five Modified
Scenarios were analyzed for the cluster analyses (Table 3).

The Baseline Scenarios explore how the cluster structure
and content differ depending on the clustering algorithm.
Modified Scenarios were developed by changing Baseline
Scenario 1 by: (i) using wider or narrower bounds on the
Uniform distribution for p(s) for s € {1,2,3} (Modified
Scenarios 1-3); and (ii) using a subset of the clustering vari-
ables (Modified Scenarios 4-5).

2.3.4 Modified SMDP model formulation

The modified SMDP model is solved using the primal and
dual Linear Programs (LP). As a numerical example, we
present the results for medical patients with moderate
ROD, which can be easily applied to other subpopulations.
Let {3(s), s € S} denote arbitrarily selected positive sca-
lars satisfying > cs0(s)=1, which allows the interpretation
of this set as a probability distribution on the state space
S. The associated dual LP identifies the optimal policy for
each state, while the primal LP calculates the total
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Table 2 Distribution of time-

perception measures for the mod- NEWS

Health state Distribution of p (s )  Distribution of € (s )

ified SMDP model
0 or discharge

1-4
5—6 or individual physiological

parameter with significant abnormality

=7

(4f 45,56} 1 0
3 UNIF (0.2, 0.6) WEIBULL (1.04, 0.414)

2 UNIF (0, 0.4) WEIBULL (0.587, 0.879)
1 UNITF (0, 0.2) WEIBULL (0.734, 0.855)

expected discounted stabilization and resource time for
each state [20]. The dual LP formulation is

Minimize ZS . SZ J EAr/ (s,d)x(s,d)

subject to

Zd e Axg’d)i Zs IS SZd cA [J.Ex))eiat P(]|S,d)F(dt|S,d)]
x(s,d)= ((s) for all jeS x(s,d)>0  for seS,deA.

The term x(s, d) represents the total discounted joint probabil-
ity that the patient is in state s and the provider chooses d
under the distribution {5(j)} [20]. If {x(s,d): s€S, deA} is a
feasible solution to the dual LP, then the stationary policy is
given by

_ x(s,a)
Z deAx(S’ d)

where P{d(s)=a} is the probability of selecting the action a in
state 5. The primal LP formulation is

P{d(s) = a} foracA

Maximizez P($)Vanr(s)

subject to

Vor(8)= 3 < sllge " Pils,d)F(ddls, d)] v -()<r (s,d) ford € A
and s€Sv,, (s) unconstrained for s€S.

The primal and dual LP formulations are solved for each
Baseline and Modified Scenario and each cluster for the se-
lected subpopulation. For a cluster containing one profile, the
corresponding time perception measures, p(s) and, &(s) are
used in the LP models. If a cluster contains multiple profiles,
we compute cluster averages of p(s) and &(s), and solve the LP
models using these average values.

3 Results
3.1 Case study setting
This is a retrospective study using patient-level data extracted

from the EMRs provided by (self-identifying name of the
facility omitted). The study cohort includes 55,385 adult
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general ward patients hospitalized at the facility from
January 2011 to December 2012. The inclusion criteria are
age at admission (>18 years) and care location (only data
collected during a stay in the general ward are used).

3.2 Baseline SMDP model results

For each subpopulation, the optimal total stabilization-related
time and the optimal RRT-activation policy were computed
using the Policy Iteration Algorithm [20]. State transition
probabilities and sojourn time distributions were derived from
the EMRs using Maximum Likelihood Estimates (MLEs)
[37]. State-dependent time parameters were derived from
EMRs. Empirical analysis suggested that the exponential dis-
tribution is a good fit for the sojourn time distribution for all
model states, except state 4/ where the sojourn time is restrict-
ed to be in [0,1] by the definition of stabilization. Sojourn time
distribution in state 4fis presented in the Appendices 2 and 3.
Table 4 shows the optimal NEWS-based RRT-activation
thresholds by subpopulation.

Optimal policies suggest RRT activation for NEWS values
exceeding a critical threshold which differs by subpopulation.
Activating RRT immediately is optimal for patients with a
“slightly concerning” or worse health state (NEWS values
above 0) for all subpopulations, except surgical patients with
low ROD (denoted by B) for whom it is optimal to wait until
the patient is in a “concerning” health state (i.e., threshold
NEWS >4). This result suggests there are two critical patient
populations: surgical patient with low ROD and all other pa-
tients, with different RRT activation criteria. This translates to
a simple rule for activating RRT with two thresholds, NEWS
>4 for subpopulation B, and NEWS >0 for the other consid-
ered subpopulations. These results imply that surgical patients
with low ROD may be healthier and better able to recover
from deterioration on their own. From a clinical perspective,
surgical patients can be hospitalized for a non-urgent elective
surgery whereas medical patients are admitted due to discom-
fort and possibly symptoms of acute or chronic conditions.
Thus, surgical patients with low ROD may recover from a
NEWS value below 4 without additional RRT intervention,
whereas medical patients with low ROD benefit from an RRT
intervention at a lower NEWS threshold. Further, if activating
RRT is the optimal action for a given health state, then it is the
optimal action for all worse health states, i.e., there is a state-
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Table 3 Clustering variables,

algorithms for the baseline and Scenario Clustering variables Clustering algorithm
modified scenarios
Baseline #1 Single Linkage
3),p(2),p(1 3).£(2),£(1
Baseline #2 PG, p@),r()EB),E2),EM) Ward’s Method
Baseline #3 Centroid
Modified #1 Single Linkage (with increased
Uniform upper bounds)
Modified #2 Single Linkage (with decreased
Uniform upper bounds)
Modified #3 Single Linkage (with increased
Uniform upper and lower bounds)
Modified #4 £(3),£(2),&(1) Single Linkage
Modified #5 p(3), p(2),p(1) Single Linkage

dependent control-limit structure. This result categorizes RRT
activation rules into two sets of policies, and simplifies clinical
implementation.

For all subpopulations A—E, total expected stabilization
and resource time increases as the patient’s condition deterio-
rates. Further, the total expected stabilization and resource
times in health states {4/,4s,5} are similar for some subpopu-
lations (A, C, and D) and differ for others (B, E, and F).
Specifically, the total expected cost for high ROD patients
depends on the stabilization condition, i.e., if a patient’s
NEWS has not exceeded 0 (i.e., never reached the “slightly
concerning” level) and the patient is in health state 5, or the
patient’s NEWS exceeded 0 (has reached or exceeded the
“slightly concerning” level), which resulted in moving to
health states 4/ or 4s. This difference may occur because high
ROD patients may not present in health state 5 at the begin-
ning of a hospitalization episode due to their physiological
condition, or they may not remain in this health state, which
impacts the resource time accumulated in state 5. In addition,
surgical patients are more resource intensive (in terms of time
required for their care) than medical patients for any given
ROD category. Surgical patients may stay longer in the gen-
eral ward before and after the procedure, which may result in
higher resource times, and possible TTS and FTR. In addition,
surgical patients may require more intense care even when
they are in better health states.

With the goal of demonstrating that the proposed model
brings benefits to a clinical setting, we used a time-based
metric focusing on patients who experienced an RRT activa-
tion during the study period: average time to activate RRT,
defined as the average time from the beginning of a hospital-
ization episode until RRT activation criteria are met.
Specifically, for a selected subpopulation we compared the
average time to activate RRT using the current policy (as in-
dicated by the observed RRT activation times in the dataset)
with the hypothetical average time to activate RRT if the pro-
posed model was used during the same time period. The com-
parison was applied to one subpopulation over the 2-year time

period (January 2011-December 2012), which can be easily
applied to other subpopulations. Medical patients with mod-
erate ROD was selected for comparison because they repre-
sent the largest subpopulation with a high RRT incidence (18,
803 unique patients, mean NEWS 1.99, standard deviation of
NEWS 2.14, minimum NEWS 0, maximum NEWS 17, and
827 RRT activations). Compared to the current policy, the
optimal RRT policy resulted on average in 5.2 h earlier RRT
activation. Based on clinical expert opinion and relevant liter-
ature, serious undesired events followed by APD expose pa-
tients to an increased risk of death [38]. Many of these events
result from insufficient or delayed medical care [38]. For ex-
ample, it has been shown that majority of cardiopulmonary
arrests are preceded by dramatic changes in vital signs or other
clinical decline during a 6-8 h period before the arrest [6].
Earlier recognition of the need for RRT activation by the pro-
posed model can improve the stabilization of patients, and
potentially reduce the incidence of undesired outcomes, in-
cluding death.

Overall, results from this study highlight the importance of
a personalized approach when treating APD, and provide op-
timal subpopulation-specific RRT-activation rules with insight
into stabilization and resource time requirements.

3.3 Modified SMDP results

The clustering analysis was applied to subpopulation C (med-
ical patients with moderate ROD) as an example, which can
be easily expanded to other subpopulations. The results
showed that different clustering algorithms impact the size
and content of clusters. All scenarios identified a main cluster
and multiple “outlier” clusters consisting of one profile. The
main cluster was characterized by increasing time-perception
measure p(s) as the health condition worsens, i.e., a provider
in the main cluster assigned a higher weight to the maximum
nurse and RRT times, assuming the physiological deteriora-
tion in these states will require high RRT and nurse resource
use. The outlier clusters tended to have higher valuation of the
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Table 4 Optimal policy by
subpopulation where A: medical Subpopulation  Optimal policy
with low ROD; B: surgical with
low ROD;, C: medical with NEWS 0 “Stable”  NEWS 1-4 “Slightly =~ NEWS 5-6 or individual NEWS >7
moderate ROD; D: surgical with concerning” physiological parameter with ~ “Distress”
moderate ROD; E: medical with significant abnormality
high ROD; and F: surgical with “Concerning”
high ROD

B Wait Patient may benefit from

activating RRT
A,C-E Wait Patient may benefit from activating RRT

RRT time relative to the nurse time compared with the main
cluster. Baseline Scenario 1 (Single Linkage Method) identi-
fied four clusters, including one main cluster and three outlier
clusters (Appendix 5, Table 20). Baseline Scenario 2 (Ward’s
Method) and Baseline Scenario 3 (Centroid Method) identi-
fied the same main cluster and outliers as in Baseline Scenario
1, and additional outlier profiles were separated from the main
cluster (Appendix 5, Tables 21 and 22). Further, the Modified
Scenarios showed that changing the Uniform distribution in-
put parameters, such as increasing the upper bound or decreas-
ing the lower bound, further partitioned the main cluster and
separated additional outliers from the main cluster
(Appendix 5, Tables 23, 24, 25, 26 and 27).

Table 5 presents the LP results including the total expected
stabilization and resource time in hours and optimal RRT ac-
tivation policy for the Baseline Scenario 1 in comparison with
the baseline SMDP model results for medical patients with
moderate ROD.

Table 5 shows that for all clusters under the Baseline
Scenario 1, the total expected stabilization-related times are
non-increasing in state s. Further, the total expected stabiliza-
tion and resource time for each state is higher in the modified
SMDP model compared with the baseline SMDP
(Appendix 5, Table 19). In the modified SMDP model under
all scenarios, Cluster 2 includes the same outlier profile char-
acterized by a high perception of RRT time relative to nurse
time in clinical distress state (i.e., state 1). For this cluster, the
optimal policy in state 1 is to wait (i.e., not use the RRT

resources and the decision about the patient’s care is made
by the bedside provider) rather than activating RRT immedi-
ately (Appendix 5, Tables 20, 21, 22, 23, 24, 25,26 and 27). In
clinical practice, activating RRT is a decision made by the
bedside provider. Based on clinical expert opinion, if a bed-
side provider has a high valuation of RRT time compared with
nurse time, he/she may consider activating RRT in slightly
concerning and concerning states (states 2 and 3) to obtain
additional critical care guidance because of the uncertainty
associated with the patient’s clinical path. However, in clinical
distress state (state 1), the bedside provider may prefer waiting
to avoid wasting any critical care resources because the deci-
sion about the patient’s care is clear due to severity of the
physiological condition. This is different than the baseline
SMDP optimal policy in health state 1, which is to call RRT
immediately. This result highlights the impact of a provider’s
perception on the optimal RRT activation policy. The remain-
der of the LP results is presented in Appendix 5.

4 Discussion

As opposed to focusing on disease-specific interventions, APD
requires a system-wide approach with an emphasis on patient
characteristics because it can affect patients across diseases.
Further, an acute-care delivery team may consist of providers
with different time perceptions of resource requirements and
estimates of patient needs. Thus, the recognition of, and

Table 5 LP Results for baseline and modified SMDP models for medical patients with moderate ROD

Optimal value function [hrs.] Optimal policy d*(s)
Baseline SMDP model results
v(5) v(4s) v(4f) v(3) v(2) v(1) d*(5) d*(4s) d*(4f) d*@3) d*(2) d*(1)
6.66 7.30 9.46 10.69 12.38 12.79 Wait Call
Baseline scenario #1 using single linkage
Cluster # v(5) v(4s) v(4f) v(3) v(2) v(1) d*(5) d*(4s) d*(4f) d*(3) d*(2) d*(1)
1 10.22 11.37 11.47 12.50 15.66 15.67 Wait Call
2 10.59 11.05 11.16 11.88 14.57 16.24 Wait
3 10.55 10.97 11.08 12.22 15.14 15.79
4 11.20 12.42 12.50 13.90 15.26 15.53
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response to, APD, e.g., RRT activation, may be affected by
patient and provider heterogeneity. Measurement of RRT effec-
tiveness and management in clinical practice remains a chal-
lenge. Although several studies focused on patient outcomes or
team-based qualitative metrics, their findings highlight the need
for enhanced metrics to assess the impact of RRT on patients’
clinical trajectories and care processes [12—15].

We hypothesized that the heterogeneity and uncertainty in
acute-care systems may result in different RRT activation pol-
icies and further there are provider clusters, defined by pro-
viders’ perception of time requirements and relative valuation
of stabilization-related resource needs, which differ in their
RRT-activation policies. The baseline SMDP model identified
subpopulation-specific RRT-activation thresholds and
established a framework for incorporating patient heterogeneity
in acute-care delivery. The modified SMDP model incorporat-
ed provider heterogeneity through variation in the value of time
associated with stabilization. Results showed that the stabiliza-
tion and resource time was higher in the modified model com-
pared with the baseline model for all health states. This increase
may be explained by the weighted average formulation for the
stabilization and resource time functions, which allows the
values of the nurse- and RRT-related time parameters to vary
by provider, and by sampling the ratios &(s) from Weibull dis-
tributions, which allows the relative RRT time values to take
larger values than those estimated by observed data. The LP
results highlighted the impact of the selection of the clustering
algorithm and the distributions for time-perception measures on
RRT-activation policies. The optimal RRT policy was different
for one outlier cluster with a high &(s) for which waiting (in-
stead of activating RRT immediately) was optimal in the clin-
ical distress state (state 1). A care provider in this profile might
argue that for a patient in a clinical distress state (state 1), acute-
care requirements might be clear due to the severity of the
physiological condition, and therefore the provider may feel
comfortable with making care decisions independent of RRT.
Therefore, the increase in resource time due to RRT activation
is not considered optimal in this health state.

By sampling time-perception measures from probablistic
distributions and clustering provider profiles, the modified
SMDP model identified cluster-specific optimal RRT policies.
The results suggested that differences in stabilization and re-
source time perceptions may impact the resuscitation prefer-
ences of different providers in the clinically distressed state.
This finding supports our hypothesis that the provider clusters
differ in their RRT-activation preferences as well as their esti-
mation of stabilization-related resource needs.

Informing RRT activation decisions and capturing the un-
derlying stochastic deterioration process using a quantified
score offers several opportunities to improve patient care.
RRT is a scarce and valuable resource. Optimizing the RRT
activation may decrease wasted time and resources due to the
RRT activation for the wrong patient at the wrong time. In

addition, in clinical practice, RRTs can occur simultaneously.
Developing a patient-centered approach to RRT activation can
help prioritize RRT calls.

Our study is motivated by the challenge of addressing the
fact that patients were dying because providers have been
failing to recognize acute changes in their clinical status.
Traditional educational interventions were failing. A much
more strategic, systems engineering and analytic approach
was required. This study contributes to recognition and re-
sponse to APD by analyzing key components of physiological
deterioration and performing statistical analyses to identify
patient subpopulations using clinical parameters, such as pa-
tients” admission type and risk of deterioration. Using cluster-
ing methods, we identified distinct provider clusters with re-
gard to their RRT activation preferences and estimation of
resource needs to address provider heterogeneity in critical
care settings. This work provided quantitative evidence to
support the clinical research that “one-size-fits-all” criteria
for alerting critical care teams in response to patient deterio-
ration has not been effective and needs to be personalized to fit
the needs of individual patients.

We acknowledge that there is some subjectivity in the current
RRT activation criteria at the study hospital, e.g., the criteria
regarding “concern about the patient”, and the optimal RRT
rules derived from the SMDP models do not incorporate these
subjective elements. In clinical practice, subjective clinical
judgement of frontline providers contains valuable information
that may not be captured by objective criteria. This is particularly
critical for nursing assessment and the concern about a patient.
Nursing assessment provides information necessary to support
identification of problems and symptoms that are relevant for
patient care [39]. In addition to vital signs and laboratory tests,
nursing assessment provides better understanding of the patients’
physiological condition. In this context, subjectivity in the cur-
rent RRT system is important in detecting signals of APD. While
our SMDP models provide simple optimal RRT activation rules
as clinical decision guidance, they do not aim to replace the
subjective clinical judgement.

Future research could expand our work in several ways. A
limitation of the current study is that the absorbing state rep-
resents all types of discharge from the general ward (i.e., trans-
fer to higher-level care, discharge alive, discharge to hospice,
or death). Future work could modify the terminal stabilization
and resource time associated with different absorbing states
based on discharge dispositions. Further, we recognize that
different health systems may operate differently, and the re-
sults drawn from our study based on data from one hospital
may not be generalizable. Therefore, future work would be to
expand this framework for various facilities to study the dy-
namics of their specific patient subpopulations. Another lim-
itation is that the relative RRT time perception measures &(1),
&(2), &(3), were generated independently of the time percep-
tion measures p(1), p(2), p(3), and then combined to
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generate the simulated provider profiles. However, these mea-
sures may be dependent. For example, a provider who assigns
a higher weight to the worse-case stabilization and resource
time function in state s may select a higher relative RRT mea-
sure in this state, i.e., p(s) and £(s) may be correlated. An area
for future research could explore the dependency structure
between time perception measures by generating dependent
random variables.

In conclusion, APD during hospitalization, while common-
ly signaled by abnormal vital signs hours before critical
events, can be difficult to discern. EWS-based dynamic and
stochastic models can aid data-driven clinical decision making
by enhancing the ability to capture changes in patient condi-
tion over time in a patient-centered manner. This is particular-
ly applicable for providers in an environment where patients
are monitored at irregular intervals, e.g., the general ward.
Using EWS-based approaches, standardized and structured
communication between the provider team members can help
to mitigate communication errors arising from fragmented na-
ture of health care delivery and frequent handoffs.

The methods described in this study extend the existing
literature by analyzing the stochastic nature of APD, evaluat-
ing health-state dependent resource needs, and incorporating
both patient and provider heterogeneity in a unique frame-
work. While our model is developed for adult patients, our
approach can be easily extended to different patient subpopu-
lations. The identified optimal RRT policies utilize physiolog-
ical measures that are readily available during routine hospital
rounding. In addition, the modified SMDP model provides
insight regarding stabilization and resource time as a function
of the patient type and the providers’ estimates of
stabilization-related patient needs. These methods can be used
by hospitals to guide RRT-activation policies in clinical prac-
tice for patients who present with APD or develop APD dur-
ing a hospitalization. Moreover, these methods provide a bet-
ter understanding for the impact of provider heterogenity on
resuscitation actions and time-based stabilization-related re-
source use.

APPENDIX 1: Transition rate matrices (TRM)

In the following 7%7 transition rate matrices, rows rep-
resent current state s and columns represent next state j
the patient moves after leaving the current state. The
values in the cells represent transition rates in
transitions/h given the current health state s (denoted
by the row), the decision maker chooses action d(s),
and the next state transition is to state j (denoted by
the column) as derived from EMRs provided by (self-
identifying name of the facility omitted) used in our
case study.
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Table 6  Transition rate matrix for medical patients with low ROD, and
for the action wait

5 4S 4F 3 2 1 6
5 —0.4726 0.0000 0.0000 0.1246 0.2871 0.0000 0.0610
4S  0.0000 —0.6639 0.0000 0.2183 0.1803 0.1749 0.0904
4F 0.0000 03677 —1.0316 0.2183 0.1803 0.1749 0.0904
3 0.0000 0.0000 0.1563 —0.7708 0.2503 0.2925 0.0717
2 0.0000 0.0000 03167 0.8328 —2.3316 0.8961 0.2860
1 0.0000  0.0000 0.3030 0.8758 1.1247 —2.6919 0.3883
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table7 Transition rate matrix for medical patients with low ROD, and
for the action activate RRT

5 4S 4F 3 2 1 6
5 —0.4726 0.0000 0.0000 0.1246 0.2871 0.0000 0.0610
4S  0.0000 —0.6639 0.0000 0.2183 0.1803 0.1749 0.0904
4F  0.0000 0.3677 —1.0316 0.2183 0.1803 0.1749 0.0904
3 0.0000  0.0000 0.1100 —0.2300 0.0000 0.0000 0.1200
2 0.0000 0.0000 0.89 0.0000 —1.3900  0.0000 0.5000
1 0.0000  0.0000 0.56 0.0000  0.0000 —0.8200 0.2600
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 8 Transition rate matrix for surgical patients with low ROD, for
the action wait

5 48 4F 3 2 1 6
5 —2.1234 0.0000 0.0000 0.2152 0.3211 1.0000 0.5871
4S  0.0000 —3.3571 0.0000 0.2549 0.3312 2.6667 0.1043
4F 0.0000 0.1083 —3.4654 0.2549 03312 2.6667 0.1043
3 0.0000 0.0000 0.1909 —1.2145 0.4029 0.4994 0.1212
2 0.0000 0.0000 04248 1.0750 —3.3357 1.3449 0.4911
1 0.0000 0.0000 4.6154 1.0611 1.2981 —8.2789 1.3043
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table9  Transition rate matrix for surgical patients with low ROD, and
for the action activate RRT

5 4S 4F 3 2 1 6
5 —2.1234 0.0000 0.0000 0.2152 03211 1.0000 0.5871
4SS 0.0000 —3.3571 0.0000 0.2549 03312 2.6667 0.1043
4F  0.0000 0.1083 0.1909 —1.2145 0.4029 0.4994 0.1212
3 0.0000  0.0000 1.3300 —1.4500 0.0000 0.0000 0.1200
2 0.0000  0.0000 0.8900 0.0000 —1.3900  0.0000 0.5000
1 0.0000  0.0000 0.5600 0.0000 0.0000 —0.8200 0.2600
6 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Table 10  Transition rate matrix for medical patients with moderate
ROD, and for the action wait

Table 14  Transition rate matrix for medical patients with high ROD,
and for the action wait

5 4S 4F 3 2 1 6 5 4S 4F 3 2 1 6
5 —0.4838 0.0000 0.0000 0.1020 0.1341 0.1923 0.0554 5 —1.8293 0.0000 0.0000 0.1881 0.1412 0.0000 1.5000
4S  0.0000 —0.6700 0.0000 0.1799 0.2298 0.1703 0.0900 4S  0.0000 —0.7132  0.0000 0.2015 0.2385 0.1598 0.1133
4F 0.0000 03676 —1.0377 0.1799 0.2298 0.1703 0.0900 4F 0.0000 03668 —1.0799 0.2015 0.2385 0.1598 0.1133
3 0.0000 0.0000 0.1191 —-0.6207 0.2173 0.2269 0.0574 3 0.0000 0.0000 0.1171 —0.6395 0.2291 0.2391 0.0542
2 0.0000 0.0000 03666 0.5871 —1.8825 0.6806 0.2482 2 0.0000 0.0000 03076 0.5043 -1.7019 0.6201 0.2698
1 0.0000  0.0000 0.5093 0.5131 0.6221 —1.8700 0.2255 1 0.0000 0.0000 0.1716 0.4354 0.5126 —1.2421 0.1226
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Table 11  Transition rate matrix for medical patients with moderate Table 15  Transition rate matrix for medical patients with high ROD,

ROD, and for the action activate RRT

and for the action activate RRT

5 4S 4F 3 2 1 6 5 4S 4F 3 2 1 6
5 —0.4838 0.0000 0.0000 0.1020 0.1341 0.1923 0.0554 5 -1.8293 0.0000 0.0000 0.1881 0.1412 0.0000 1.5000
4SS 0.0000 —0.6700 0.0000 0.1799 0.2298 0.1703 0.0900 4SS 0.0000 —0.7132  0.0000 0.2015 0.2385 0.1598 0.1133
4F  0.0000 0.3676 —1.0377 0.1799 0.2298 0.1703 0.0900 4F  0.0000 0.3668 —1.0799 0.2015 0.2385 0.1598 0.1133
3 0.0000  0.0000 0.1000 —0.2000 0.0000 0.0000 0.1000 3 0.0000  0.0000 0.0300 —0.9600 0.0000 0.0000 0.9300
2 0.0000  0.0000 0.96 0.0000 —1.5200 0.0000 0.5500 2 0.0000  0.0000 0.5000 0.0000 —0.6500 0.0000 0.1500
1 0.0000  0.0000 048 0.0000  0.0000 —0.7700 0.2900 1 0.0000  0.0000 0.8800 0.0000 0.0000 —1.1500 0.2700
6 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 1.0000 6 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 1.0000

Table 12  Transition rate matrix for surgical patients with moderate
ROD, and for the action wait

5 4S 4F 3 2 1 6
5 —29777 0.0000 0.0000 0.2052 0.3295 2.3077 0.1353
4S  0.0000 —0.7826 0.0000 0.2227 0.2631 0.2082 0.0886
4F  0.0000 0.3643 —1.1469 0.2227 02631 0.2082 0.0886
3 0.0000 0.0000 0.1264 —0.7632 02666 0.3139 0.0563
2 0.0000 0.0000 0.3953 0.7859 —2.4371 0.9311 0.3247
1 0.0000 0.0000 0.4438 0.8763 0.9212 -2.6171 0.3758
6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 13  Transition rate matrix for surgical patients with moderate
ROD, and for the action activate RRT

Table 16  Transition rate matrix for surgical patients with high ROD,
and for the action wait

5 48 4F 3 2 1 6
5 —1.7679 0.0000 0.0000 0.3896 0.0740 0.0000 1.3043
4SS 0.0000 —1.1958 0.0000 0.3629 0.4395 0.2703 0.1232
4F 0.0000 0.3316 —1.5274 0.3629 0.4395 0.2703 0.1232
3 0.0000 0.0000 0.1561 —-0.8138 0.3215 0.2718 0.0642
2 0.0000 0.0000 0.4456 0.8096 —2.5917 0.8190 0.5175
1 0.0000  0.0000 0.6218 0.6520 0.6534 —-2.1606 0.2335
6 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 1.0000

Table 17  Transition rate matrix for surgical patients with high ROD,
and for the action activate RRT

5 4S 4F 3 2 1 6 5 4S 4F 3 2 1 6
5 =29777 0.0000 0.0000 0.2052 0.3295 2.3077 0.1353 5 —1.7679 0.0000 0.0000 0.3896 0.0740 0.0000 1.3043
4SS 0.0000 —0.7826  0.0000 0.2227 0.2631 0.2082 0.0886 4S 0.0000 —1.1958 0.0000 0.3629 0.4395 0.2703 0.1232
4F  0.0000 0.3643 —1.1469 0.2227 0.2631 0.2082 0.0836 4F 0.0000  0.3316 —1.5274 0.3629 0.4395 0.2703 0.1232
3 0.0000  0.0000 0.6600 —0.94 0.0000  0.0000 0.2800 3 0.0000  0.0000 1.4000 -2.3300 0.0000 0.0000 0.9300
2 0.0000 0.0000 4.1400 0.0000 —5.02 0.0000 0.8800 2 0.0000  0.0000 2.4000 0.0000 —2.5500 0.0000 0.1500
1 0.0000  0.0000 0.8400  0.0000 0.0000 —1.0300 0.1800 1 0.0000  0.0000 1.3300 0.0000 0.0000 —1.4400 0.1100
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 6 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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APPENDIX 2: Stabilization and resource time
functions in the SMDP models

We define the term ), 4, as the state- and action-dependent
exponential rate parameter for the sojourn time distribution in
state s until the next decision epoch. For states s € S’, where
S§'=5\{4f,6}, the sojourn time corresponds to the minimum of
competing exponential delays. Therefore, for the states s € S,
the sojourn time in health state s follows an exponential dis-
tribution with rate parameter A 45=2 jes, j£s\s.d(s),; Where g
d(s), 18 the rate corresponding to the exponential time spent in s
before a transition to j would occur, given action d(s); and
corresponding to impossible state transitions, we make the
following assignment of zero rates:

Asd(s),j = 0 forseS’ and je{4s, 5}, (0a)
As.d(s),s =0 fOI'SE{l, 2, 3}; (Ob)
and

Asd(s)4r = 0 forse{ds, 5}. (Oc)

With Eq. (0a—c) as well as the usual rate assignment
of A s, for each se€S and for each jeS not covered
by (0a—c), the sojourn time in state s is exponentially
distributed with a mean of 1/); 4 hours.

For state 4f, the sojourn time conditional on the action
d(4/), is denoted by Hyra4p, is concentrated in [0, 1], and is
formulated as follows:

P(Hagaap) = 1) = P(minjeq236Haraan, > 1)

_ e_Zje{1,2,3.6})‘4fvd(4f)»j,

(1a)

where forje {1, 2, 3, 6}, the independent random variable Hy
w4y, Tepresenting the potential time to make the transition
4f—j is exponentially distributed with rate parameter A4,
dap,- Therefore, we have

P(0 < Hypaup < 1) = 1-P(Hapqup) = 1) = 1-¢ Zisl1236) M7 d41)
(1b)

so that the cumulative distribution function of Hyz4s) is given by

|—e “2jel123,6) s d(41).j

P(H4f,d(4f)§”) _ if O<u < 1 :
1 if u>1
(Ic)
The function r(s,d(s)) is given by:
r(s,d(s)) =0 forse{5, 4s},d(s) = {1}, (2a)

@ Springer

}"(S,d(S» = ’ynurse(s) +[(d(S) = 2) ,YRRT(S)
+ L { JO e s, 4f)P(4f|S,d(s))dt] )‘s‘d(s)e_/\“'(”“du (2b)
forse{2, 3}, j = {4f}, d(s)e{1, 2},
I”(S7 d(s)) = rynurse(s)
+ Jm[ J:e—atc(s,4f)P(4f|S, d(s))d[} )‘s,d(s)e_/\"d“)” du

0
+ J Z}.GS[ J emc(s,j)P(j|s,d(s))dt] /\S~d(5)eﬂ$““f)”du
for sle{l}, jeS,Od(s) = {1},
(2¢)
r(s,d(s)) = Wnurse(s) + ’VRRT(S)
+ J [ J e (s, 41)P(4f]s, d(s))dt} )\S,d<s>ef)‘°‘-”“)“du
0 0
forse{1}, j = {41}, d(s) = {2},
(2d)
V(&ﬁf(s)) = Ynurse($)
v s PURS, 4412 < 1){ |

+e J e “c(4f,4s)dt
0

efa’c(4f,j)dt} Aze Mdu
0

for se{4f}, d(s)e{1},
(2¢)

where in terms of the independent exponential random vari-
ables {Huzq4p ;:7=11, 2, 3, 6}} used to define Hys, (a5, We
define the auxiliary random variable

Z=min {Hysqup,;: j={1,2, 3, 6}} (2f)
which is exponential with rate parameter
Az = ZJ'E{L 2,3, 6})‘4f-d(4f)aj' (Zg)

In Eq. (2b—e), the state-dependent nurse time,
Yourse(s) 18 computed as the additional time in hours
exceeding the baseline nurse time for a patient in state
5. The term ~zp7(s) represents the time that the RRT
spends in moving to/from the patient’s room and onsite
treating the patient if the RRT is activated at a decision
epoch, measured in hours. The indicator variable, c(s, ;)
accumulates TTS or FTR. The variable, c(s, j) takes the
value one if the state transition from s to j corresponds
to TTS or FTR; otherwise it takes the value of zero.
Table 18 summarizes the values of c(s, j).

The quantity « is used as the variable of integration. Equation
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Table 18 Values of ]
indicator variable c(s, /) s/j 5 4s 4 3 2 16
where s is the current

state and j is the 5 0 0 0 0o 0 0 o0
subsequent state 4s 0 0 0 0O 0 0 0
4f 0 1 0 I 1 1 1
3 0 0 1 0o 1 1 1
2 0 0 1 1 0o 1 1
1 0 0 1 1 1 0 1
6 0 0 0 0 0 0 O

(2a) represents the case if the state at the current decision epoch is
s € {5, 4s}. Equation (2b) represents a patient in state s € {3, 2}
at the current decision epoch with TTS (recovery) accumulation.
Equation (2c) represents a patient in distress state 1 at the current
decision epoch with TTS (recovery), and possible FTR accumu-
lation. Equation (2d) represents a patient in distress state 1 at the
current decision epoch with TTS (recovery) accumulation with-
out FTR (because RRT is activated). Equation (2e) is the case
where the patient is in state 4f at the current decision epoch with
possible TTS accumulation (unsuccessful stabilization if Z<1
and successful stabilization otherwise).

In the modified SMDP model, the weight p(s) is incorporated
in the function, #'(s,d(s)), given the current state s and action d (s):

r(s,d(s)) = pls)r(s, d(s)) + (1=p(s))7(s,d(s)) (3a)

where r(s,d(s)) is defined in Eq. (2a—e). The term 7(s, d(s)) is
the function, where 7,,,..(s) = max{~,,..(s) : se€S} and
Frrr(s) = max{yggr(s) : s€S} as observed in the electronic
medical records. The function 7(s, d(s)) is given by:

?(Svd(s)) = Wnurse(s) for 56{57 4S}7d(s> = {1}7 (3b)

F(S,(/l;gs)) u: Wnurse(s) + 1 (d(S) :2) WRRT(S)
+ J J emc(s,4f)P(4f|s,d(s))dt} )\s,d@)e*’\f‘d(”"du
0 0
forse{2, 3}, j = {4f}, d(s)e{1, 2},
(3¢)

(s, 5)) = Vnurse ($)

[

J Z} (s, ))P(j]s, d(s ))dt] /\S"d(s)ef’\"(””du
forse{l}, jeS, d( ) ={1},

e a0t d y

+

Gﬂ&d@»dﬂ&dm

(3d)

F(Sv a:o(s)) 7 Tnurse (S) + YRrT (S)
+j{Jf%mewmamﬂxwgwwm
0 0
forse{1}, jeS, d(s) = {2},
(3¢)

F(S7 d(f)) = Vnursc(s) "
+0 L > iinsg PUAS d(4),Z < 1) [ jo e*”'c<4f,j>dt} Ape

I
+e J e “c(4f,4s)dt

for 56{4%}, d(s)e{1}.
(31)

APPENDIX 3: Time to stabilization (TTS)-related
times in state 4f

We define a random variable Z=min{Hy; 445 ;:j=1, 2, 3, 6}.
Therefore, Z follows an exponential distribution with rate
AZ=Dje (123,61 \ard(4p,- The sojourn time in state 4f7s defined
as

Z, ifZ <1,

H4Afvd<4f'>_{1 if Z>1.

)

Given Z < 1, the conditional PDF of Hyz g4 is given by

0, ifu<o,
)\Ze’AZ“ .
Sapaan¥) = ey Tosu<l,
1, ifu>l.

Let J be the state to which the process jumps when it leaves
the state 4f. It follows that:

P{jlaf, d(4f), Z< 1} =P{J =jlZ < 1}
*P{H4fd(4/) < Hypaapx fork={1,2,3, 6}\{j} | Z < 1}
for je{l, 2, 3, 6}

To simplify the notation, let L={1,2,3,6} and forj € L, let
L=I\{j}. Then, forj e L

P{j4f,d(4f),Z < 1}

=P{Z=Hysaurj» Z < Hisqus i forkel; | Z < 1}

(4a)

. P{Z = H4_f,d(4_f),_i7 7z < H4fd (41) .k fOI' kGLJ, 7z < 1}
N P{Z < 1}
(4b)
Conditioning on Hyyq4p,;=u, we have:
1
Cey e
Jo
{Z :H4f,d(4f),j7 zZ < H4f.z1(4f).k for kELj, zZ<1 ’Hétf.d(étf).j = u} (4C)

/\4/‘14/ /\4/14// “ du

1
= (l—eﬂz) ! J P{M < H4f.d(4f),k for keLj}-/\4f¢d<4‘,->,j'e7)‘4’-"WW “ du
0

(4d)
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1
N A W s
0

(4e)
= (l—e_’\z) JO Az A4/4 d(4f).j du (4f)
because we have

A= Mardani = Naraan + Y ker, M AN k- (4g)

Thus, from expression (4f) we have

P{j|4f,d(4f),Z < 1} = 24800 (1— M) [z du = Mgy,
d@f).,
L (4h)

For the expression (4h), we have

S PUASLdES).Z < 1) =1

Let Gyrs(Z,J) denote the following:

* when Z<1,Grrs(Z,J) denotes the rate at which TTS-
related time is accumulated over the random time interval
[0,Z] and is expressed as a function of the random vari-
ables Z and J,

e when Z=1, Gyr5(Z,J) denotes the rate at which TTS-
related time is accumulated over the fixed time interval
[0,1]; and in this case the destination state is fixed J=4s,
denoting the stabilization of a patient.

We formulate Gr75(Z,J) as

caf,J) ifzZ<1,

Crrs(Z,J) = { c(4f,4s) ifZ=1.

The total discounted TTS-related time is given by

z
J “ote(af, Jydt ifZ < 1,

Grrs(Z,J) = i
J e Me(df 4s)dt ifZ=1.

0

The expectation is computed as follows:

[TT.SZ‘/}:
)E | ele(4f,J)dt | Z < 1]+e’*/5{ j e c(4f, 4s)d:|271]
0

1 u o . /\ZE
= (1= ™) J Zie(l,Z,B,é}P(]Mf’ d(4f),Z < 1)[ Le a(4f,j)dt] [m}du
1
+e J e “c(4f,4s)dt.
0

P{Z < 1}E[Gy5(2,J) | Z < 1] +P{Zf 1}E[Grps(2,0) | Z = 1]

The first integral in (41) is given by

B 1 Masa@ry,y c(4f,)) o Age

Az 4/$d(4./)=(/‘ ) J S 1—pouy, Z

(1 e ) L {Z/’ELi/\Z — (1—e) T }du
(5a)
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. . S 1
3 Daan Y ’f).{ J(l—e*““).ewu du} (sb)

« 0

1

=y Darauny @), ‘
- JEL o

e Mt dy— [
Jo

Jo

ef(AZ“")du} (5¢)

-y Maap,* €(4f ) [1-e™  1-e (ero) s
- /e a Az A+«

Ly ety e o Oa e ]
JeL Az ()\7 + a)
The second integral in (41) is given by
1
e Moc(4f , 4s)- J e dt (5f)
0
eMec(4f ,4s)[1—e™
@
_ c(4f,4s)-[e Mr—e Aetal] (sh)
@
Combining (5¢) and (5h), we have
E[Gry5(Z,7)] (1)

=12 Mg aian)j - @f 1)) [a=(Az + @)e™ 4 Age rtel]
JeL adz(Az + )

N c(4f, 4s)- [67A7

«

,e*(AZJru)]

APPENDIX 4: Failure to rescue (FTR)-related time
in model state 1

Failure to rescue (FTR) is only applicable in clinical distress
state (state 1) with action d(1)=1 (no RRT activation). Let U
denote the sojourn time in state /, and let J denote the state to
which the process moves when it leaves state 1. Let Grx(U,J)
denote the rate at which the FTR-related time is accumulated
given by

J) if U1,

c(1,
GFTR(U’J):{O( if U< 1.

The discounted total FTR-related time is given by

U
G rrr(U,J) = J e “Grrr(U, J)dt.
0
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Then, the expected value of the total discounted FTR-
related time is

E[G rrr(U,J

J ZE[GFTRUJ ’U—u J= j] (j

Jjes

)] =
= JO IESP(J (l) = 1) |: J _atGFTR(u J)d[:| )\l,d(l):le_/\]'d(l)zludu

- JlmzjesP(j’l,d(l) - 1)[

17d(1) = 1))\17d(1):le_/\l.d(1):1udu

e “e(l,j dt] ALd( lef’\“d“’:‘“du

0
. c(l,j o Y B .
= ZI P(jlla d ) (a ) Jl ( M))\l ( ) le )‘l.d(l):l du
| C(LJ) * —au -~ ;
— Z.,ESP(] 1,d(1) = 1) " J] (1=¢ ™) Ay g(1)=1€ Nt gy,

APPENDIX 5: Baseline and modified SMDP model
results for medical patients with moderate ROD

The table below summarizes the optimal value function in
state s, v(s), representing the total expected stabilization relat-
ed time in hours and optimal state-dependent RRT activation
policy, d*(s), for s € § in the baseline SMDP model, and
modified SMDP model under three Baseline and five
Modified Scenarios.

Table 19 Baseline SMDP results
Optimal value function [hrs.] Optimal policy d*(s)

6.66  7.30 9.46 10.69 1238 1279  Wait Call

Table 20  Baseline scenario #1 results, clustering algorithm: single linkage

Optimal value function [hrs.] Optimal policy d*(s)
Cluster#  v(5) vids)  v@h o v0) vQ2) V(1) d*(5)  d*ds)  dF@h  d*3)  dHQ)  d(D)
1 10.22 11.37 11.47 12.50 15.66 15.67 Wait Call
2 10.59 11.05 11.16 11.88 14.57 16.24 Wait
3 10.55 10.97 11.08 12.22 15.14 15.79
4 11.20 12.42 12.50 13.90 15.26 15.53
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Table 21  Baseline scenario #2 results, clustering algorithm: Ward’s method

Optimal value function [hrs.]

Optimal policy d*(s)

Cluster #  v(3) vids)  v@h o v) v(2) V(1) d*(5)  d*@ds)  drah  d*3)  d*@) ()
1 10.22 11.37 11.47 12.50 15.66 15.67 Wait
2 10.59 11.05 11.16 11.88 14.57 16.24 Wait
3 11.02 11.52 11.61 12.39 16.51 16.20 Call
4 11.25 11.28 11.38 12.85 14.98 15.68
5 10.44 11.98 12.06 13.07 16.05 17.08
6 10.55 11.13 11.24 12.20 15.71 15.80
7 9.13 10.55 10.67 11.97 14.28 14.36
Table 22  Baseline scenario #3 results, clustering algorithm: centroid
Optimal value function [hrs.] Optimal policy d*(s)
Cluster# V() vés  v@dD v v v ) dfdy) dED A3 A R
1 11.22 11.37 11.47 12.50 15.66 15.67 Wait
2 10.59 11.05 11.16 11.88 14.57 16.24 Wait
3 11.23 11.67 11.76 12.45 16.43 16.79 Call
4 11.44 11.98 12.06 13.07 16.05 17.08
5 10.91 11.55 11.65 12.63 16.57 16.04
6 10.29 10.71 10.83 12.08 14.60 14.53
Table 23  Modified scenario #1 results, clustering algorithm: single linkage
Optimal value function [hrs.] Optimal policy d*(s)

Cluster#  v(5) vids)  v@éh o vO) v(2) v(D) d¥5)  drds)  d¥@D  d*3)  d¥@)  dH(D)
1 11.18 11.30 11.40 11.47 16.31 16.52 Wait
2 9.06 9.46 9.61 10.01 11.97 14.73 Wait
3 11.10 11.35 11.45 12.67 15.42 15.55 Call
4 12.05 12.57 12.64 13.79 16.94 17.69
5 10.45 10.73 10.85 11.49 15.00 15.73
Table 24  Modified scenario #2 results, clustering algorithm: single linkage
Optimal value function [hrs.] Optimal policy d*(s)

Cluster#  v(5) vy v@éh  v@)  v@ v d¥) d¥dy) dFeh d*Q) df@) dH(D)
1 11.64 11.98 12.06 13.16 15.75 17.37 Wait

2 11.19 11.65 11.75 13.18 14.15 1641 Wait
3 11.75 12.36 12.43 13.84 17.58 17.91 Call

4 11.29 11.70 11.79 14.28 15.27 15.58

5 10.61 11.08 11.19 12.58 15.20 15.82
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Table 25 Modified scenario #3 results, clustering algorithm: single linkage

Optimal value function [hrs.]

Optimal policy d*(s)

Cluster# V() vés)  védD v v@ v A dRdy)  dRED dE®) @) R
1 10.34 10.90 11.01 1141 14.69 15.95 Wait
2 11.47 11.98 12.07 12.09 14.87 17.07 Wait
3 11.32 12.15 12.23 13.23 16.70 16.82 Call
4 12.11 12.53 12.60 13.17 17.26 17.78
5 11.03 11.87 11.96 14.70 14.72 16.58
6 10.30 10.63 10.75 11.34 14.91 14.96
Table 26 Modified scenario #4 results, clustering algorithm: single linkage
Optimal value function [hrs.] Optimal policy d*(s)

Cluster # v(5) v(4s) v(4f) v(3) v(2) v(l) d*(5) d*(4s) d*(4f) d*(3) d*(2) d*(1)
1 7.82 8.49 8.67 9.29 11.50 11.92 Wait
2 6.24 6.97 7.18 7.75 8.92 10.31 Wait
3 8.36 8.05 8.23 8.52 11.02 11.44 Call
4 8.47 9.12 9.28 10.37 12.18 12.60
Table 27 Modified scenario #5 results, clustering algorithm: single linkage

Optimal value function Optimal policy

Cluster # v(5) v(4s) v(4f) v(3) v(2) v(l) d*(5) d*(4s) d*(4f) d*(3) d*(2) d*(1)
1 9.76 10.13 10.26 11.35 13.65 14.01 Wait Call

2 10.41 11.07 11.18 12.86 15.11 15.56

3 9.63 10.13 10.26 11.37 13.78 13.82
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