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Abstract: Polyploidization is a universal phenomenon in plants and plays a crucial role in evolution.
In this study, the transcriptomes of developing seeds of a synthetic Brassica hexaploid and its
parents (B. rapa and B. carinata) were analyzed to find the gene expression changes in hexaploid seeds.
There were 3166 and 3893 DEGs between the Brassica hexaploid and its parents at the full-size stage and
mature stage, respectively, most of which were upregulated in hexaploid seeds compared to its parents.
At the mature stage, the hexaploid seeds showed a greater difference from its parents. These DEGs
had a wide range of functions, which may account for the physiological and morphological differences
between the Brassica hexaploid and its parents. The KEGG pathway analysis revealed that hexaploid
seeds had higher levels of expression of genes involved in metabolic pathways, RNA transport
and biosynthesis of secondary metabolites, and the expression levels in the photosynthesis-related
pathways were significantly higher than those in B. rapa. Transgressive expression was the main
non-additive expression pattern of the Brassica hexaploid. The gene expression difference between
the Brassica hexaploid and its paternal parent was more significant than that with its maternal parent,
which may be due in part to the cytoplasmic and maternal effects. Moreover, transcription factor genes,
such as G2-like, MYB and mTERF, were highly expressed in hexaploid seeds, possibly promoting
their resistance to stress. Our results may provide valuable insights into the adaptation mechanisms
of polyploid plants.

Keywords: transcriptome; high-throughput sequencing; gene expression; polyploid; developing
seed; Brassica

1. Introduction

Polyploidy is a ubiquitous phenomenon in eukaryotes, resulting in important ecological and
evolutionary processes. It is believed that all the angiosperms experienced at least one polyploidization
process during evolution [1–3]. To date, more than 70% of flowering plants have been identified as
polyploids [4]. According to their origin, polyploid species can be divided into autopolyploid and
allopolyploid. Autopolyploidy results from the doubling of a diploid genome, while allopolyploidy is
due to a combination of two or more different genomes [5,6]. Generally, the presence of larger fruits,
leaves and grains in polyploid crop varieties can improve their outputs compared to those of diploids.
Because polyploid species exhibit characteristics that are adaptive to various biological and abiotic
stresses, such as drought, salinity, extreme temperatures and resistance to a variety of pathogenic
diseases, these plants are likely to adapt to future climate change [7,8]. Many crops are cultivated as
allopolyploids, including upland cotton (Gossypium hirsutum), oilseed rape (Brassica napus), and bread
wheat (Triticum aestivum) [5].

Polyploidy leads to genetic and epigenetic changes, resulting in the reprogramming of
transcriptomes, recombinant proteomes and metabolomes [1]. Genetic changes include DNA loss,
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homologous recombination, epistasis, ectopic recombination and gene conversion. Furthermore,
the epigenetic changes, including DNA methylation, small RNA-mediated gene silencing,
histone modification and transposon suppression/release, may occur at the transcriptional or
posttranscriptional level [5,9]. These changes may bring about altered gene expression in the
new allopolyploid [10,11]. Repeated copies of genes with similar or redundant functions during
polyploid formation may alter their gene expression patterns, including unequal parental contributions,
transcendental up- or down regulation and silencing [12,13]. Changes in gene expression can help
overcome incompatibility triggered by allopolyploidy [14].

Transcription factors, as a kind of important regulatory factors, play an important role in the
growth and development of plants. Transcription factors (TFs) also have an important impact
on the adaptability of polyploids, such as influencing the morphology of polyploid rapeseed [15],
the expression of non-additive genes in polyploid Arabidopsis thaliana [16] and the biosynthesis of GSL
in polyploid Brassica species [17,18].

In the early years, molecular markers and microarrays were used to study the changes in genomes
and transcriptomes [19,20]. Compared with these methods, high-throughput RNA sequencing
(RNA-seq) can provide information on whole-genome gene expression with low background
signals, more accurate quantification, a large dynamic range in expression levels and high levels of
reproducibility [21]. In recent years, RNA-seq has been frequently used to investigate the transcriptomes
of plant seeds, such as cotton [22], wheat [23], Brassica napus [24] and chrysanthemum [25].

Oilseed rape as an oil crop is widely cultivated around the world, which is essential for human
nutrition. Many scholars have previously conducted in-depth transcriptomic research on oilseed
rape, such as the leaf [15]. Synthetic polyploidy with known parents helps to explore the effects of
polyploidization by comparing an allopolyploid and its parents. Brassica is normally used as a model
system for tracking early genomic changes after allopolyploidization [26]. The trigenomic Brassica
hexaploid is derived from a cross between tetraploid and diploid species and successive genome
doubling [27]. Some studies have focused on the transcriptome changes at the early stages of embryonic
development in rape, but few have been done on the later stage of maturation in polyploid rapeseed.
We analyzed the transcriptome of seeds in a Brassica hexaploid (BBCCAA, 2n = 54) and its parents,
B. carinata (BBCC, 2n = 34) and B. rapa (AA, 2n = 20), at two stages of late maturation by RNA-seq. In our
transcriptome analysis, we studied differences in gene expression at two stages of maturation, while also
paying attention to gene function, including that related to seed dormancy, chlorophyll degradation,
hormones, color of the seed coat and so on. Several gene families associated with hexaploid stress
resistance are also discussed in this paper. The changes in the gene expression of hexaploid seeds
during two periods were of particular concern, as well as the differences between hexaploid seeds and
the two parents. Therefore, this study can help us better understand the transcriptomic changes in
seed development on account of polyploidization.

2. Results

2.1. Overview of Gene Expression in the Seeds of a Brassica Hexaploid and Its Parents

In this study, RNA samples were isolated from developing seeds of a synthetic Brassica hexaploid
and its parents at the full-size and mature stage. After sequencing, an average of 6.71 Gb nucleotides
was generated for each sample (a total of 120.8 Gb for all the 18 samples). After eliminating all adapter
sequences, ambiguous reads, duplicate sequences and low-quality reads, 805,116,806 sequence reads
were obtained from the 18 libraries of the Brassica hexaploid and its parents (Table 1).

Using an empirical cutoff value of FPKM ≥ 1, 25,433 of 40,143 genes were detected in all the
samples, 13,053 genes were co-expressed in three species at two stages and more genes were expressed
at the full-size stage in all the three species. Among the 25,433 genes (ranging from 100 to ≥3000 bp)
expressed in the Brassica hexaploid and its parents, genes with a length of 1000–1500 bp were the
richest. More genes were expressed at the full-size stage compared to the mature stage among the
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three species. The detailed statistical analysis of these expressed genes in the Brassica hexaploid and
its parents at two stages is shown in Figure 1. The average ratio of each sample was 44.34%, and the
uniform ratio between samples showed that the data between samples were comparable. As shown in
Figure 2, hierarchical clustering was conducted on all the expressed genes in the seeds of the Brassica
hexaploid and its parents at the two developmental stages, to explore the overall situation of the gene
expression. Apparently, the number of expressed genes in the three species was significantly reduced
at the mature stage compared to the full-size stage. We randomly selected ten genes in the samples to
verify the expression patterns by qRT-PCR and found that the results were consistent with the results
obtained by high-throughput sequencing (Figure 3).

Table 1. Statistics of the RNA-seq (RNA sequencing) reads of developing seeds of the Brassica hexaploid
and its parents. RS, B. rapa at the full-size stage; RM, B. rapa at the mature stage; HS, Brassica hexaploid
at the full-size stage; HM, Brassica hexaploid at the mature stage; CS, B. carinata at the full-size stage;
CM, B. carinata at the mature stage.

Species Sample Stage Clean reads Clean reads (%)

B. rapa

RS1 Full-size 44,199,458 79.60
RS2 Full-size 44,227,522 82.06
RS3 Full-size 44,335,290 82.26
RM1 Mature 44,399,710 82.38
RM2 Mature 45,242,772 81.48
RM3 Mature 45,174,524 83.82

Brassica
hexaploid

HS1 Full-size 45,063,192 78.83
HS2 Full-size 44,846,972 83.21
HS3 Full-size 44,429,210 80.01
HM1 Mature 44,641,026 88.17
HM2 Mature 45,300,322 89.47
HM3 Mature 44,793,850 88.47

B. carinata

CS1 Full-size 44,761,646 80.61
CS2 Full-size 45,066,350 83.62
CS3 Full-size 44,490,496 80.12
CM1 Mature 44,273,224 87.44
CM2 Mature 44,552,900 88.00
CM3 Mature 45,318,352 86.71
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Figure 1. Venn diagram representing the genes expressed in the Brassica hexaploid and its parents at
the full-size and mature stages. (a) Expressed genes between the Brassica hexaploid and its parents at
the full-size stage. (b) Expressed genes between the Brassica hexaploid and its parents at the mature
stage. (c) Expressed genes of B. rapa between the two stages. (d) Expressed genes of the Brassica
hexaploid between the two stages. (e) Expressed genes of B. carinata between two stages. RS, B. rapa
at the full-size stage; RM, B. rapa at the mature stage; HS, Brassica hexaploid at the full-size stage;
HM, Brassica hexaploid at the mature stage; CS, B. carinata at the full-size stage; CM, B. carinata at the
mature stage.
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Figure 3. The qRT-PCR validation of the RNA-seq. Ten genes were randomly selected to verify the
expression patterns in the six species. The x-axis stands for the name of the species and y-axis shows the
relative expression levels. Red bars stand for the gene relative expression levels by qRT-PCR, according
to the average value of each sample. Green bars represent the gene relative expression levels of the
RNA-seq. In the same group, the sample with the highest expression level was regarded as “1” to
normalize the gene expression level.
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2.2. Identification of the Differentially Expressed Genes (DEGs) of Seeds among the Brassica Hexaploid and Its
Parents at Two Developing Stages

We used the FPKM method to normalize the gene expression levels, which allows the gene
expression levels to be compared within and between samples. In this study, DEGs were defined as
genes with a fold change ≥ 5 and Padj (adjusted p value) ≤ 0.05. After screening, the number of DEGs
(Figure 4) between the Brassica hexaploid and B. rapa at both stages was greater than that between the
Brassica hexaploid and B. carinata (Tables S1 and S2). Among the DEGs between the Brassica hexaploid
and its two parents, the upregulated genes accounted for the majority in the hexaploid.
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stages, respectively. The number of upregulated and downregulated genes of each comparison group
is shown in the histogram by the magenta and blue bars, respectively.

As mentioned above, at the full-size stage, among the 3166 DEGs identified in seeds between the
Brassica hexaploid and its parent, there were 2085 DEGs between the Brassica hexaploid and B. rapa and
1265 DEGs between the Brassica hexaploid and B. carinata, respectively. By comparing the absolute
foldchange of the expression levels for the 3166 DEGs, 1802 (56.9%) genes were more different in the
comparison between the Brassica hexaploid and B. rapa than the comparison between the Brassica
hexaploid and B. carinata, 1089 (34.7%) genes were more different between the Brassica hexaploid
and B. carinata than between the Brassica hexaploid and B. rapa and there were 266 (8.4%) DEGs
that showed approximately the same degree of absolute foldchange between the Brassica hexaploid
and its two parents. Likewise, at the mature stage, among the 3893 DEGs identified between the
Brassica hexaploid and its parent, there were 2649 DEGs between the Brassica hexaploid and B. rapa and
1491 DEGs between the Brassica hexaploid and B. carinata, respectively. By comparing the absolute
foldchange of gene expression, there were 2202 (56.6%), 1331 (34.2%) and 360 (9.2%) DEGs in the same
category as above. It can be seen that, at the two developing stages, the DEGs between the Brassica
hexaploid seeds and the parents were more different from B. rapa in number and absolute foldchange.
The overall expression of the DEGs in the Brassica hexaploid was more different from the paternal
parents B. rapa. The cytoplasmic and maternal effects may explain this maternal-biased phenomenon.
Cytoplasm–nuclear interactions may affect the parental genome, leading to differences in the direction
and range of the genome and transcriptome changes.

Changes in gene expression were also observed during different developmental stages of the
seeds, and most DEGs were downregulated at the mature stage compared to the full-size stage
(Table S3). To classify patterns of coregulation of the DEGs during seed development in the three
species, the expression profiles of these DEGs were clustered using Cluster 3.0 software. The FPKM
value was transformed as the binary logarithm. As shown in Figure 5, the DEGs between the seed
development stages and species were separately visualized in a different hierarchical clustering.
The hierarchical clustering showed a gene expression pattern of 10,564 DEGs (Table S3) identified
in the comparison of the three species at two stages. This indicated that the majority of the genes
were downregulated at the mature stage, and they were extremely similar among the three species.
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The decrease in transcriptional activity was in line with the decline in most of the physiological
activities of the seeds.
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hexaploid and its parents based on log ratio FPKM data. Red represents upregulation expression
and green represent downregulation at the full-size stage relative to the mature stage. Each column
represents an experimental condition (e.g., HS vs. HM), and each row represents a gene.

2.3. Functional Annotations of the DEGs of the Seeds between the Brassica Hexaploid and Its Parents at
Two Stages

To analyze the functional differences of the expressed genes in the seeds, all DEGs were GO
annotated and integrated according to the different comparison groups. WEGO was applied to the
classify DEGs between the Brassica hexaploid and its parents at the full-size stage and the mature stage,
respectively. A total of 10, 8 and 18 GO terms were in the category of cellular component, molecular
function and biological process, respectively (Figure 6a,b). In the “cellular component” category, “cell”,
“cell part” and “organelle” were the dominant terms, and in “molecular function”, “catalytic process”
and “binding” were the main terms. In the “biological process” category, “metabolic process” and
“cellular process” were highly represented, showing that the seeds had massive metabolic activity.
In addition, “response to stimulus” was also abundant, indicating the positive protection of the seeds
against biological or abiotic stress. The upregulated and downregulated DEGs between the Brassica
hexaploid and its parents at two stages are shown in Figure S1. A total of 9, 9 and 18 terms were in the
cellular component, molecule function and biological process, respectively.

Each of the three species was compared between two successive stages as well (Figure 6c).
According to the three main categories, 13, 9 and 19 terms were separately shown in the cellular
component, molecular function and biological process. In the cellular component category, “cell”,
“cell part”, “organelle” and “membrane” were enriched, and in the molecular function category,
“catalytic process” and “binding” were dominant terms. In the biological process category,
“metabolic process”, “cellular process” and “response to stimulus” were highly represented again.
GO analysis of the up- and downregulated DEGs between the full-size and mature stage in the
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hexaploid is shown in Figure 6d. The upregulated genes account for the majority of each GO term.
In the biological process category, seven out of 18 terms showed statistically significant differences
between the two stages, including “cellular process”, “response to stimulus” and “reproduction”.
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Figure 6. GO classifications of the DEGs. (a) GO classification of 3166 DEGs between the Brassica
hexaploid and its parents at the full-size stage. (b) GO classification of the 3893 DEGs between the
Brassica hexaploid and its parents at the mature stage. (c) GO classification of the 10,564 DEGs between
the two developing stages in three species. (d) GO analysis of the upregulated and downregulated genes
between the two stages in the Brassica hexaploid. An asterisk (*) stands for a statistically significant
difference, with a p ≤ 0.05.

To identify genes involved in the significantly enriched metabolic or signal transduction pathways,
all DEGs were mapped to reference pathways in KEGG (http://www.genome.ad.jp/kegg/). At the
full-size stage, between the Brassica hexaploid and B. rapa, 949 DEGs were mapped to 126 pathways,
and between the Brassica hexaploid and B. carinata, 533 DEGs were mapped to 121 pathways. Based on
FPKM, 76 pathways showed upregulation, but only six pathways showed downregulation in Brassica
hexaploid seeds compared to its two parents. Among these pathways, metabolic pathways, biosynthesis
of amino acids, RNA transport and ribosome exhibited considerable upregulation in the hexaploid
compared to the parents. At the mature seed stage, between the Brassica hexaploid and B. rapa,
1131 DEGs were mapped to 128 pathways, and between the Brassica hexaploid and B. carinata,
605 DEGs were mapped to 121 pathways. Among these pathways, 64 pathways and seven pathways

http://www.genome.ad.jp/kegg/
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performed upregulation and downregulation in the Brassica hexaploid seeds compared with its two
parents, respectively. RNA transport, metabolic pathways, biosynthesis of secondary metabolites,
phenylpropanoid biosynthesis and galactose metabolism were sharply upregulated in the hexaploid
compared to parents at the mature seed stage. According to the criteria of a Q value ≤ 0.05, the selected
pathways were defined as significant enrichment pathways. Comparing the hexaploid with the maternal
parent B. rapa, the main significant enrichment pathways were mismatch repair, nucleotide excision
repair, DNA replication and homologous recombination. DEGs with various metabolic processes may
greatly influence the physiological and morphological changes in the Brassica hexaploid seeds. In the
comparison of the hexaploid and paternal parent B. carinata, pathways such as biosynthesis of secondary
metabolites, flavonoid biosynthesis, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and
gingerol biosynthesis were significantly enriched. The KEGG pathways considerably altering between
the Brassica hexaploid and its parents at two stages are summarized in Table 2. This table shows that
the photosynthesis-related pathways, such as “photosynthesis—antenna proteins”, “carbon fixation in
photosynthetic organisms” and “photosynthesis”, increased sharply in the hexaploid seeds relative to
B. rapa at the full-size stage, predicting that the hexaploid may be more effective than the paternal parent
in terms of photosynthesis. Moreover, Table S4 shows the KEGG pathways that considerably changed
in the Brassica hexaploid and its parents between the two stages. Throughout these two periods,
the metabolic pathways showing the most significant upregulation included other glycan degradation,
biosynthesis of secondary metabolites, peroxisome, etc. Conversely, the pathways showing the most
significant downregulation included RNA transport, protein export, pyrimidine metabolism and seven
other pathways.

Table 2. The considerably changed KEGG pathways between the Brassica hexaploid and its parents at
the two stages based on FPKM (numbers in brackets). The number before the parentheses represents
the rank of the comparison group in all the comparison groups.

KEGG pathway RS vs. HS CS vs. HS RM vs.
HM CM vs. HM

Metabolic pathways 4 (18,227) 2 (59,265) 1 (104,614) 3 (33,689)

RNA transport 3 (8970) 2 (46,110) 1 (132,455) 4 (2561)

Biosynthesis of secondary metabolites 4 (−14,014) 3 (37,358) 2 (86,457) 1 (195,966)

Fatty acid biosynthesis 4 (−1351) 1 (8954) 2 (263) 3 (−489)

Photosynthesis 1 (7784) 3 (670) 2 (873) 4 (85)

Photosynthesis—antenna proteins 1 (45,663) 3 (617) 2 (749) 4 (−1087)

Carbon fixation in photosynthetic organisms 1 (12,260) 2 (3551) 3 (2307) 4 (102)

Ribosome 3 (6016) 1 (9419) 4 (4067) 2 (8488)

Carbon metabolism 1 (15,852) 3 (7677) 2 (15,470) 4 (1305)

Plant hormone signal transduction 4 (−4483) 2 (2384) 3 (−533) 1 (5448)

Biosynthesis of amino acids 2 (9042) 3 (9019) 1 (11,309) 4 (912)

Flavonoid biosynthesis (1338) (1264) (1677) (1357)

Isoflavonoid biosynthesis (−725) (−18) (1617) (532)

Protein processing in endoplasmic reticulum (−15,263) (−3309) (124,955) (−64,763)

2.4. Analysis of Transcription Factor (TF) Gene Expression in Seeds of the Brassica Hexaploid and Its Parents

Using HMMSEARCH [28] to align the ORF to the transcription factor protein domain (data
from PlntfDB), DEGs were identified for its ability to encode TF based on the characteristics of
the transcription factor family (Table S5). Most of the putative differentially expressed TF genes
were downregulated in the Brassica hexaploid compared to B. rapa. Conversely, more genes were
upregulated in the Brassica hexaploid than in B. carinata. Comparing the Brassica hexaploid with B. rapa
and B. carinata at the full-size stage, 175 putative TF genes were identified, belonging to 38 families.
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According to FPKM, there were nine putative TF gene families that expressed the highest level in
the Brassica hexaploid seeds at the full-size stage relative to the parents, including ARR-B, bHLH,
C2C2-Dof, G2-like, HSF, mTERF, MYB, Trihelix and ULT gene families. In addition, the C2C2-GATA
family had the lowest expression level in the Brassica hexaploid full-size seeds. At the mature stage, the
comparison between the Brassica hexaploid and its parents identified 184 putative TF genes distributed
in 40 families. The ABI3VP1, C2C2-Dof, G2-like, mTERF, MYB and MYB-related gene families showed the
most abundant expression in the Brassica hexaploid seeds at the mature stage compared to its parents,
while the AP2-EREBP, bHLH and NAC gene families expressed the lowest. In general, the TF gene
families of C2C2-Dof, G2-like, mTERF and MYB may offer significant advantages in the late maturity of
the Brassica hexaploid seeds compared to B. rapa and B. carinata. Among the comparisons between the
full-size and mature stage of seeds in the Brassica hexaploid, 490 putative TF genes showed different
expression, belonging to 47 TF gene families. Among the TF gene families, 24 were downregulated
and 23 were upregulated based on FPKM.

2.5. Non-Additive Expressed Genes in Brassica Hexaploid Seeds of Two Stages

To select the non-additive expressed genes in Brassica hexaploid seeds, the expression levels of all
the genes in hexaploid were compared with the mid-parent value (MPV). In this study, genes with a
fold change ≥ 2 and Padj ≤ 0.05 were determined as non-additive genes, while the rest of the genes
were additive genes (Table S6). At the full-size stage, 378 genes, accounting for 1.79% of the total
genes, were determined to be non-additive in the Brassica hexaploid. According to the relationship
between the Brassica hexaploid and parental expression levels, these genes were divided into ten
expression patterns (Figure 7a) using the method of Yoo et al. [29]. In these patterns, “ELD” stands for
expression-level dominance. Among these non-additive genes, a large number of genes appeared to
be a transgressive expression (n = 298), significantly more than the parental dominance part (n = 80).
Equally, 1011 genes at the mature stage, accounting for 5.89%, were non-additively expressed in the
Brassica hexaploid. Among these non-additive genes, a total of 623 genes showed the transgressive
expression pattern, and the remaining 388 genes showed the parental dominance pattern. Apparently,
throughout the non-additive genes in these two periods of Brassica hexaploid seeds, the genes with
a transgressive expression pattern appeared more extensive. GO analysis (Figure 7b,c) found that
the non-additive genes at each developing stage were enriched in the process of metabolic process,
cellular process and response to stimuli.
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Figure 7. Expression patterns of non-additive Brassica hexaploid genes at the full-size and mature stage.
(a) Non-additive genes between the Brassica hexaploid and its paternal parent B. rapa and maternal
parent B. carinata at the two stages were classified into 10 patterns according to the expression levels,
respectively. (b,c) Enriched GO terms relative to the “biological process” of non-additive Brassica
hexaploid genes at the full-size stage and mature stage, respectively.
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3. Discussion

In recent years, extensive research has been done on allopolyploid transcriptomes, but little is
known about the transcriptome of Brassica allopolyploid seeds at the late maturity stage. In this study,
we investigated the developing seeds of a synthetic Brassica hexaploid and its parents by RNA-seq.
We systematically analyzed the identified differentially expressed genes and predicted the adaptive
alternations of gene expression in Brassica hexaploid seeds through functional annotation and TF
gene prediction.

3.1. DEGs May Play an Important Role in Seed Development and Maturation in a Brassica Hexaploid

In general, polyploids have an increase in yield compared to diploids. Furthermore, polyploids
show better tolerance against stress [7]. In our study, we delved into the alternations between Brassica
hexaploid seeds and its parents to explore the adaptive changes of polyploids at the transcriptome level.
Photosynthesis is the basis of crop yield formation as more than 90% of the dry matter in crops is directly
derived from photosynthesis [30]. As mentioned above, the expression level of photosynthesis-related
pathways was significantly higher in the hexaploid than in B. rapa. Among these DEGs, 62 of 67 genes
showed upregulation in the Brassica hexaploid relative to B. rapa, suggesting that the hexaploid might
be more effective in photosynthesis than the paternal parent. In the comparison between the Brassica
hexaploid and B. rapa, all 34 genes classified as photosynthesis-related processes in GO showed
higher expression in the hexaploid. This result suggests that photosynthesis may play an important
role in the process of polyploidization. The gene expression levels in the metabolic pathways and
biosynthesis of secondary metabolites were significantly higher in hexaploid seeds compared to the
parents, suggesting that they may have advantages in metabolic activity.

In the later stages of embryogenesis, the seeds enter a dormant phase with dehydration,
decomposition of photosynthetic organs and chlorophyll degradation [31]. The changes in RNA
transport, protein export, pyrimidine metabolism and other metabolic pathways in hexaploid seed
maturation were similar to the maturation process of the parent seeds. The expression of these genes was
significantly reduced, indicating that the transcriptional activity was significantly reduced in the later
stage of seed maturation, which was consistent with the decrease in the number of genes expressed at the
mature stage. Three DEGs involved in “postembryonic development” (GO: 0009791) were abundantly
expressed at the mature stage. Bra009229 encodes an 18 kDa seed maturation protein, Bra004981 encodes
a late seed maturation protein P8B6 and Bra000173 encodes a late embryogenesis-abundant protein.
Several genes were detected in the “embryo development end in seed dormancy” (GO: 0009793)
during the maturation of the hexaploid seeds. Among them, Bra011036 showed a high level of
expression during the early and mature stages of maturation, while other genes, such as Bra040894,
Bra033375 and Bra004642, were significantly upregulated at the mature stage. All of these DEGs also
played a role in “response to abscisic acid” (GO: 0009737). Bra009112, Bra006460, Bra005113 and
Bra034159 were predicted to encode a dehydration-responsive, element-binding protein, which may
play roles in the dehydration process at later maturity of hexaploid seeds. Chlorophyll (Chl) degrades
rapidly during the late maturity of the seed, resulting in seed-free Chl [32], an important reporter for
seed maturation. Many studies proved that the NYEs-mediated chlorophyll degradation plays an
important role in seed maturation and seed germination [33,34]. We found two important putative
genes, Bra019346 and Bra013656, which may be essential for the degradation of Chl in our materials.
These two genes are homologous to NYE1 in Arabidopsis thaliana, indicating a distinct upregulation
during the morphological maturity of the Brassica hexaploid and its parents. Bra013656 received a
GO annotation of “plastid” (GO:0009536) and “porphyrin-containing compound catabolic process”
(GO:0006787); Bra019346 also received the “plastid” (GO:0009536) annotation and was predicted as
“protein STAY-GREEN 1, chloroplastic” in the NR annotation. It is possible that they are critical for the
Chl degradation in the Brassica hexaploid, indicating that seeds may remain in chlorophyll degradation
continuously during maturation.
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The raffinose family oligosaccharides (RFO) are one of the important indicators for the beginning
of late maturation in seeds [35]. The regulation of RFO accumulation is regulated by the transcription
of abscisic acid (ABA) and gibberellic acid (GA). In our study, Bra013248 (ABI3), Bra005287 and
Bra017251 (ABI5) in the Brassica hexaploid and its parents showed high expression levels. The ABI5
was upregulated at the mature stage compared to the full-size stage, consistently with the expression
patterns of genes involved in oligosaccharide biosynthesis, indicating that ABA may play an important
role in RFO accumulation during seed maturation. The accumulation of late embryogenesis abundant
proteins (LEA protein) is also an important feature of seed maturation, which can improve plant
resistance, especially dehydration resistance [36]. The synthesis of the LEA protein is induced by seed
maturation signals, drought and salt stress, as well as ABA signaling. In the Brassica hexaploid and its
parents, most of the predicted genes associated with the LEA protein were expressed in high abundance
and were upregulated at the mature stage, in accordance with the expression of the ABA-related genes.

3.2. Putative Transcriptome Factor Genes May Promote Better Allohexaploid Adaptation

As an important regulator, transcription factors play an important role in plant growth and
development. A transcriptome study using Brassica hexaploid leaves as materials found that the
TCP and ARF gene families may have important effects on the morphology of the polyploids [15].
Transcription factors may also influence the non-additive gene expression in synthesized allotetraploid
Arabidopsis [16]. As mentioned above, several putative TF gene families were significantly altered in
the hexaploid seeds, indicating that they might be important for the development of hexaploid seeds.

The TF gene families (G2-like, MYB and mTERF) with the highest expression level in the
hexaploid seeds are worth noticing. The G2-like gene family regulates chloroplast development
in a variety of plant species. Studies have found that a pair of G2-like genes regulates chloroplast
development in Arabidopsis [37]. The change in the expression level of a putative G2-like gene
family in the Brassica hexaploid may affect the chloroplast development of its seeds. The MYB,
ubiquitous in plants, is a transcription factor related to the regulation of plant growth and development,
physiological metabolism, cell morphology and pattern building. For example, MYB transcription
factors act as positive regulators in disease resistance, activating disease-resistant defense responses
or regulating programmed cell death in plants, thereby increasing plant resistance [38]. In addition,
two TT2-type MYB transcription factors were identified to be involved in the regulation of
proanthocyanidin biosynthesis in a tetraploid cotton (Gossypium hirsutum) [39]. In Brassica hexaploid
seeds, the putative MYB gene families had a higher level of expression compared to its parents at
both stages. An upregulated DEG Bra039763 between the hexaploid and B. rapa at the full-size seed
stage was also involved in an anthocyanin-containing compound biosynthetic process by the GO
annotation. Other genes, such as Bra039763 and Bra021708, were related to plant hormone signaling.
Among these putative MYB genes, Bra002042 was upregulated in the hexaploid compared with B. rapa
at the full-size and mature stages. Conversely, Bra007371 and Bra001378 were downregulated. Similarly,
eight putative TF genes, such as Bra16893, Bra041096 and Bra001377, were upregulated in the hexaploid
seeds compared to B. carinata at both stages. These results indicate that Brassica hexaploid seeds might
have different directions of transcriptomic changes compared to its two parents. The mTERF gene
family is localized to the mitochondria or chloroplasts in plants, affecting developmental morphology
or stress tolerance in plant [40]. This family has been confirmed to affect the abiotic stress response
and regulate chloroplast function in Arabidopsis [41,42]. In hexaploid seeds, all six identified putative
mTERF genes showed higher levels of expression than the parents at both stages, suggesting that they
may have an important role in the seed development of the hexaploid.

Other TF gene families that showed increased expression compared to the paternal or maternal
parents were also worth exploring. The bHLH transcription factor is a large group of plant transcription
factor families, which plays an important role in plant physiological metabolism, growth and
development and stress response [43]. Bra028443, upregulated in the hexaploid compared with
B. rapa, was involved in the GO annotation of “response to brassinosteroid”, “cell morphogenesis”,
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“regulation of timing of meristematic phase transition”, etc. Similarly, Bra029088 was related
to “postembryonic development”. The C2C2-Dof gene family is also one of the most important
transcriptional regulators in higher plants and is involved in plant growth, development and response
to abiotic stress. Its important role in abiotic stress response was determined in Chinese cabbage [44].
These putative C2C2-Dof genes showed a greater expression compared to that of the maternal parent
B. carinata. Heat shock transcription factor (HSF) activates the heat stress response through the specific
binding of organisms to heat shock elements (HSEs) under heat stress and other stress conditions,
initiating the expression of downstream HSP and inducing heat shock [45]. Several identified putative
TF genes showed “response to stimulus” on the GO annotation: Bra007739 and Bra032023 were
upregulated in the hexaploid compared to B. rapa, and Bra016998 was upregulated in the hexaploid
compared to B. carinata. Increased expression of the HSF gene family may also contribute to the
advancement of polyploid stress resistance. The WRKY gene family is a unique transcription factor
in plants. Studies in Arabidopsis showed that this family is widely involved in the development and
aging of plant organs, response to biological and abiotic stresses, as well as a series of physiological
activities [46]. Moreover, the expression pattern of the WRKY gene families in B. napus showed
substantial changes under stress conditions, also indicating that the WRKY genes are important for
response to an environmental stress stimulus [47]. The expression level of the WRKY family genes in
the Brassica hexaploid decreased relative to B. rapa but increased relative to B. carinata at both stages,
suggesting that this family is more inclined to have an additive pattern in the hexaploid compared
to its parents. These gene families may enhance the resistance of the hexaploid seeds and play an
important role in the seed development and adaptation of the hexaploid.

3.3. Differential Expression of Some Genes Associated with the Synthesis of Substances Such as Flavonoids May
Affect the Seed Coat Color of Mature Seeds

We found that the coat color of the Brassica hexaploid mature seed is closer to the B. carinata and
distinctly darker than the B. rapa seed. Among them, the paternal parent shows yellow, while the
hexaploid and its maternal parent are brown. Proanthocyanidins (PAs) are the main flavonoids that
affect the color of the seed coat of Brassica species, which are oligomeric and polymeric end-products
synthesized via flavonoid biosynthesis pathways [48,49]. In the flavonoid biosynthetic pathway,
genes such as CHI, CHS and F3H participate in the production of a common precursor (dihydroflavonol)
and are named early biosynthetic genes (EBGs) [43]. In addition, the downstream genes of this pathway
(DFR, LDOX and ANR) are often named late-stage biosynthetic genes (LBG) [50]. Most of the related
genes have been detected as affecting seed coat pigmentation. In the Brassicaceae, PAs accumulate in
the endodermis of the seed coat, resulting in the formation of brown seed coats [51]. The expression
levels of these genes related to flavonoids in B. rapa at the full-size stage was greater than that in the
Brassica hexaploid. While expression of these genes shows a higher level in the Brassica hexaploid than
in B. rapa, it means the expression of flavonoid-related genes has undergone great changes during
the later stages of maturation, and this difference in expression at the later stages may have caused a
difference in the color of the seed coat.

Previous studies have shown that different rapeseed may have their own special gene control
seed coat color, such as TT10 (TRANSPARENT TESTA10) [52] and BnaC.TT2 [53] in B. napus, BrTT8 [54]
and BrTT1 [55] in B. rapa as well as the TT8 genes [56] and Bra036828 [57] in B. juncea. Of them,
Bra036828 may be the only flavonoid biosynthetic gene and the rest are regulatory genes; this indicates
that the color of the seed coat is mainly controlled by regulatory genes instead of structural genes.
In our study, we found that the expression of Bra036828 in the Brassica hexaploid was lower than
the two parents in the two periods, and perhaps this was due to the above reason. We found the
homologue gene Bra020720 of TT10, Bra025512 and Bra028491 of TT2 was significantly higher in the
hexaploid than its two parents, which may be one of the reasons for the deeper color of the seed coat of
the hexaploid seed.
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4. Materials and Methods

4.1. Plant Materials

The three plant materials, namely, the tenth generation synthesized Brassica hexaploid (BBCCAA,
2n = 54), its paternal parent B. rapa (cultivar name, BaiguotianYC, AA, 2n = 20) and its maternal parent
B. carinata (CGN03955, BBCC, 2n = 34), were planted in the greenhouse of Wuhan University, China.
The Brassica hexaploid used in this study was described by Tian et al. (2010) [27]. Figure 8 shows the
morphology of the Brassica hexaploid and its parent grown for 6 months. Flowers were bagged before
blossoming and pollinated artificially on the first day postanthesis. Their filled seeds were collected
at two developmental stages, the full-size stage (40 day after pollination) and mature stage (55 day
after pollination), and each sample containing 50 seeds was taken from one plant. Three biological
replicates were taken from each stage of the three materials. Seeds (Figure 9) were flash frozen and
stored at −80◦C for RNA extraction.
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4.2. RNA Extraction, cDNA Library Construction and Illumina Sequencing

Total RNAs were extracted from two-staged seeds of the three materials using TRIzol reagent
(Invitrogen, Burlington, ON, Canada) according to the manufacturer’s protocol and treated with
RNase-free DNase I (Fermentas, Burlington, Canada). Purified RNAs were used to construct the
RNA-seq library. In this study, the RNA sequencing library was sequenced by Illumina HiSeqTM
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4000. Adapter sequences and low-quality sequences were filtered from the raw reads by SOAPnuke,
and clean reads were mapped to the B. rapa genome v1.5 sequences (http://brassicadb.org/brad/datasets/
pub/BrassicaceaeGenome/Brassica_rapa/Bra_Chromosome_V1.5/) using HISAT (http://www.ccb.jhu.
edu/software/hisat). After alignment with the reference genome, CPC software was used to predict the
potential of coding for new genes.

4.3. Normalized Expression Levels of Genes and Gene Annotation

For gene expression analysis, RSEM (http://deweylab.biostat.wisc.edu/RSEM) was used to calculate
the quantity of gene expression. The expression level of a gene was normalized by the FPKM (fragments
per kilobase per million mapped fragments). The GO (gene ontology) and KEGG annotation was
performed by the Blast2GO [58] and KEGG database [59], respectively. WEGO 2.0 [60] was used
for GO functional classification as well as for plotting the distribution of the functions. In addition,
iDEP.85 was used (http://bioinformatics.sdstate.edu/idep/) to generate a hierarchical clustering for the
co-expressed genes of the Brassica hexaploid and its parents seeds.

4.4. Analysis of Differentially Expressed Genes (DEGs)

The R package DEGseq was used to determine the DEGs. The DEseq2 algorithm for differential
gene detection is based on the negative binomial distribution principle [61]. Genes with a fold change
≥ 5 and Padj (adjusted P value) ≤ 0.05 were defined as DEGs. GO and KEGG terms were determined
for DEGs. To classify DEGs with similar patterns, we used Cluster 3.0 software and Java TreeView
with Pearson correlations to generate a hierarchical clustering.

4.5. Quantitative Real-Time PCR

To verify the accuracy of the high-throughput sequencing, ten genes (Bra005287, Bra013832,
Bra007100, Bra027057, Bra001257, Bra008589, Bra010283, Bra013872, Bra020639 and Bra019774) were
randomly selected for qRT-PCR. The primer sequences were designed by Primer5 software and
are listed in Table S7. The qRT-PCR was performed on an ABI StepOne™ Real-Time PCR System
(Applied Biosystems) using SYBR Green I as a fluorescent detection dye. ACT2/7 was used as the
internal reference control to normalize the results. All reactions were performed using one biological
sample with three technical replicates. The accuracy of the RNA-Seq was evaluated by comparing the
relative expression of genes by qRT-PCR.

5. Conclusions

In this study, we analyzed the gene expression differences between the newly synthesized Brassica
hexaploid and its parents, and found that the gene of the hexaploid seeds has undergone a wide
range of changes in expression patterns relative to the parents. DEGs are involved in a wide range
of biological functions, which may contribute to the environmental adaptability of the hexaploid.
The analysis of the KEGG pathway and TF genes show that hexaploid may have acquired a better
ability of substance metabolism synthesis and resistance. Some important genes that may be related to
the late maturation of the hexaploid and its parents’ seeds were predicted and analyzed. In the study,
a large amount of information was generated. On this basis, important functional or pathway-related
genes can be selected for study, and phenotypic monitoring, such as plant hormones, are worthy of
further discussion. Our findings may provide a new perspective for polyploid evolution mechanisms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/9/1141/s1,
Figure S1: GO analysis of the upregulated and downregulated genes between the Brassica hexaploid and its
parents at two stages; Table S1: A list of the 3166 differentially expressed genes between the Brassica hexaploid and
its parents at the full-size stage; Table S2: A list of the 3893 differentially expressed genes between the Brassica
hexaploid and its parents at the mature stage; Table S3: A list of 10,564 differentially expressed genes between two
developing stages in the Brassica hexaploid and its parents; Table S4: The considerably changed KEGG pathways
between the two stages in the Brassica hexaploid and its parents; Table S5: A list of the non-additive genes of the
Brassica hexaploid compared to its parents; Table S6: A list of putative TF genes of the DEGs among the Brassica
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hexaploid and its parents at two stages; Table S7: Primers used in the qRT-PCR analysis of gene expression in the
Brassica hexaploid and its parents, and ACT2/7 is used as the internal control to standardize the results. All raw
RNA-seq data were submitted to the Sequence Read Archive (https://trace.ncbi.nlm.nih.gov/Traces/sra/) in NCBI
under the BioProject ID code PRJNA482739, and accession number SRR7589740 to SRR7589757.
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