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Dengchuan cattle are the only dairy yellow cattle and endangered cattle among Yunnan
native cattle breeds. However, its genetic background remains unclear. Here, we
performed whole-genome sequencing of ten Dengchuan cattle. Integrating our data
with the publicly available data, Dengchuan cattle were observed to be highly interbred
than other cattle in the dataset. Furthermore, the positive selective signals were mainly
manifested in candidate genes and pathways related to milk production, disease
resistance, growth and development, and heat tolerance. Notably, five genes (KRT39,
PGR, KRT40, ESR2, and PRKACB) were significantly enriched in the estrogen signaling
pathway. Moreover, the missense mutation in the PGR gene (c.190T > C, p.Ser64Pro)
showed a homozygous mutation pattern with higher frequency (83.3%) in Dengchuan
cattle. In addition, a large number of strong candidate regions matched genes and QTLs
related to milk yield and composition. Our research provides a theoretical basis for
analyzing the genetic mechanism underlying Dengchuan cattle with excellent lactation
and adaptability, crude feed tolerance, good immune performance, and small body size
and also laid a foundation for genetic breeding research of Dengchuan cattle in the future.
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INTRODUCTION

Chinese domestic cattle breeds have a broad genetic base and abundant genetic variation, generally
consisting of Bos taurus and Bos indicus lineages. Bos taurusmainly originated from cattle in Europe
and is distributed in northern China, whereas Bos indicus originated from cattle in South Asia and is
mainly distributed in southern China (Zhang, 2011). Because of the intensive selection, Bos taurus
have advantages on beef and milk production; however, it is not adapted to tropical environments
and thus cannot make use of its full potential for production in hot and humid areas in southern
China (Crouse et al., 1989; Buchanan, 2002; Pegorer et al., 2007; Satrapa et al., 2011). Compared to
Bos taurus, Bos indicus is able to tolerate heat and crude feed. One of the typical and distinctive
physical features includes a hump on its back (Utsunomiya et al., 2019; Zhang et al., 2021). Scientific
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research indicates hybridization of these sub-species can combine
the strengths of Bos taurus and Bos indicus, being one of the oldest
and truest ways to balance productivity with the environmental
adaptability (Negussie et al., 1999; Schatz et al., 2020).

Yunnan has been one of the core regions for the migration of
Indian indicine into the Chinese territory. Amongst various
hybrid cattle, Dengchuan cattle are the only local dairy yellow
cattle breed in China. Dengchuan shares a long history of selective
breeding, dating back to the Han Dynasty (206 BC-220). Local
people paid attention to selecting cattle with longer lactation
periods with high milk yield, to breed their offspring, and using
them to make milk fats, which is the local specialty dairy product
(Zhang, 2011). With the improvement and promotion of artificial
insemination and frozen semen technology of fresh semen at
room temperature, native people massively introduced Holstein
cattle for hybrid improvement. According to statistics data, from
1981 to 1989, the 305-day milk yield of Dengchuan cattle
increased from 838.3 kg to 1,066.6 kg, with a milk fat rate of
6.89% and a dry milk matter of 13.52%, whereas the 305-day milk
yield of hybrid F3 (Dengchuan × Holstein) increased from
2,111.1 kg to 3,094.4 kg, with a milk fat percentage of 4.09%
and a dry milk matter of 12.0% (Zhang and Ma, 1987; Ma, 1988).
However, blind hybridization and the lack of breed conservation
planning caused the threat of breed degradation in Dengchuan
cattle. According to a recent survey, only 212 Dengchuan cattle
(206 cows and six bulls) remained, among which the original
breed of Dengchuan cattle is extremely rare and endangered
(Yang et al., 2021).

With the development of the next-generation sequencing
technology and the enrichment of re-sequencing databases,
genome-wide genetic analysis plays an increasingly significant
role in the investigation and selection of germplasm resources of
landraces (Shen et al., 2020; Jiang et al., 2021; Xia et al., 2021;
Zhang et al., 2021). A recent study on Dengchuan cattle showed
that Dengchuan cattle are a taurine–indicine mixed breed
(Foissac et al., 2019). However, there are no previous studies
using whole-genome sequencing data to identify genes related to
milk production and disease resistance in Dengchuan cattle.

In this study, we performed whole-genome sequencing of ten
individuals of Dengchuan cattle to explore the genetic diversity
and population genetic structure of the autosomal genome. In
order to further explore the genetic potential of Dengchuan cattle,
single nucleotide polymorphisms (SNPs) of Dengchuan cattle
were compared with those of commercial and native breeds
previously collected from around the world.

MATERIALS AND METHODS

Sample Collection and Sequencing
Ten samples of Dengchuan cattle were collected from the ear tissue
samples in the Dengchuan area of Yunnan province, China. To
explore the ancestry proportions of Dengchuan cattle and compare
the genetic diversity with worldwide cattle breeds, additional 68
samples were collected from the Sequence Read Archive (SRA,
https://www.ncbi.nlm.nih.gov/sra/) (Leinonen et al., 2011),
including European cattle breeds [Angus (n = 9), Simmental

(n = 8), and Holstein (n = 8)]; northeast Asia breed (Hanwoo,
n = 10); southwest Chinese breeds [Dengchuan (n = 2), Dianzhong
(n = 6), and Wenshan (n = 6)]; southeast Chinese breeds
[Guangfeng (n = 4) and Wannan (n = 5)]; and India–Pakistan
zebu cattle (Bos indicus) breeds (n = 10) (Supplementary Table
S1). A total of 78 samples were used in this study.

Sequencing, Alignment, and Variant
Identification
Genomic DNA was extracted using the standard
phenol–chloroform method (Sterky et al., 2017). Paired-end
libraries with the average insert size of 500 bp were constructed
for each individual, with an average read length of 150 bp and an
average sequence coverage of ~10.7×. Sequencing was performed
using Illumina NovaSeq instruments at Novogene Bioinformatics
Institute, Beijing, China. Raw reads data of fastq format were
quality trimmed using trimmomatic (SLIDINGWINDOW:3:15
MINLEN:35 TRAILING:20 LEADING:20 AVGQUAL:20
TOPHRED33) (Bolger et al., 2014) to remove adapters and
low-quality bases. The Burrows–Wheeler Aligner BWA-MEM
(v0.7.15-r1140) with default parameters (Li and Durbin, 2009)
was used to align the clean reads to the Bos taurus reference
assembly ARS-UCD1.2. The Picard tools (http://broadinstitute.
github.io/picard) were used to filter potential duplicate reads. We
used “Haplotype Caller,” “Genotype GVCFs,” and “Select
Variants” modules of the Genome Analysis Toolkit (GATK,
version 3.8-1-0-gf15c1c3ef) (McKenna et al., 2010) to call the
SNP. The filtration of raw SNPs was conducted by using
“variant Filtration” modules with the parameters “QD < 2.0, FS
> 60.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.
0, and SOR > 3.0” and the mean sequencing depth of variants (all
individuals) “<1/3× and >3×”. Based on the Bos taurus reference
assembly ARS-UCD1.2, SNPs were functionally annotated by
ANNOVAR (Wang et al., 2010).

Population Genomic Analysis
SNPs of 78 samples were pruned in high levels of pairwise LD by
PLINK v1.90b3.40 software (Purcell et al., 2007), excluding SNPs
in strong LD (r2 > 0.2) within a sliding window of 50 SNPs
advanced by five SNPs at the time. Principal component analysis
(PCA) was carried out using the smartpca program of the
EIGENSOFT v5.0 package (Patterson et al., 2006). Population
structure analysis was carried out by ADMIXTURE v1.3.0
(Alexander and Lange, 2011). Based on the pairwise distance
matrix, the NJ tree was constructed byMEGA v10.2.6 (Saitou and
Nei, 1987; Kumar et al., 2018).

Runs of homozygosity (ROHs) were calculated by PLINK
software (Purcell et al., 2007). SNPs with minor allele
frequencies (MAF) < 0.05 were excluded due to instability.
PLINK uses a sliding window of a minimum of 50 SNPs across
the genome to identify ROHs, allowing for two missing SNPs and
one heterozygous site per window. The minimum number of
continuous homozygous SNPs constituting an ROH was set to
100. The minimum SNP density coverage was set to at least 50
SNPs per Kb, allowing for centromeric and SNP-poor regions to be
algorithmically excluded from the analysis. The maximum gap
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between two consecutive homozygous SNPs was set at 100 Kb. The
number and length of ROHs for each breedwere estimated, and the
length of ROH was divided into three categories: 0.5–1Mb,
1–2Mb, and 2–4Mb, reflecting ancient, historical, and recent
inbreeding, respectively (Kirin et al., 2010; Bhati et al., 2020).

Nucleotide diversity of each breed was investigated by VCFtools
(Danecek et al., 2011) with the size of 50-kb non-overlapping
window. The output of the --het function by VCFtools is a
summary for each individual of the observed number of
homozygous sites (O(hom)) and the expected number of
homozygous sites (E(hom)). It also includes the total number of
sites that the individual has data for and the inbreeding coefficient
F, which is the canonical estimate of genomic F based on excess
SNP homozygosity (Keller et al., 2011).

Linkage disequilibrium (LD) decay with the physical distance
between SNPs was calculated and visualized by PopLDdecay
software (Zhang et al., 2019) with default parameters.

Selective Sweep Identification
Only SNPs with less than 10% missing were used for selective
sweep scanning. The nucleotide diversity (θπ) and the composite
likelihood ratio (CLR) test (Nielsen et al., 2005) were used to detect
the selection signatures in Dengchuan cattle and Holstein cattle.
The θπwas estimated based on a sliding window of size 50 kb and a
step of size 20 kb by VCFtools (Danecek et al., 2011). The CLR was
calculated for sites in non-overlapping 50-kb windows by
SweepFinder2 (DeGiorgio et al., 2016), reflecting the likelihood
of observing SNP data under the assumption of a sweep.

We also performed the genetic differentiation (FST) and cross-
population composite likelihood ratio test (XP-CLR) (Chen et al.,
2010) to identify the difference in potential areas between
different cattle breeds. FST analysis was estimated based on a
sliding window of 50 kb and a step of size 20 kb by VCFtools
(Danecek et al., 2011). XP-CLR is a likelihood method for
detecting selective sweeps by jointly modeling the multilocus
allele frequency differentiation between the two groups (Chen
et al., 2010). The overlap of the top 1% window in each method
was considered as candidate signatures of selection, and genes in
those window regions were defined as potential candidate genes.

Enrichment Analyses of Candidate Genes
Under Selection
Due to the complexity of biological data-mining situations,
enrichment analysis was conducted to identify the possibility of
biological processes associated with Dengchuan cattle (Huang et al.,
2009). Online Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) analyses were conducted by
KOBAS 3.0 (Bu et al., 2021). Genes at p < 0.05 were considered to be
significantly enriched in Kyoto Encyclopedia of Genes andGenomes
(KEGG) pathways and GO (Gene Ontology) annotations.

Aligning Candidate Regions to the
Quantitative Trait Loci Database
Biological processes of Dengchuan cattle could be analyzed
through genes annotated from candidate regions; however, there

were various candidate regions in the non-annotated genic regions,
although they showed strong selective signals. We used QTLs to
identify possible traits in these candidate regions. The cattle QTL
database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/
index) contains 163,725 QTLs. The chromosome information is
annotated to the cattle QTLdb to identify the regions of interest
detected by selective sweep methods contained or overlapped
across the QTLs. The function and information of candidate
regions were determined after annotation.

RESULTS

Analysis of the Population Structure and
Genetic Diversity
Seventy-eight cattle, representing five geographically diverse cattle
populations, namely, East Asian taurine, European taurine, Chinese
indicine, Indian indicine (Xu et al., 2018), and local hybrid
populations in Yunnan were selected for genome re-sequencing
analysis (Figure 1A, Supplementary Table S1). After quality
control, 147,397,064 bi-allelic autosomal SNPs (Supplementary
Table S2) were used to construct genetic relationships using a
neighbor-joining maximum likelihood method and PCA. Both
methods revealed that these populations of regions, except
Yunnan, clustered into three major genetic groups: Bos taurus,
Indian indicine, and China indicine (Figure 1B, C). It was clear
that Dengchuan cattle and Dianzhong cattle showed a certain degree
of hybridization. Admixture analysis showed that the cattle breeds
separate into Bos taurus and Bos indicus ancestries (Figure 1D, K =
2). When the number of clusters (K) was set to 4, East Asian taurine
and European taurine were clearly separated. Dengchuan cattle
depicted clear evidence of genetic heterogeneity with its shared
genome ancestry with East Asian taurine (Hanwoo), European
taurine (Angus, Simmental, and Holstein), Chinese indicine
(Wannan and Guangfeng), and Indian indicine. It is rather
remarkable that only half the Dengchuan cattle had a European
taurine ancestry (Figure 1D, K = 4).

Patterns of Genomic Variation
ROH analysis revealed that the vast majority of ROHs identified
in all breeds were between 0.5–1 Mb in length, but European
commercial breeds (Angus, Holstein, and Simmental) had
medium (1–2 Mb) and long ROHs (2–4 Mb). Besides, the total
lengths of ROHs in Dengchuan cattle were much longer than
those of the other two cattle in Yunnan (Figure 2A). This could
indicate that European commercial breeds and Dengchuan cattle
had undergone artificial selection for a long time. Similarly, the
inbreeding coefficient based on genome heterozygosity was the
highest in Angus (0.67) and lowest in Chinese indicine (−0.22)
(Figure 2B). The average nucleotide diversity among Dengchuan
cattle and other cattle groups revealed that Chinese indicine was
the highest (3.10e−3), followed by Wenshan cattle (2.81e−3),
Dianzhong cattle (2.72e−3), and Dengchuan cattle (2.58e−3). In
comparison to Bos indicus, it was concluded that Bos taurus
possessed a low level and high density of nucleotide diversity
(Figure 2C). In contrast, the lowest average genome-wide LD was
observed in Dengchuan cattle and Indian indicine. Besides, the
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LD decay in Bos indicus was faster than Bos taurus when the
physical distance of SNP was less than 10 KB (Figure 2D).

Positive Selective Signature
A total of 217 candidate genes were detected by both θπ and the CLR
test in Dengchuan cattle (Figure 3A, Supplementary Tables S3, S4).
Some positively selected genes were reported to be associated with
lactation function and disease resistance, such as the butterfat rate
[PPARGC1A (Weikard et al., 2005; Schennink et al., 2009)], milk

production [B4GALT1 (Asadollahpour Nanaei et al., 2020; Valsalan
et al., 2021)], immunity [IL2 (McCoard et al., 2019) and NFATC3
(Hu et al., 2018)], and mastitis resistance [ITSN2 (Miles and Huson,
2020)]. In particular, ITSN2 was located at the strongest selection
signal on BTA11 (11:74700001-74900000). The result of strong
positive selection was further verified by Tajima’s D and
nucleotide diversity analysis (Figure 3C). Moreover, 217 candidate
genes were compared with 224 candidate genes detected by both θπ
and the CLR test in Holstein cattle (Supplementary Tables S5, S6),

FIGURE 1 | Population genetic analysis of Dengchuan cattle. (A)Geographic map indicating the origins of Dengchuan cattle and other cattle analyzed in this study.
(B) Principal component analysis of cattle with PC1 against PC2. (C) Neighbor-joining tree of the 78 domesticated cattle. (D) Admixture plot (K = 2, 4) for the 78 cattle
individuals. Each individual is shown as a vertical bar divided into K colors.
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whereas seven genes (RERE, SLC45A1, RAB11FIP2, PTDSS1,
MTERF3, KDM4C, and COL27A1) were shared in both
Dengchuan cattle and Holstein cattle.

Biological Process and Pathway Between
Dengchuan Cattle and Angus Cattle
FST and XP-CLR tests were performed to detect the positive
selection signatures between Dengchuan and Angus cattle

(Figure 3A, Supplementary Tables S7, S8). A total of 384
genes were overlapped by both methods, which were enriched
using GO annotation and KEGG pathway terms to further
analyze their biological functions. The results represented
significant enrichment of 220 GO terms and 29 KEGG
pathways (p < 0.05; Supplementary Tables S9, S10). Gene list
analysis revealed the involvement of various genes in protein
synthesis (GO:0042802), endoplasmic reticulum (GO:0005783),
temperature homeostasis (GO:0001659), and neutral amino acid

FIGURE 2 | Genetic diversity among 78 samples from nine populations. (A) Estimation of the total number of ROH for each group. The three categories of ROH
length: 0.5–1 Mb, 1–2 Mb, and 2–4 Mb, reflecting ancient, historical, and recent inbreeding, respectively. (B) Inbreeding coefficient for each individual. (C) Density plots
and Box plots of the nucleotide diversity for each group. (D) Genome-wide average LD decay estimated from each group.
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transport (GO:0015804). Similarly, the enriched KEGG pathways
included the estrogen signaling pathway, protein processing in
the endoplasmic reticulum, biosynthesis of amino acids, glycan
biosynthesis, and metabolic pathways. Moreover, PGR, a gene
enriched in the estrogen signaling pathway, showed strong
positive selection in Dengchuan cattle (Figure 3D).

It is worth noting that three overlapped genes (PTPN12,
KIAA1109, and ADAD1) were detected among the four

mentioned selection methods (Figure 3B), indicating that
these genes were strongly selected in Dengchuan cattle. We
checked mutations of eight genes (five estrogen signaling
pathway enrichment genes (KRT39, PGR, KRT40, ESR2, and
PRKACB) and three overlapped genes (PTPN12, KIAA1109,
and ADAD1)) in Dengchuan cattle, two missense mutations in
PGR (c.190T > C, p.Ser64Pro; c.1220C > A, p.Pro407Gln), and
two missense mutations in PTPN12 (c.2081A > G, p.Asn694Ser;

FIGURE 3 | Analysis of the signatures of positive selection in the genome of Dengchuan cattle. (A) Manhattan plot of selective sweeps in Dengchuan cattle. (B)
Venn diagram showing the gene overlaps among θπ, CLR, Fst, and XP-CLR. (C)Nucleotide diversity and Tajima’s D plots at the ITSN2 gene region. (D) Fst and Tajima’s
D plots at the PGR gene region. (E) Regional highlight of the missense mutation of genes enriched in the estrogen signaling pathway. PGR gene showed a high-
frequency homozygous mutation site (c.190T > C) in Dengchuan cattle.
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c.1420G > A, p.Val474Ile), which showed distinct allelic patterns
in Dengchuan cattle (Figure 3E).

QTLs Based on Identified Regions
QTLs and selection signatures at the same location indicated that
phenotypes and traits were influenced by the joint action of large
numbers of polygenes and environmental effects (Georges et al.,
1995). Thus, the top 50 candidate regions were studied for each
method of scanning in Dengchuan cattle. These candidate regions
also included regions that annotated gene failures and were used to
extract relevant QTLs from the cattle QTLdb. Since the candidate
region might overlap with several QTLs associated with different
traits, one result with the most consistent chromosome fragment for
each candidate region was picked. As shown in the Supplementary
Table S11, 94 genomic regions for 100 candidate regions (θπ and
CLR) overlapped with QTLs: 49 candidate regions overlapped milk,
21 candidate regions overlapped reproduction and production, 18
candidate regions overlapped health, and six candidate regions
overlapped meat and carcass. Simultaneously, 99 genomic regions
for 100 candidate regions (FST and XP-CLR) overlapped with QTLs:
50 candidate regions overlapped milk, 38 candidate regions
overlapped reproduction and production, six candidate regions
overlapped meat and carcass, four candidate regions overlapped
health, and one candidate region overlapped exterior
conformation (Supplementary Table S12).

DISCUSSION

Genomic information is the instruction of life construction. Here,
we have conducted the whole-genome sequence-based study for
the genomic diversity and selective signatures in Dengchuan
cattle. The ancestral contributions of Dengchuan cattle came
from East Asian taurine (~34%), Chinese indicine (~22%),
European taurine (10%), and Indian indicine (~34%). It is
worth noting that Dengchuan cattle have not been able to
cluster completely, showing some differences amongst its
individuals (Figure 1B). Similar outliers can be seen for the
inbreeding coefficient (F) based on ROH, which may be from
hybrid lineages or the introduction of crossbreeding. In addition,
the ROH distribution and nucleotide diversity of Dengchuan
cattle were basically consistent with other native Yunnan breeds
(Foissac et al., 2019; Zhang et al., 2021). The LD decay pattern of
Dengchuan cattle was similar to that of Indian indicine,
confirming the high genetic diversity of Dengchuan cattle.

Dairy cows in hot and humid areas are naturally more prone to
environmental mastitis due to bacterial growth (Alain et al., 2009).
ITSN2 is a member of a family of proteins involved in clathrin-
mediated endocytosis that encodes a cytoplasmic protein which
contains SH3 domains. ITSN2 is thought to regulate the formation of
clathrin-coated vesicles and may also function in the induction of
T-cell antigen receptor (TCR) endocytosis (National Center for
Biotechnology Information, 2017). Furthermore, PTPN12 is a
protein tyrosine phosphatase that contributes to the stable 3D
acinar formation of mammary epithelial cells (Sun et al., 2011).
PGR promotes alveologenesis in the pregnant mammary gland for
milk production (Aikawa et al., 2020). In addition, among the seven

genes overlapped between Dengchuan cattle and Holstein cattle, we
examined the scanning signal of PTDSS1 and found that the CLR
value in Dengchuan cattle (~638) was much higher than that in
Holstein cattle (~431). PTDSS1 is used for the catalytic synthesis of
lecithin. The remaining six genes were also reported to be highly
associated withmilk production:RERE and SLC45A1 are reported to
be associated withmilk production (Buaban et al., 2022);MTERF3 is
associated with milk fatty acid composition (Palombo et al., 2018);
KDM4C is associated with breast cancer (Garcia and Lizcano, 2016);
RAB11FIP2 is associated with transcytosis (Ducharme et al., 2007);
and COL27A1 is associated with the sternum (Maddirevula et al.,
2019). The strong selection of these genes may be the reason why
Dengchuan cattle are a good dairy breed in hot and humid climates.

The comparative analysis of genetic differentiation between
Dengchuan cattle and other breeds revealed the estimated value
of Dengchuan cattle and Angus cattle to be the highest (~0.22),
which was suitable for subsequent analysis (Supplementary
Table S13). Interestingly, the KEGG pathway with significant
enrichment of differential signals included the estrogen signaling
pathway. Activation of the estrogen signaling pathway results in
prolonged lactation and high milk yield (Lawrence, 2022).
Additionally, in the current study, the missense mutations in
PGR (c.190T > C, p.Ser64Pro) (Figure 3E) likely play an
important role in elevated milk production in Dengchuan cattle.

Milk yield and composition are typical polygenic traits (Georges
et al., 1995). For a more comprehensive explanation of the function
in strong candidate regions, themost promisingQTLswerematched
for two-hundred candidate regions. Because of the window size of
scanning methods and the different fragment sizes of different genes
and QTLs, some regions were separated and calculated several times
andwerematched to the sameQTL. This results in a large number of
milk-related QTLs matching our candidate regions. Overall, about
half of the candidate regions matched QTLs associated with milk
yield and its composition. Furthermore, the candidate regions
corresponded with the health QTLs, which were mainly related
to the somatic cell score and heat tolerance.Most of theQTLs related
to reproduction were associated with the body size in our result. For
example, some growth-related QTLs have been annotated on
chromosome 14 (Supplementary Table S11). Similarly, the
PLAG1 gene on chromosome 14 has been shown to be
associated with the body size (Karim et al., 2011). Fst results
showed that there exists significant genetic differentiation of the
PLAG1 gene between Dengchuan cattle and Angus cattle
(Supplementary Table S7). It is worth noting that Dengchuan
cattle are small in body stature, approximately 105 cm tall and
weighing 225 kg in adulthood (Zhang, 2011).

In conclusion, this study provides a theoretical basis for analyzing
the genetic mechanism of Dengchuan cattle with excellent lactation
and adaptability, crude feed tolerance, good immune performance,
and small body size, which also lays a foundation for genetic
breeding research of Dengchuan cattle in the future.
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