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Abstract

Effective systems for the analysis of molecular data are fundamental for monitoring the spread of infectious diseases and
studying pathogen evolution. The rapid identification of emerging viral strains, and/or genetic variants potentially
associated with novel phenotypic features is one of the most important objectives of genomic surveillance of human
pathogens and represents one of the first lines of defense for the control of their spread. During the COVID 19 pandemic,
several taxonomic frameworks have been proposed for the classification of SARS-Cov-2 isolates. These systems, which are
typically based on phylogenetic approaches, represent essential tools for epidemiological studies as well as contributing
to the study of the origin of the outbreak. Here, we propose an alternative, reproducible, and transparent phenetic
method to study changes in SARS-CoV-2 genomic diversity over time. We suggest that our approach can complement
other systems and facilitate the identification of biologically relevant variants in the viral genome. To demonstrate the
validity of our approach, we present comparative genomic analyses of more than 175,000 genomes. Our method
delineates 22 distinct SARS-CoV-2 haplogroups, which, based on the distribution of high-frequency genetic variants,
fall into four major macrohaplogroups. We highlight biased spatiotemporal distributions of SARS-CoV-2 genetic profiles
and show that seven of the 22 haplogroups (and of all of the four haplogroup clusters) showed a broad geographic
distribution within China by the time the outbreak was widely recognized—suggesting early emergence and widespread
cryptic circulation of the virus well before its isolation in January 2020. General patterns of genomic variability are
remarkably similar within all major SARS-CoV-2 haplogroups, with UTRs consistently exhibiting the greatest variability,
with s2m, a conserved secondary structure element of unknown function in the 30-UTR of the viral genome showing
evidence of a functional shift. Although several polymorphic sites that are specific to one or more haplogroups were
predicted to be under positive or negative selection, overall our analyses suggest that the emergence of novel types is
unlikely to be driven by convergent evolution and independent fixation of advantageous substitutions, or by selection of
recombined strains. In the absence of extensive clinical metadata for most available genome sequences, and in the
context of extensive geographic and temporal biases in the sampling, many questions regarding the evolution and clinical
characteristics of SARS-CoV-2 isolates remain open. However, our data indicate that the approach outlined here can be
usefully employed in the identification of candidate SARS-CoV-2 genetic variants of clinical and epidemiological
importance.
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Introduction
The ongoing Coronavirus disease 2019 (COVID-19) pandemic
(Poon and Peiris 2020) poses the greatest global health and
socioeconomic threat since World War II. The first case of
COVID-19 was reported in Wuhan city, Hubei province,
China, in late December 2019 (Zhou et al. 2020), although
retrospective analyses have placed the onset as early as
December 1 (Duchene et al. 2020), and other, sometimes
controversial, studies indicate widespread distribution of

the causal agent significantly earlier (Apolone et al. 2020;
Deslandes et al. 2020; La Rosa et al. 2020).

At the time of writing, COVID-19 has affected more than
200 countries worldwide, with more than 65 million con-
firmed individual infections and a death toll in excess of 1.5
million. Varying criteria for reporting COVID-19-related
deaths, the fact that very mild or asymptomatic infections
can often go undetected, differences in testing strategies, and
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other demographic factors (Dowd et al. 2020; Lavezzo et al.
2020; Niedzwiedz et al. 2020), suggest that both these figures
are likely to represent substantial underestimates of its
worldwide impact. The first complete genome sequences
of the viral pathogen were determined in early January
2020 by second generation metatranscriptomic sequencing
(Wu et al. 2020), allowing the rapid development of diagnos-
tic tests (Corman et al. 2020) and the development of mo-
lecular monitoring strategies (Qiang et al. 2020).

The viral genome is approximately 30.000 nt in size and
shows high similarity (�79%) with SARS-CoV-1 (Lu et al.
2020), a beta-coronavirus of the subgenus Sarbecovirus, and
the causal agent of a large scale epidemic of viral pneumonia
(Severe Acute Respiratory Syndrome, SARS) that affected
China and other 25 countries in 2003 and 2004 (Vijayanand
et al. 2004). The International Committee on Taxonomy of
Viruses (ICTV) designated the novel pathogen SARS-CoV-2.
Phylogenetic analyses have assigned SARS-CoV-2 to the
Severe acute respiratory syndrome-related coronavirus
(SARSr-CoV) group, where it forms a relatively distant sister
group to SARS-CoV-1, interleaved with various SARSr-CoVs
isolated from nonhuman mammalian species (Coronaviridae
Study Group of the International Committee on Taxonomy
of Viruses 2020).

SARS-CoV-2 shows the highest levels of genome identity
(96%) with a bat SARSr-CoV denoted RaTG13, which was
isolated in the Yunnan province in 2013 (Zhou et al. 2020).
Despite this sequence similarity, SARS-CoV-2 differs from
RaTG13 in several key features. Arguably, the most important
of these is the presence of a polybasic furin cleavage site
insertion (residues PRRA) at the junction of the S1 and S2
subunits of the Spike protein (Coutard et al. 2020). This in-
sertion, which may increase the infectivity of the virus, is not
present in related beta-coronaviruses, although similar poly-
basic insertions are observed in other human coronaviruses,
including HCoV-HKU1, as well as in highly pathogenic strains
of avian influenza virus (Nao et al. 2017). Additionally, the
RBD (recognition binding domain) of the SARS-CoV-2 spike
protein is significantly more similar (97% identity) to that of
SARSr-CoVs isolated from specimens of Malayan pangolins
(Manis javanica) illegally imported into southern China
(Guangdong and Guangxi provinces) than to the RDB of
RaTG13 (89% identity) suggesting that recombination in pan-
golins or other mammalian “intermediate” or “amplifying”
hosts may have predated human transmission (Lam et al.
2020; Wong et al. 2020).

As the COVID-19 pandemic has progressed, the number of
viral isolates for which genomic sequences are available has
increased substantially and in excess of 175.000 viral genomes
are currently publicly available (EpiCoV Data Curation Team
2020). As expected, considering its recent emergence and the
reportedly low mutation rates of coronaviruses in general
(Sanju�an et al. 2010), SARS-CoV-2 genomes show low levels
of genetic diversity (average pairwise identity of 99.99%).
These considerations notwithstanding, phylogenetically dis-
tinct groups of SARS-CoV-2 isolates have been identified
(Benvenuto et al. 2020; Ceraolo and Giorgi 2020; Forster
et al. 2020; Gudbjartsson et al. 2020; Phan 2020; Walker

et al. 2020) and several of these clusters show highly biased
geographic distributions. Many independent studies have
tentatively linked particular genomic signatures to in-
creased/decreased virulence or possible adaptation to human
hosts (Grubaugh et al. 2020; Korber et al. 2020; Pachetti et al.
2020). Although, in the absence of careful validation, it is
impossible to determine whether emerging SARS-CoV-2 ge-
netic variants are of physiological relevance and indeed reflect
adaptive evolution rather than being neutral characters de-
rived from genetic drift and founder effects, the importance
of establishing simple and reproducible systems for the de-
lineation of genetic diversity in human pathogens is widely
acknowledged (Deng et al. 2016; Armstrong et al. 2019).

Currently, the GISAID (Shu and McCauley 2017) and
Netxstrain portals (Hadfield et al. 2018), represent the most
comprehensive repositories of SARS-CoV-2 genome sequen-
ces, and thus constitute reference points for molecular epi-
demiological, population genetics, and comparative genomic
studies of the novel pathogen. Both systems provide tools for
comparative and phylogenetic analyses, as well as instru-
ments dedicated to genome and variant annotation.
Additionally, Nexstrain provides resources for temporo-
spatial graphical data representation. Other dedicated com-
putational infrastructures, including the EBI COVID-19 Data
Portal (https://www.covid19dataportal.org/) and the SARS-
CoV-2 resource portal (https://www.ncbi.nlm.nih.gov/sars-
cov-2/), also facilitate access and retrieval of COVID-19-
related data including raw sequences reads. Although all these
platforms constitute invaluable resources for the SARS-CoV-2
research community, the exponential expansion of the viral
population during the current pandemic, as well as notable
temporo-geographic biases in sampling, low-sequence vari-
ability, recombination (de Wit et al. 2016; Boni et al. 2020;
Phan 2020), and limited metadata associated with many
sequences pose significant challenges for the rapid and effec-
tive identification of relevant genomic variants and viral hap-
lotypes and might potentially hinder pure phylogenetics
approaches. Additionally, although molecular phylogenetic
methods are clearly the most suitable approach for viral trans-
mission tracing from genomic sequences, they can be com-
putationally burdensome and the optimization of
substitution models as well as the interpretation of complex
topologies imply a requirement for a certain level of technical
expertise. Moreover, widespread variation in allele frequencies
is normally observed during an outbreak and requires ad hoc
analyses to identify minimum levels of divergence required to
delineate different clusters of genomic sequences while avoid-
ing excessive fragmentation.

Currently, the approach proposed by Rambaut et al.
(2020) is regarded as the most evolutionarily accurate and
consistent available method for nomenclature and classifica-
tion of emerging SARS-CoV-2 viral strains. This framework
applies rigorous phylogenetic analyses, combined with simple
rules—based on prevalence and phylogeographic distribu-
tion—to identify novel groups or viral lineages and their an-
cestry and can efficiently accommodate novel sequences as
they are generated. However, it is not specifically designed to
identify/pinpoint highly prevalent genetic variants or rapidly
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emerging viral isolates, as reflected by the fact that the system
currently identifies more than 230 distinct lineages which
show a median size of 22.5 genomes.

In the light of the above considerations, we and others
(Chiara et al. 2020; Yang et al. 2020) have proposed phenetic
clustering for the delineation of current and emerging viral
genetic diversity considering only genetic variants that are
highly prevalent (AF> 1%) in the viral population. These
methods are conceptually more simple than those based
on true phylogenetic analyses, and have the advantage of
providing a more general picture of genetic variants and
haplotypes. However, allele frequencies are typically esti-
mated from all sequences available at the time of study, im-
plying the potential loss of information regarding variation in
frequencies of even clinically or statistically relevant variants
over time. This consideration is further complicated by ex-
tensive geographic biases in sequence sampling. In an at-
tempt to partially address these considerations, here, we
extend a simple framework inspired by multilocus strain typ-
ing (MLST), a classification approach often used for microbes
(Maiden 2006) to the geo-spatial analysis of SARS-CoV-2 ge-
nomic sequences. Thus, we estimate changes in “fixed” viral
allele and haplotype frequencies in geographic contexts
across the time-course of the pandemic.

To demonstrate the validity of our approach, we have
studied more than 175,000 complete SARS-CoV-2 genomes
and derive intriguing observations regarding the origin (and
by inference the timing) of the emergence of pandemic
strains as well as the evolutionary mechanisms associated
with the emergence of novel variants.

Results

Genomic Features and Evolutionary Dynamics of
SARS-CoV-2
We retrieved 178,191 SARS-CoV-2 genomic sequences la-
beled as high coverage and putatively complete, derived
from 121 countries in five continents from the GISAID
EpiCoV portal (as available on November 10, 2020). We ob-
served that a considerable number (49,260) of these report-
edly complete genomic assemblies presented incomplete 30-
or 50-UTRs (median size 29743 nts; reference genome size of
29,903 nts, including a polyA tail of 33 nts). Additionally,
25,865 genomes contained a large number of gaps and/or
uncalled bases—ranging from 151 to 3,652. Stringent criteria
were used to retain only sequences which were more likely to
represent a nearly complete assembly of the SARS-CoV-2
genome (more than 29,850 nts in size) and containing only
a limited number of uncertain bases (less than 150 Ns). A
total of 102,951 genomes were therefore selected as the “high-
quality set” (supplementary table S1, Supplementary Material
online).

Analysis of raw genetic distances between these SARS-
CoV-2 genomes (see Materials and Methods) revealed a
mean of 0.535 variant sites between pairs of most similar
sequences, slightly lower than the equivalent figure for late-
phase isolates of SARS-CoV-1 from the SARS 2003-2004 epi-
demics (0.78 polymorphic sites) (Song et al. 2005).

Furthermore, 63,869 (62.53%) of the high-quality SARS-
CoV-2 genomes analyzed, have a perfect sequence identity
(zero polymorphic sites) with respect to at least one other
genome. Mutation rates were estimated according to the
formula described in Zhao et al. 2004 and, consistent with
the observed pattern of genetic distances, were marginally
lower for SARS-CoV-2 (1.89 6 0.53 x 10�3 substitutions per
site per year) than for SARS-CoV-1 (2.38 6 0.47 x 10�3 sub-
stitutions per site per year). Although these values are in line
with those reported by other studies (Boni et al. 2020), we
note that estimates of viral evolutionary rates can vary con-
siderably with the timescale of measurement, owing to expo-
nential population growth and/or varying selective pressures.
Indeed, when more distantly related species were used to
calibrate the estimation of evolutionary rates, substantially
lower estimates were obtained (Boni et al. 2020).

A total of 28,222 distinct variable sites were observed
among 102,951 high-quality genomes included in these anal-
yses (supplementary table S2, Supplementary Material on-
line). Considering the date of sampling as reported for each
isolate, only 818 (2,89%) of these reached an allele frequency
above 1%, the threshold above which a variant is considered
fixed in a natural population (Wong et al. 2003) for at least
one day. Strikingly, the majority of these variants remain
highly frequent only for a limited period of time (supplemen-
tary fig. 1A, Supplementary Material online, median 15 days,
upper quartile 35 days) possibly indicating a strong effect of
drift and/or sampling biases. Notably, and consistent with this
hypothesis a significant positive correlation is observed be-
tween the total time of circulation (that is the total number
of days in which a variant is observed at over 1% frequency
among sampled genomes) and maximum allele frequency
reached (supplementary fig. 1B, Supplementary Material on-
line). Interestingly, according to our analyses only 182 high-
frequency variants (0.644%) (supplementary table S3,
Supplementary Material online) achieve an allele frequency
greater than 1% for more than 50 days in total. Importantly,
when the entire collection of 178,191 SARS-CoV-2 genomes is
considered, the total number of variant sites is significantly
increased (38581 sites, supplementary table S2,
Supplementary Material online), but the number and type
of high (�1%) frequency variant sites remains relatively con-
stant (811 in total), suggesting a robust estimate of compre-
hensive allele frequencies for these sites. Of the seven sites
that show a reduced prevalence, five are located within 200 nt
of the 30-terminal and two within the first 52 nt of the 50-end
of the genome, suggesting that their apparent reduction in
frequency might be associated with the incompleteness of
some genome sequences.

Inference of Natural Selection Acting on Coding
Regions
The MEME and FEL methods (Kosakovsky-Pond et al. 2020)
were applied to the concatenated alignments of protein-
coding genes of the 102,951 high-quality complete genomes
to identify signals of adaptive evolution. A total of 849 sites
were associated (P value �0.05) with signatures of selection
according to both methods (supplementary table S4,
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Supplementary Material online). Of these, 398 were associ-
ated with positive selection, whereas 451 sites were deemed
to be under negative selection.

A highly significant over-representation of both sites under
negative and positive selection is observed among the 818
high-frequency polymorphic sites of protein-coding genes. In
particular, 36 of these sites (OR¼ 2.97, Fisher P value 6.26e-
08) are highlighted as evolving under positive selection,
whereas 61 sites (OR¼ 4.44, Fisher P value 2.20e-16) were
predicted to be under negative selection. Strikingly, this pat-
tern is even more pronounced, when only the 182 sites that
display an allele frequency of 1% or greater for 50 or more
days are considered, with 17 (Fisher P value 5.45e-09,
OR¼ 6.62) and 30 (Fisher P value 1.20e-21, OR¼ 10.31) sites
respectively, predicted to be under positive or negative
selection.

Clustering of High-Frequency Haplotypes to Explore
SARS-CoV-2 Genomic Diversity
We and others (Chiara et al. 2020; Yang et al. 2020) have
proposed conceptually simple systems to monitor SARS-
CoV-2 genetic diversity and complement phylogenetic meth-
ods. Here, we develop this philosophy, employing an ap-
proach inspired by MLST (Maiden 2006), where only
variants that reach a relatively high prevalence (typically
1%, a frequency that is often considered to represent fixation;
Wong et al. 2003) are considered and clustering of allele pres-
ence/absence profiles identifies recurrent viral haplotypes.

In the context of the extreme variation between allele
frequencies observed for SARS-CoV-2, exclusion of low-
frequency variants, which, as previously demonstrated, typi-
cally show short temporal persistence, is potentially helpful in
the search to capture significant trends in variation of geno-
mic diversity.

To accommodate these considerations, we propose a set
of arbitrary, but empirically reasonable conditions for the
operational classification of SARS-CoV-2 haplotypes:

(1) Given that closely related genomes show an average of
0.535 polymorphic sites, we suggest that distinct hap-
logroups (HGs) should differ by least two high-
frequency polymorphic sites.

(2) To avoid an excessive fragmentation, each haplogroup
should incorporate at least 100 distinct genomes.

(3) Since the variability of SARS-CoV-2 is limited, hap-
logroups that share one or more high-frequency poly-
morphic sites (have one or more nucleotide
substitution in common) should form
“macrohaplogroups” (MHGs). Genetic markers defining
macrohaplogroups should be “completely” fixed (i.e., AF
>0.9) in the associated haplogroups.

(4) To minimize the effects of sampling biases, analyses of
allele frequencies should be performed for distinct time
windows over the course of the COVID-19 pandemic.

(5) To mitigate the impact of short-term effects, only var-
iants that show high frequency (above 1%) for a

relatively long span of time, (arbitrarily set to a mini-
mum of 50—not necessarily consecutive—days in this
study) should be included in the final analyses.

To facilitate the classification of newly sequenced SARS-
CoV-2 genomes, an automated software package that imple-
ments the criteria devised in the present study is made pub-
licly available as a standalone tool at https://github.com/
matteo14c/assign_CL_SARS-CoV-2 and, through a dedicated
galaxy web-server at http://corgat.cloud.ba.infn.it/galaxy.

The aforementioned criteria were applied to both the
102,951 high-quality genomes (high-quality set), and the en-
tire collection of 178,191 genomes (extended set). For the
latter, terminal regions of the genome were excluded owing
to the observed degree of genome incompleteness. For both
data sets (fig. 1A and supplementary fig. S2A, Supplementary
Material online), 22 distinct haplogroups (HG1-HG22) and
four larger macrohaplogroups (MHG1-MHG4) (table 2 and
supplementary table S1, Supplementary Material online)
were recovered. A total of 82 (of 182) distinct high-
frequency genetic variants, were “completely” fixed (relative
allele frequency >0.9) in one or more haplogroups (table 1).
Figure 1B (and supplementary fig. S2B, Supplementary
Material online) shows that each haplogroup is defined by
a characteristic molecular signature consisting between 2 and
15 high-frequency alleles (supplementary table S5,
Supplementary Material online). HG1 is the only exception
in this respect, as it is composed of genomes that are highly
similar to the reference.

Consistent with other reports (Benvenuto et al. 2020;
Ceraolo and Giorgi 2020; Forster et al. 2020; Gudbjartsson
et al. 2020; Phan 2020; Walker et al. 2020), we observe
(fig. 2) a highly biased geographic distribution of SARS-CoV-
2 haplogroups worldwide. Indeed, although relatively bal-
anced proportions of each haplogroup are observed in Asia
as a whole, the majority of all viral genomes observed in other
continents are assigned to a single macrohaplogroup: MHG3
(fig. 3). This is also reflected by an extreme increase over time
in the frequencies of the genetic variants that define the
MHG3 (supplementary fig. S3, Supplementary Material on-
line). Additionally, several haplogroups identified by our anal-
yses have a high prevalence only in a limited number of
countries (fig. 2), while are overall less prevalent worldwide.
For example, HG15 is highly prevalent only in Australia,
whereas conversely HG12 is highly frequent only in India
and Singapore. Similarly, HG21 is observed principally in
Ireland and in the United Kingdom, and HG19 seems to be
specific to the United States. Consistent with these findings,
patterns, and dynamics of prevalence of distinct HGs are
considerably different when distinct countries/geographic
locations are compared. For example (supplementary fig.
S4, Supplementary Material online), the rapid emergence of
HG15 in Australia coincides with a decrease in the total num-
ber of genomes sequenced, at time T0 (the collection date of
the reference genome)þ150 days and with a concurrent re-
duction of the prevalence of all other previously circulating
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FIG. 1. Haplogroups of 102,951 SARS-CoV-2 genomes. (A) Heatmap of presence/absence of 82 high-frequency polymorphic sites (AF >0.01) in
102,951 “high-quality” complete SARS-CoV-2 genomes, assigned to the 22 clusters identified in the current study. Genomic coordinates are
represented on the x axis. Light gray indicates a reference allele, dark gray an alternative allele for that site. The panels on the left indicate
haplogroups, with a different color assigned to each haplogroup. Dotted lines delineate macrohaplogroups. (B) Bubbleplot of allele frequency of
the 82 high-frequency polymorphic sites in individual haplogroups color codes corresponding to those used in figure 1A. The dendrogram on the
left indicates haplogroups with similar allele frequency profiles. The size of each “bubble” is proportional to the frequency of that allele in a given
cluster. Barplot on the right panel indicates the number of genomes assigned to every haplogroup, scaled by logarithm base 10.
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Table 1. List of 82 High-Frequency Polymorphic Sites.

POSa REFb ALTc Selectiond Annotatione MAX All Freq (%)f

204 G T Not Applicable 50-UTR: nc.G204T 61.03
241 C T Not Applicable 50-UTR: nc.C241T 100
445 T C NO nsp1: c.180T>C, p.V60V, synonymous 67.0
1059 C T Positive nsp2: c.254C>T, p.T85I, missense 31.7
1163 A T NO nsp2: c.358A>T, p.I120F, missense 53.2
1397 G A NO nsp2: c.592G>A, p.V198I, missense 6.8
2480 G A NO nsp2: c.1675A>G, p.I559V, missense 3.3
2558 C T NO nsp2: c.1753C>T, p.P585S, missense 3.5
3037 C T Negative nsp3: c.318C>T, p.F106F, synonymous 100.0
3256 T C NO nsp3: c.537T>C, p.N179N, synonymous 7.0
4002 C T Positive nsp3: c.1283C>T, p.T428I, missense 4.5
4543 C T NO nsp3: c.1824C>T, p.T608T, synonymous 7.1
5622 C T NO nsp3: c.2903C>T, p.P968L, missense 7.1
6286 C T NO nsp3: c.3567C>T, p.T1189T, synonymous 66.2
6312 C A Positive nsp3: c.3593C>A, p.T1198K, missense 2.8
7540 C T NO nsp3: c.4821T>C, p.T1607T, synonymous 51.9
8683 C T NO nsp4: c.129C>T, p.I43I, synonymous 7.7
8787 C T Negative nsp4: c.228C>T, p.S76S, synonymous 36.1
9477 T A NO nsp4: c.923T>A, p.F308Y, missense 4.2
9526 G T Negative nsp4: c.972G>T, p.M324I, missense 7.1
10097 G A NO nsp5: c.43G>A, p.G15S, missense 6.7
10319 C T NO nsp5: c.265C>T, p.L89F, missense 6.6
11083 G T NO nsp6: c.111G>T, p.L37F, missense 66.5
11916 C T NO nsp7: c.74C>T, p.S25L, missense 5.1
13536 C T Negative nsp12: c.96C>T, p.Y32Y, synonymous 4.5
13730 C T Positive nsp12: c.290C>T, p.A97V, missense 3.0
14202 G T NO nsp12: c.762G>T, p.E254D, missense 7.1
14408 C T Positive nsp12: c.968C>T, p.P323L, missense 100
14805 C T Negative nsp12: c.1365C>T, p.Y455Y, synonymous 27.6
15406 G T NO nsp12: c.1966G>T, p.A656S, missense 7.8
16647 G T NO nsp13: c.411G>T, p.T137T, synonymous 51.9
17109 G T NO nsp13: c.783G>T, p.E261D, missense 7.1
17104 C T Positive nsp13: c.868C>T, p.H290Y, missense 4.4
17247 C T Negative nsp13: c.1011T>C, p.R337R, synonymous 3.0
17747 C T Positive nsp13: c.1511C>T, p.P504L, missense 12.0
17858 A G NO nsp13: c.1622A>G, p.Y541C, missense 12.4
18060 C T Negative nsp14: c.21C>T, p.L7L, synonymous 12.4
18028 G T NO nsp13: c.1792G>T, p.A598S, missense 3.34
18555 C T NO nsp14: c.516C>T, p.D172D, synonymous 51.9
18877 C T Negative nsp14: c.838C>T, p.L280L, synonymous 25.0
18898 C T NO nsp14: c.959C>T, p.A320V, missense 1.3
19542 G T NO nsp14: c.1503G>T, p.M501I, missense 7.1
19718 C T NO nsp15: c.98C>T, p.T33I, missense 10.5
20268 A G Negative nsp15: c.648A>G, p.L216L, synonymous 8.9
21255 G C NO nsp16: c.597G>C, p.A199A, synonymous 66.6
21614 C T Positive spike: c.52C>T, p.L18F, missense 34.7
21637 C T NO spike: c.75C>T, p.P25P, synonymous 8.5
21765 TACATG Del NO spike: c.203TACATG>. . .. . .,p.IHV68I, inframeDel; 3.23
22227 C T Positive spike: c.665C>T, p.A222V, missense 66.4
22388 C T NO spike: c.826C>T, p.L276L, synonymous 7.2
22879 C A NO spike: c.1317C>A, p.N439K, missense 4.3
22992 G A Positive spike: c.1430G>A, p.S477N, missense 51.9
23401 G A NO spike: c.1839G>A, p.Q613Q, synonymous 51.9
23403 G A Positive spike: c.1841A>G, p.D614G, missense 100
23731 C T Negative spike: c.2169C>T, p.T723T, synonymous 6.7
23929 C T Negative spike: c.2367C>T, p.Y789Y, synonymous 2.7
24910 T C NO spike: c.3348T>C, p.T1116T, synonymous; 3.32
25563 G T NO orf3A: c.171G>T, p.Q57H, missense 38.5
25710 C T NO orf3A: c.318C>T, p.L106L, synonymous 7.1
25979 G T NO orf3A: c.587G>T, p.G196V, missense 4.0
26060 C T NO orf3A: c.668C>T, p.T223I, missense 10.5
26144 G T NO orf3A: c.752G>T, p.G251V, missense 30.7
26735 C T Negative geneM: c.213C>T, p.Y71Y, synonymous 25.0
26801 C G Negative geneM: c.279C>G, p.L93L, synonymous 66.4

(continued)
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HGs (supplementary fig. S4A, Supplementary Material on-
line). Conversely in the United States, different HGs, all incor-
porated within MHG3, appear approximately at the same
time point (T0þ 70), but become highly prevalent at differ-
ent intervals in time (supplementary fig. S4, Supplementary
Material online). Finally, in the UK HG5, the most prevalent
haplogroup in the country for a long period of time, is now

being gradually replaced by HG21 (supplementary fig. S4,
Supplementary Material online). Notably, and consistent
with our previous observations, a rapid decrease in the prev-
alence of genomes associated with MHG1, MHG2, and
MHG4 is observed after time T0þ 70, whereas relatively
high prevalence of these genomes were observed in many
countries during the early phase of the pandemic.

Table 1. Continued

POSa REFb ALTc Selectiond Annotatione MAX All Freq (%)f

27944 C T NO orf8: c.51C>T, p.H17H, synonymous 46.5
27964 C T NO orf8: c.71C>T, p.S24L, missense 10.3
28169 A G NO orf8: c.276A>G, p.E92E, synonymous 8.5
28311 C T Positive geneN: c.38C>T, p.P13L, missense 2.9
28657 C T NO geneN: c.384C>T, p.D128D, synonymous 4.2
28688 T C Negative geneN: c.415T>C, p.L139L, synonymous 6.0
28854 C T NO geneN: c.581C>T, p.S194L, missense 25.0
28863 C T NO geneN: c.590C>T, p.S197L, missense 4.1
28144 T C NO orf8: c.251T>C, p.L84S, missense 37.7
28881 GGG AAC NO geneN: c.608GGG>AAC, p.RG203KR, missense 81.0
28932 C T NO geneN: c.659C>T, p.A220V, missenseepi27: nc.C5T, NO, NO 66.4
29227 G T Negative geneN: c.954G>T, p.S318S, synonymous 7.1
29446 C T NO geneN: c.1193C>T, p.A398V, missense 7.1
29540 G A NO None 1.3
29645 G T none orf10: c.88G>T, p.V30L, missensesl4: nc.G17T, NO, NO 66.4
29742 G T Not Applicable 30-UTR: s2m 6.9

aGenomic position.
bReference allele.
cAlternative allele.
dType of selection according to FEL and MEME, not applicable: the site is not included in a protein-coding gene.
eFunctional annotation of the site.
fMaximum prevalence (proportion of genomes with the variant).

FIG. 2. Worldwide prevalence of SARS-CoV-2 haplogroups. Heatmap of worldwide prevalence of SARS-CoV-2 haplogroups. Only countries for
which at least 100 distinct genomes of SARS-CoV-2 are available in a public repository are shown. Color codes on the top indicate individual
haplogroups, according to figure 1.
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Importantly, from supplementary figure S5,
Supplementary Material online, we notice that there is a
modest prevalence of MHG3 in China, the country that is
currently considered the origin of the outbreak, where it
accounts for only 5.1% of all the genomes available.

Of the 82 high-frequency polymorphic sites that reach
complete, or nearly complete fixation in at least one hap-
logroup (table 1 and fig. 1B) only two variants (11083 G->T;
14805 C->T;) show an allele frequency �0.01 in more than
one macrohaplogroup, whereas the remaining 80 have
AF� 0.01 in only one macrohaplogroup, and can therefore
be considered MHG “specific.” These observations strongly
support our contention that high-frequency variable sites, as
defined here, are effective for the discrimination/classification
of distinct genomic signatures in SARS-CoV-2.

Strikingly, 24 of the 77 sites associated with protein-coding
genes that are fixed in and specific to at least one haplogroup
are predicted to be under positive (9) or negative (14) selec-
tion according to FEL or MEME (table 1). Although this ob-
servation might be suggestive of distinct phenotypic features/
properties for the different SARS-CoV-2 types, as previously
suggested by other authors (Grubaugh et al. 2020; Korber
et al. 2020; Pachetti et al. 2020), in the absence of experimen-
tal validation, such inferences should be treated carefully.

Spatiotemporal Distribution of SARS-CoV-2 Genome
Types and Emergence of New Types
Although phylogeographic analyses show a highly biased dis-
tribution of SARS-CoV-2 genomes worldwide (figs. 2 and 3;

table 2), representatives of each macrohaplogroup are already
observed in different geographic regions of China—the pre-
sumed country of origin of the outbreak—within 25 days of
the report of the first case of COVID19 in Wuhan (supple-
mentary fig. S5A, Supplementary Material online). During the
same time period, three distinct haplogroups belonging to a
different macrohaplogroup (MHG1, MHG2, and MHG4),
were already observed in Wuhan (supplementary fig. S5B,
Supplementary Material online), whereas genomes from
MHG3, carrying the 23403 A>G substitution (causing the
D614G spike variant) are observed both in Guangdong and
Zhejiang in this initial phase.

Strikingly, we notice that, among the 82 high-frequency
variants, that define the major haplogroups of SARS-CoV-2,
28 are also present in one or more genomes of SARSr-CoV-2
isolated from bat and/or pangolin specimens (supplementary
fig. S6, Supplementary Material online). These alleles appear
to be highly admixed among SARSr-CoV-2 coronaviruses iso-
lated from pangolins and bats, suggesting possible parallel-
ism/convergence, but potentially suggestive of extensive
recombination between immediate ancestors of SARS-CoV-
2. To investigate possible scenarios of emergence of novel
genome types, the allele frequency distribution of the 82 ge-
netic variants that define the major haplogroups of SARS-
CoV-2 (AF� 0.01) were compared at intervals of 10 days
since December 26, 2019 (the collection date of the reference
genome). Within haplogroups, distributions of allele fre-
quency are highly stable and do not change over time (sup-
plementary figs. S7–S9, Supplementary Material online). Since
by definition major SARS-CoV-2 viral haplotypes identified in

FIG. 3. Prevalence of SARS-CoV-2 macrohaplogroups in different continents. Pie-chart of prevalence of types of SARS-CoV-2 macrohaplogroups in
different continents. Color code as in figure 1.
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this study are formed by at least two or more characteristic
genomic variants, this suggests that the majority of the ge-
nomic signatures that define distinct haplogroups concomi-
tantly reached a high allelic frequency. This is even more
evident when allele frequency distributions are compared
within macrohaplogroups, as several clusters of alleles show
a rapid emergence and almost immediate fixation (fig. 4 and
supplementary tables S6 and S7, Supplementary Material on-
line). Notably, we observe that genetic variants associated
with HG18 and HG21, are rapidly becoming more prevalent.
Importantly, we notice that both groups incorporate emerg-
ing variants that alter the sequence of the spike protein (sup-
plementary fig. S10A and B, Supplementary Material online):
L18F (HG21), and A222V (both HG18 and HG21). Both var-
iants are predicted to be under positive selection according to
FEL and MEME (table 1). The rapid emergence of the A222V
variant, which probably originated in Spain, has already been
described in (Hodcroft et al. 2020). Although it might be
tempting to speculate that, similar to the D614G variant in
the spike protein—the hallmark of MHG3—these rapidly
emerging variants might be associated with increased viral
fitness, other nonsynonymous spike protein variants, such
as S477N in HG15, also show signatures of positive selection
and apparent increase in allele frequency, but subsequently
exhibit rapid decrease in prevalence (supplementary fig. S10C,
Supplementary Material online).

In addition to rapid selection of standing variation as an
adaptive process (Nowak and Schuster,1989), other evolu-
tionary processes, including genetic drift and founder effects,
can explain rapid changes in allele frequency (Holland et al.
1991; Lynch et al. 2016). Indeed, the proposed importance of
“superspreader” events and individuals and the inferred

overdispersion of R0 associated with SARS-CoV-2 transmis-
sion patterns (e.g., Endo et al. 2020; G�omez-Carballa et al.
2020) might be consistent with an important role for founder
effects, particularly in the context of containment strategies
imposed in many countries after the initial outbreak and after
the initiation of “second waves.”

Comparison of isolation dates (fig. 5 and supplementary
fig. S11, Supplementary Material online), suggest that the
majority of currently observed haplogroups of SARS-CoV-2
were not present during the initial phases of the pandemic
and seem to emerge at a later time. Using arbitrary thresholds,
based on days of first isolation, haplogroups can be roughly
divided into “early” (HG1-HG3, HG5, HG9, HG11 appearing
within 30 days of the isolation of the reference genome),
“middle” (HG4, HG6-HG8, HG10, HG12-HG15, and HG19:
appearing between 30 to 100 days), and “late” (HG17,
HG18, HG20-HG22: appearing after 100 days) (table 2).
Consistent with our previous findings, we observe that “early”
haplogroups have a probable origin in China, as shown in the
comparison of the phenetic patterns and the localities of the
first 50 isolates (in terms of date, see supplementary fig. S12,
Supplementary Material online). Conversely, the “middle”
and “late” haplogroups are likely to have become distinct
outside China (supplementary figs. S13 and S14,
Supplementary Material online).

To discriminate between possible evolutionary scenarios
associated with the rapid emergence of novel haplogroups in
SARS-CoV-2, we reasoned that although founder effects or
selection should be associated with an overall reduction in
genomic diversity of viral sub-populations, convergent evolu-
tion should not alter the underlying allele frequency distribu-
tion (except at the sites under selection). Accordingly, we

Table 2. List of Haplogroups and Macrohaplogroups.

Haplogroupa Super-Haplogroupb Emergence (presumed)c Classificationd

HG1 MHG1 Wuhan Dec 2019 Early
HG2 MHG2 Wuhan Dec 2019 Early
HG3 MHG2 Washington, Jan 2020 Early
HG4 MHG2 Panama, Feb 2020 Middle
HG5 MHG3 Sichuan, Jan 2020 Early
HG6 MHG3 Denmark, Feb 2020 Middle
HG7 MHG3 France, Feb 2020 Middle
HG8 MHG3 New York, March 2020 Middle
HG9 MHG4 Chongqing, January 2020 Early
HG10 MHG4 England, February 2020 Middle
HG11 MHG4 Wuhan, January 2020 Early
HG12 MHG4 Singapore, February 2020 Middle
HG13 MHG3 England, Mach 2020 Middle
HG14 MHG3 Saudi Arabia, February 2020 Middle
HG15 MHG3 Australia, April 2020 Middle
HG16 MHG3 Costa Rica, March 2020 Middle
HG17 MHG3 Norway, July 2020 Late
HG18 MHG3 Netherlands, May 2020 Middle
HG19 MHG3 USA, March 2020 Late
HG20 MHG3 England, May 2020 Late
HG21 MHG3 England, July 2020 Late
HG22 MHG3 Bangladesh, June 2020 Late

aHaplogroup name.
bMacrohaplogroup.
cPlace and time of isolation of the first isolated SARS-CoV-2 genome assigned to that haplogroup.
dClassification of haplogroups in early, late, and middle according to the criteria defined in the current study.
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compared average allele diversity between genomes associ-
ated with “early,” “middle,” and “late” emergence within each
major haplogroup (fig. 6A). The results show a statistically
significant reduction of genetic diversity for middle and late

HGs (i.e., emerging after�30 days) compared with early hap-
logroups (Wilcoxon sum and rank test P values 1.145e-15,
2.367e-14, and 4.45e-13 for early vs. middle in HG2, HG3,
and HG4 respectively; P value �2e-16 for early compared

FIG. 4. Frequency of highly prevalent alleles in SARS-CoV-2 macrohaplogroups at different time intervals. Bubbleplots of allele frequency in the four
macrohaplogroups of SARS-CoV-2 genomes, at different intervals in time. Each bubbleplot displays the allele frequency of the 82 high-frequency
polymorphic sites calculated at different, nonoverlapping, intervals of 10 days. (“T_” with time 0¼December 26, 2019). The size of each bubble is
proportional to the allele frequency. Color codes according to haplogroups as in figure 1. The barplots above indicate the number of genomes of
each macrohaplogroup observed at each time interval considered, scaled by logarithm base 10.
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with late). Intriguingly, a moderate but still statistically signif-
icant reduction is observed also when middle and late hap-
logroups in MHG3 are compared (P value 0.000103).
Importantly, (fig. 6B), we observe that evolutionary rates are
highly homogeneous and do not show detectable changes
between haplogroups, suggesting that reduced diversity of
late clusters is not associated with a reduction of evolutionary
rates. According to our starting hypothesis, and in the light of
the biased geographic sampling and prevalence of different
HGS, these results suggest that the emergence of novel
SARS-CoV-2 genome types is unlikely to be driven by wide-
spread convergent evolution and independent fixation of ad-
vantageous substitutions.

Remarkably, our analyses do not support an increased ge-
nomic diversity for haplogroups included in MHG3 compared
with other MHGs, although the 14408 C> T substitution
causing the P323L variant in the nsp12 gene (RdRp) was
previously described as associated with an increased genomic
variability (Pachetti et al. 2020). We speculate that biased/
incomplete sampling of MHG3 during the early phase of the
pandemic, and the fact that Pachetti et al. compared raw
nonnormalized genetic distances (instead of normalized

evolutionary rates) are the most likely explanation for this
discrepancy.

Distribution of Variable Sites along the SARS-Cov-2
Genome
Profiles of genomic variability for each of the haplogroups and
macrohaplogroups defined in this study were established us-
ing windows of 100 bp in size and sliding by 50 bp. As shown
in figure 7 and supplementary figure S15, Supplementary
Material online, the observed patterns are remarkably similar
suggesting common patterns of variation. Density of poly-
morphic sites is significantly enriched (adjusted Fisher test P
value�1e-15 and�1e-12 respectively) in both the 50- and 30-
UTR regions, whereas protein-coding loci (CDS) show less
variability. Strikingly, a single genomic region in the 30-UTR
accumulates�10x more mutations than any CDS, and� 2x
more than any other UTR region, and is the single most
variable region in the genome of SARS-CoV-2 (fig. 8A). This
highly variable genomic region is associated with a conserved
secondary structure (fig. 8A), known as s2m (Tengs and
Jonassen 2016). Strikingly, no variation is observed in s2m
among 73 available SARS-CoV-1 genome sequences from

FIG. 5. Times of emergence and circulation of SARS-CoV-2 haplogroups Violin plots of isolation dates of SARS-CoV-2 strains assigned to each
haplogroup of SARS-CoV-2 genomes. Color codes according to figure 1. Haplogroups are indicated on the x axis. Isolation dates are reported on the
y axis.
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the 2003-2004 epidemic or in any other currently available
SARSr-CoV-2 genome.

S2m is a 43-nucleotide element that has been described in
several families of single-stranded RNA viruses, including
Astroviridae, Caliciviridae, Picornaviridae, and Coronaviridae
(Tengs and Jonassen 2016). The molecular function of this
potentially mobile structural element is not well understood.
Current hypotheses include a role in the hijacking of host
protein synthesis through interactions with ribosomal pro-
teins (Robertson et al. 2005), and RNA interference (RNAi) via
processing of the s2m elements into a mature microRNA
(Tengs et al. 2013). In coronaviruses, the highly conserved
nature s2m has also allowed the development of a PCR-
based virus discovery strategy (Jonassen 2008).

As outlined in figure 8B, compared with the consensus
secondary structure of s2m described in the Rfam database,
the reference genome of SARS-CoV-2 harbors a nucleotide
substitution at a highly conserved and structurally important
position, with possible impacts on structural stability (the T at
the SARS-CoV-2 genomic position 29,758, indicated by an
arrow in fig. 8A). Secondary structure predictions suggest
that of all possible 129 single nucleotide substitutions in the

presumably ancestral sequence of s2m, as observed in the
genome of RaTG13 SARSr-CoV-2, this would be the second
most destabilizing in terms of minimum free energy (MFE)
(supplementary table S8, Supplementary Material online).
Based on this observation and on the high levels of variation
of the entire s2m region, it is tempting to speculate that s2m
could either be subject to diversifying selection in SARS-CoV-
2, or have lost significant purifying constraints. Strikingly, we
observe that the G->T substitution at 29,742, which is a
hallmark of haplogroup 11, would result in a substantially
increased stability of s2m (supplementary table S7,
Supplementary Material online), with an MFE that becomes
substantially lower than that of the s2m structure of the
reference genome. Interestingly, we observe that this variant
also achieves a relatively high frequency (max 6.4%) also in
haplogroup 8, a possible hint of convergent evolution.

Conversely, five other recurrent substitutions in s2m, that
achieve an allele frequency of 1% during the time course of
the SARS-CoV-2 pandemic (29,742 G>A and 29,734 G> T,
29736 G> T, 29751 G> T and 29747 G> T) are not associ-
ated with a specific haplogroup and are predicted to result
only in a marginal decrease of the MFE of the s2m secondary

FIG. 6. Comparison of genetic diversity of early, middle, and late haplogroups. (A) Violin plots of genetic diversity of early, middle, and late
haplogroups of SARS-CoV-2 genomes. P values, for the significant reduction of genetic diversity (reduced number of distinct polymorphic sites per
genome) are reported on the top of each violin plot. (B) Violin plot of substitution rates of the 22 clusters of SARS-CoV-2 genomes identified in this
study. Color codes according to figure 1.
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structure (supplementary table S8, Supplementary Material
online). Interestingly, we notice (fig. 8C) that the same con-
sideration applies to the majority of the nucleotide substitu-
tions that are observed in the SARS-CoV-2 s2m element.
Indeed, with respect to the background of all possible nucle-
otide substitutions that could occur in s2m of the SARS-CoV-
2 reference genome, the set of variants that is actually ob-
served in extant SARS-CoV-2 genomes are associated with
only a modest increase in the thermodynamic stability of the
structure.

A cofolding analysis of all distinct variants of the s2m
elements found in the 102,951 complete and high-quality
genomes—according to the criteria defined in this study—
suggests a very degenerate secondary structure of s2m in
SARS-CoV-2 (fig. 8D).

Notably although a substitution that restores the presum-
ably ancestral state of s2m (i.e., the secondary structure of
RaTG13 SARSr-CoV-2) is observed (29758 T>G), this substi-
tution is associated only with a very limited number of
genomes (103, AF¼ 0,00100841).

Discussion
Effective approaches for the interpretation of genome
sequences are fundamental for monitoring and understand-
ing the dynamics of the spread and evolution of pathogens,
and the SARS-CoV-2 paradigm, given both its global signifi-
cance and the availability of modern sequencing technologies
is particularly instructive in this sense.

In the current study, we propose a rational and reproduc-
ible approach for the delineation of genomic diversity in
SARS-CoV-2 which also takes into account the temporal

distribution of allele frequency by building on an informative
set of variable sites, which show high prevalence in the viral
population for a relevant frame of time. Applying our system
to the entire collection of (more than 175,000) genomic
sequences, as available on November 10, 2020, we derive in-
teresting observations concerning evolutionary patterns of
SARS-CoV-2.

We observe a low level of variability and infer a relatively
low mutation rate (1.84 sites per 10�3 nt per year) in SARS-
CoV-2 which is consistent with previous estimates (Zhao et al.
2004; Sanju�an et al. 2010). The presence of representatives of
different viral haplogroups during the early phases of the
pandemic (within 25 days of the report of the first case of
COVID19 in Wuhan) in several distinct geographic regions of
China, is suggestive of an early circulation of SARS-CoV-2 in
humans, probably well before the major outbreak of
COVID19 in Wuhan. These observations, coupled with evi-
dence provided by several other studies, would indicate an
early spillover of SARS-CoV-2 to humans (Apolone et al. 2020;
Deslandes et al. 2020; La Rosa et al. 2020; Zehender et al.
2020). Careful monitoring of the evolutionary rates of
SARS-CoV-2 over a longer period of time, and ideally also
on an unbiased/matched number of genomes isolated from
different geographic areas, are required to confirm these
inferences.

In this respect, the fact that a relevant number of SARS-
CoV-2 high-frequency, and macrohaplogroup-specific poly-
morphic sites are found also in viral strains isolated from
pangolins and bats specimens highlights an unexplored diver-
sity shared by SARS-CoV-2 and SARSr-CoV-2 viral genomes.
Moreover, the observed pattern of admixed SARS-CoV-2 hap-
logroup-specific alleles in the genomes of closely related

FIG. 7. Profile of genome-wide genetic variability of SARS-CoV-2 macrohaplogroups. Plot of genomic variability—calculated as the proportion of
variable sites identified in overlapping genomic windows of 100 bp—in the four macrohaplogroups MHG1-MHG4. Genomic coordinates are
represented on the x axis, number of variable sites per window on the y axis.
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SARSr-CoV-2 coronaviruses isolated from bat and pangolin
specimens (supplementary fig. S6, Supplementary Material
online), is highly consistent with possible recombination
events, as suggested also by previous studies (Boni et al.
2020; Lam et al. 2020; Wong et al. 2020). In the light of these
observations, it is evident that additional sampling of a sub-
stantially larger number of viral specimens, isolated from non-
human hosts will be required to reconstruct a more complete
phylogeny and to possibly trace back the “original” spillover
event. Indeed, notwithstanding the high levels of similarity to
SARS-CoV-2 (in the order of 97%), RaTG13, the most closely
related viral genome isolated from a bat specimen, is esti-
mated to have diverged from SARS-CoV-2 more than 25–
40 years ago (Boni et al. 2020).

Our classification system, based on 82 high frequency, sta-
ble polymorphic sites, identifies a total of 22 distinct prevalent

haplogroups and four macrohaplogroups of SARS-CoV-2 ge-
nome types, all having a highly biased phylogeographic dis-
tribution (figs. 2 and 3). We note that several polymorphic
sites that are specifically associated (completely fixed) with
haplogroups and macrohaplogroups are predicted to be ei-
ther under positive or negative selection according to state of
the art methods for the study of evolutionary constraints in
protein-coding genes (table 1). Interestingly, several of these
sites have previously been highlighted by other studies and
tentatively associated with increased virulence and/or in-
creased mutation rates of SARS-CoV-2 (Grubaugh et al.
2020; Korber et al. 2020; Pachetti et al. 2020).

Although fixation of advantageous variants has previously
been proposed as an effective and widespread mechanism for
the rapid increase of the fitness of a viral population (Moya
et al. 2004), the functional relevance of these genomic variants

FIG. 8. Analysis of structural stability and secondary structure of the s2m element in SARS-CoV-2. Analysis of variability and structural stability of
the s2m secondary structure element. (A) Barplot of variability of different categories of genomic elements in the genome of SARS-CoV-2.
Variability is reported as the proportion of polymorphic sites. (B) Consensus secondary structure of the s2m element of coronaviruses according to
the RFAM model RF00164 (https://rfam.org/family/RF00164). The arrow indicates the nucleotide substitution observed in the s2m of the
reference genome of SARS-CoV-2 (position 29,758). (C) Boxplot of MFE (minimum free energy) of predicted s2m secondary structures. Initial:
MFE of the s2m element in the SARS-CoV-2 reference genome. Not observed: MFE of secondary structures associated with single nucleotide
substitutions that are not observed in s2m of extant SAR-CoV-2 genomes. Observed: MFE of secondary structures associated with nucleotide
substitutions found in the s2m element of extant SAR-CoV-2 genomes. (D) Prediction of secondary structure cofolding of s2m of SARS-CoV-2
according to the Rscape program. Color codes are used to indicate the level of conservation of single nucleotide residues according to the
convention used in RFAM (white �50%, gray >50% and �75%, black >75%, and <90%, red �90%).
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remains, for now, unclear. We emphasize the importance in
functional and clinical validation as reduced levels of variabil-
ity, high levels of recombination, transmission dynamics, and,
particularly, biased sampling of genomic sequences, might
impair the accuracy of methods based on phylogenetic re-
construction of ancestral states for the identification of selec-
tive signatures (Ives et al. 2007; Som 2015). In this respect, our
observation of reduced genetic variability of middle and “late”
viral haplogroups belonging to (fig. 6A), coupled with the
highly biased phylogeographic distribution of SARS-CoV-2
genome types (figs. 2 and 3), might be more consistent
with genetic drift and founder effects rather than ongoing
adaptive evolution. We are unaware of transmission model-
ing studies that have incorporated both overdispersion of the
R0 transmission parameter and local distributions of observed
allele frequencies, but speculate, consistently with other stud-
ies (e.g., G�omez-Carballa et al. 2020), that the impact of super-
spreader events and individuals, coupled with lockdowns and
mobility restrictions might contribute to the rapid changes in
allele frequencies observed for some variants. However, the
hypothesis that drift and stochastic factors account for a great
part of SARS-CoV-2 variability does not exclude selection
having driven the fixation of a small number variants, so sites
identified as candidates for selective evolution warrant further
functional characterization both in vitro and eventually
in vivo. We note that analyses of the prevalence of different
HGs in different countries for which a large number of SARS-
CoV-2 genomes are publicly available highlight contrasting
dynamics. For example, the widespread variability in the prev-
alence of different HGs at different time points, which is ob-
served in the United States might be indicative of different/
distinct chains of infection or local outbreaks. Conversely, the
steep reduction in the prevalence of all other HGs and the
rapid emergence of HG15 in Australia, which coincides also
with a substantial decrease in the number of genomes sam-
pled at a specific time point, might be associated with a
bottleneck effect caused by the implementation of contain-
ment measures and national lockdowns. Finally, the rapid
increase of HG21 in the United Kingdom, a novel haplogroup
that incorporates a nonsynonymous variant in the spike pro-
tein (Hodcroft et al. 2020) should be monitored carefully as
the hypothesis that this mutation might represent an event
of adaptive evolution can not currently be excluded.

The observation of highly divergent/geographically biased
patterns of allele frequency distributions in the SARS-CoV-2,
coupled with large differences in the number of genomic
sequences sampled from different geographic areas or coun-
tries might represent a relevant limitation for this work.
Indeed, these considerations might compromise estimation
of allele frequencies, and thus limit the sensitivity of our ap-
proach in the identification of relevant/important genetic
variants for which only a limited number of representative
genomic sequences are available. For example, the majority of
the largest HGs identified by our approach are associated with
countries from which the largest number of genomes are
available (UK, USA, and Australia). This suggests that cur-
rently available sampling offers only a partial overview of
SARS-CoV-2 genomic variability. Importantly, approaches/

nomenclature systems based on true phylogenetic analyses
do not suffer from this limitation, as the delineation of dis-
tinct lineages is not determined by their overall prevalence.
However, and for the same reason, results of phylogenetic
analyses might be more difficult to interpret and do not fa-
cilitate the rapid identification of highly prevalent/emerging
genetic variants. As such, we believe that systems for the
monitoring of the evolution of SARS-CoV-2 should integrate
both types of approaches and routinely incorporate geo-
graphic and temporal dimensions.

Notably, we observe a highly consistent pattern of nucle-
otide substitution in SARS-CoV-2 genomes between all hap-
logroups and macrohaplogroups, characterized by an
increased variability at UTRs, in spite of the fact that a signif-
icant proportion of genomic assemblies annotated as “full-
length” in GISAID are incomplete at the terminal ends.
Although this incomplete representation of genomic sequen-
ces does not affect the classification system proposed in this
study, it might result in an inaccurate/incomplete representa-
tion of ongoing evolution of SARS-CoV-2. This is exemplified
by the s2m element, a highly conserved secondary structure
element located in the 30-UTR which carries a substitution in
the reference genome of SARS-CoV-2 that destabilizes the
secondary structure and is possibly functionally significant.

The s2m element shows a patchy phylogenetic distribu-
tion among distinct groups of positive-sense RNA viruses
(picornaviruses, astroviruses, and coronaviruses) and likely
represents a “mobile” element (Tengs and Jonassen 2016).
When present it is always found in the 30 region of such
genomes (Jonassen 2008) and shows extremely high levels
of conservation at the structural and primary sequence levels.
However, the patchy distribution within groups of viruses
with extremely similar gene complements may argue against
an essential role for this element—implying that it is advan-
tageous in specific conditions.

The substantial increase of genomic variability observed in
the s2m locus, compared with the rest of the genome (as well
as the observation that among 73 available SARS-CoV-1 ge-
nome sequences from the 2003-2004 epidemic and other
SARSr-CoV-2 genomes, no variation is observed in s2m), sug-
gest changes in selective pressures acting on this element. It
remains unclear whether these changes reflect ongoing wide-
spread diversifying selection in SARS-CoV-2, or whether the
original disruptive substitution inactivated s2m function,
leading to a general loss of significant purifying constraints.
Patterns of single nucleotide substitutions in s2m provide
contrasting evidence concerning the evolutionary patterns
of this secondary structure element in SARS-CoV-2, as the
most prevalent substitutions (29,742 G->T) seems to be as-
sociated with a considerable increase in secondary structure
stability, but the majority of the substitutions observed in
extant SARS-CoV-2 genomes are not optimal in terms of
the recovery of a highly stable secondary structure, and, in
particular, do not recapitulate the consensus sequence/struc-
ture. The functional role of s2m remains unclear: it has been
proposed, on the basis of structural similarity to rRNA struc-
tural elements, that it might be involved in the regulation of
translational efficiency of viral transcripts (Robertson et al.
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2005). We also note that viral RNA secondary structures have
been implicated in the suppression of antigen presentation
(EBNA-1; Apcher et al. 2010; Tellam et al. 2012) and in the
suppression of host innate immune responses (Vandevenne
et al. 2010; McFadden et al. 2013; Witteveldt et al. 2014; Murat
and Tellam 2015). We believe that detailed experimental eval-
uation of both s2m function and the possible phenotypic
consequences of changes observed among SARS-CoV-2 iso-
lates should represent a priority topic in coronavirus research.

Although, many questions concerning the mechanisms of
evolution and the phenotypic characteristics of SARS-CoV-2
(increased/decreased virulence) remain open, approaches
such as that presented here facilitate rapid grouping of fre-
quent SARS-CoV-2 haplotypes and can be useful both for
monitoring the changing prevalence of different types of
SARS-CoV-2 and for the study of the molecular processes
that underlie the emergence of novel viral types.

Materials and Methods
A collection of 178,191 putatively complete, high-coverage
SARS-CoV-2 genomes and associated metadata was retrieved
from the GISAID EpicoV (Shu and McCauley 2017) platform
on November 10, 2020. A total of 13 SARSr-CoV genome
sequences isolated from nonhuman hosts, including bats
and pangolins (Lam et al. 2020; Wong et al. 2020), were
also retrieved from the GISAID EpiCoV portal at the same
date. SARS-CoV-2 sequence comparisons were performed
using the reference Refseq (O’Leary et al. 2016) assembly
NC_045512.2, collected on December 26, 2019 and identical
to the sequence of the oldest SARS-CoV-2 isolates, dating
back to December 24, 2019 (EPI_ISL_402123).

SARS-CoV-2 genomes were aligned to the 29,903 nt-long
reference assembly of SARS-CoV-2 by means of the nucmer
program (Marçais et al. 2018). Custom Perl scripts were used
to infer the size of each genomic assembly and the number of
uncalled bases/gaps (denoted by N in the genomic sequence).
Only genome sequences longer than 29,850 nt and including
less than 150 ambiguous sites were analyzed.

Variant sites, including substitutions and small insertion
and deletions, were identified by using the show-snps utility of
the nucmer package. Output files were processed by the
means of a custom Perl script, and converted into a phenetic
matrix, with variable positions on the rows and viral isolates in
the columns. Values of 1 and 0 were respectively used to
indicate presence or absence of a variant.

Genetic distances between genomic sequences were estab-
lished from this phenetic matrix using the dist function of the
R stat package with default parameters (Euclidean distances)
(Maechler et al. 2019; R Core Team 2019). Clusters were
established by means of hierarchical clustering algorithms,
with complete linkage as implemented in the hclust R stan-
dard libraries function. The cutree function was used to sep-
arate distinct clusters at the desired level of divergence (two
distinct variant sites). Functional effects of genetic variants, as
identified from genome alignments, were predicted by means
of a custom Perl script, based on the annotation of the
NC_045512.2 SARS-CoV-2 reference assembly.

Alignments of SARS-CoV-2 protein-coding genes were
performed by the means of the Muscle (Edgar 2004) software.
Alignments were concatenated using a custom Perl utility.
The SMS (Smart Model Selection) algorithm, as implemented
by the PhyML package (Lefort et al. 2017) was used for the
selection of the most appropriate aminoacid substitution
model. The WAG (Whelan and Goldman 2001) model was
selected. A phylogeny was reconstructed using the FastTree
program (Price et al. 2009). Identification of sites under selec-
tion was performed by applying the MEME and FEL methods,
as implemented in the Hyphy package (Kosakovsky-Pond
et al. 2020), to the phylogeny and the concatenated align-
ment of protein-coding sequences of all the 102,951 previ-
ously identified high-quality complete SARS-CoV-2 genomes.
A P value of 0.05 was considered for the significance thresh-
old. Only sites predicted to be under positive selection
according to both methods were considered. For sites pre-
dicted to be under negative selection, only FEL was used, since
MEME can not identify purifying selection (Murrell et al.
2012).

A total of 68 viral genomes from the SARS 2003 outbreak
were retrieved from the NCBI virus database (Goodacre et al.
2018). Calculation of evolutionary rates of SARS-CoV-2 and
estimation of times of divergence were performed according
to the formula described in Zhao et al. 2004, based on genetic
distances as determined in this study.

Analyses of prevalence of allele frequency over time were
executed based on the collection dates of individual genomes
as reported in the GISAID metadata table. The collection date
of the reference genomic sequence of SARS-CoV-2 in GISAID
(December 26, 2020), was set as time T0. Consecutive, non-
overlapped intervals of 10 days were considered. For the anal-
ysis of allele frequency within haplogroups and major
haplogroups, the cumulative (from T0) sequence distribution
was computed at every interval. Global analyses of allele prev-
alence within the complete collection of SARS-CoV-2
genomes were executed on the equivalent time intervals of
10 days, in this case however to capture local effects in allele
frequency variation, overlapped (by 5 days) intervals were
considered and the local distribution of allele frequency was
computed by taking into account only the genomes isolated
within each specific interval of time.

A total of 3608 genomic sequences, for which collection
dates were not reported in GISAID, were excluded from these
analyses.

Comparison of levels of variability of “early” and “late”
clusters of SARS-CoV-2 genomes were established by 100
random samples of 150 genomes (batch), matched by date
of collection, from each defined cluster (see below). The total
number of distinct variant sites was calculated for each ran-
dom batch of genomes, in order to derive a distribution of
genomic variability. Significance between distributions of ge-
nomic diversity was established by means of the Wilcoxon,
sum, and rank test as implemented in the standard R libraries
(R Core Team 2019).

Variability with respect to the reference NC_045512.2
SARS-CoV-2 genome was computed on sliding windows of
100 bp, overlapped by 50 bp, by counting the proportion of
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variable sites contained in each window (number of variable
sites in the window, divided by the total number of variable
sites in the entire genome) with a custom Perl script. A Fisher-
exact test, contrasting the local variability in a window with
the average variability in the genome, was used to identify
hypervariable regions. P values were corrected using the
Benjamini–Hochberg procedure for the control of false dis-
covery rate.

Predictions of the secondary structure of the “Coronavirus
stem-loop II-like motif” (s2m) and its Minimum Folding
Energy (MFE) calculation were performed with the RNAfold
program (Mathews et al. 2004) of the Vienna package
(Gruber et al. 2008), by artificially implanting each of the
possible 129 substitutions in the 43 nt-long s2m sequence
identified in the reference SARS-CoV-2 genome and in the
presumably ancestral sequence of s2m, that is, that observed
in the genome of the RatG13 SARSr-CoV-2.

Prediction of the consensus cofolding structure of s2m in
SARS-CoV-2 was obtained by applying the R-scape (Rivas
et al. 2017) program to the alignment of all s2m sequences
found in the collection of the 11,633 high-quality complete
genome analyzed in this study.

Consensus secondary structure of the s2m element of
Coronaviruses was as in the model RF00164 (https://rfam.
org/family/RF00164) of the RFAM database.

Graphical representation of the data, basic statistical anal-
yses, and clustering of viral genomes were performed by
means of the standard libraries of the R programming
language.

A software package for the assignment of SARS-CoV-2
haplogroups as proposed in this work is made publicly avail-
able through this Github repository https://github.com/mat-
teo14c/assign_CL_SARS-CoV-2 and also in the form of a
public galaxy server with a collection of tools for the annota-
tion of SARS-CoV-2 genomes at http://corgat.cloud.ba.infn.it/
galaxy.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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virus-encoded EBNA1 interference with MHC class I antigen presen-
tation reveals a close correlation between mRNA translation initia-
tion and antigen presentation. PLoS Pathog. 6(10):e1001151.

Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB,
Bradbury RS, Posey JE, Gwinn M. 2019. Pathogen genomics in public
health. N Engl J Med. 381(26):2569–2580.

Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M.
2020. The 2019-new coronavirus epidemic: evidence for virus evo-
lution. J Med Virol. 92(4):455–459.

Boni MF, Lemey P, Jiang X, Lam T-Y, Perry BW, Castoe TA, Rambaut A,
Robertson DL. 2020. Evolutionary origins of the SARS-CoV-2 sarbe-
covirus lineage responsible for the COVID-19 pandemic. Nat
Microbiol. 5(11):1408–1417.

Ceraolo C, Giorgi FM. 2020. Genomic variance of the 2019-nCoV coro-
navirus. J Med Virol. 92(5):522–528.

Chiara M, Horner DS, Gissi C, Pesole G. 2020. Comparative genomics
suggests limited variability and similar evolutionary patterns be-
tween major clades of SARS-CoV-2. bioRxiv. Available from:
https://www.biorxiv.org/content/10.1101/2020.03.30.016790v2.
Accessed December 2, 2020.

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK,
Bleicker T, Brünink S, Schneider J, Schmidt ML, et al. 2020.
Detection of 2019 novel coronavirus (2019-nCoV) by real-time
RT-PCR. Euro Surveill. 25(3):2000045.

Coronaviridae Study Group of the International Committee on
Taxonomy of Viruses. 2020. The species severe acute respiratory
syndrome-related coronavirus: classifying 2019-nCoV and naming
it SARS-CoV-2. Nat Microbiol. 5(4):536–544.

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E.
2020. The spike glycoprotein of the new coronavirus 2019-nCoV
contains a furin-like cleavage site absent in CoV of the same clade.
Antiviral Res. 176:104742.

Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Liu Y, Mills
MC. 2020. Demographic science aids in understanding the spread
and fatality rates of COVID-19. Proc Natl Acad Sci U S A.
117(18):9696–9698.

Deng X, den Bakker HC, Hendriksen RS. 2016. Genomic epidemiology:
whole-genome-sequencing-powered surveillance and outbreak in-
vestigation of foodborne bacterial pathogens. Annu Rev Food Sci
Technol. 7(1):353–374.

Deslandes A, Berti V, Tandjaoui-Lambotte Y, Alloui C, Carbonnelle E,
Zahar JR, Brichler S, Cohen Y. 2020. SARS-CoV-2 was already spread-
ing in France in late December 2019. Int J Antimicrob Agents.
55(6):106006.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. 2016. SARS and
MERS: recent insights into emerging coronaviruses. Nat Rev
Microbiol. 14(8):523–534.

Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A,
Lemey P, Baele G.. 2020. Temporal signal and the phylodynamic
threshold of SARS-CoV-2. Virus Evol. 6(2):veaa061.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Endo A, Abbott S, Kucharski AJ, Funk S, Centre for the Mathematical
Modelling of Infectious Diseases COVID-19 Working Group. 2020.

Early Emergence and Biased Spatiotemporal Distribution of SARS-CoV-2 . doi:10.1093/molbev/msab049 MBE

2563

https://rfam.org/family/RF00164
https://rfam.org/family/RF00164
https://github.com/matteo14c/assign_CL_SARS-CoV-2
https://github.com/matteo14c/assign_CL_SARS-CoV-2
http://corgat.cloud.ba.infn.it/galaxy
http://corgat.cloud.ba.infn.it/galaxy
https://doi.org/10.6084/m9.figshare.13333951
https://doi.org/10.6084/m9.figshare.13333877
https://doi.org/10.6084/m9.figshare.13333877
https://www.biorxiv.org/content/10.1101/2020.03.30.016790v2


Estimating the overdispersion in COVID-19 transmission using out-
break sizes outside China. Wellcome Open Res. 5:67.

EpiCoV Data Curation Team. 2020. 55,000 viral genomic sequences of
hCoV-19 shared with unprecedented speed via GISAID [Internet].
[cited 2020 Nov 10]. Available from: https://www.gisaid.org/.

Forster P, Forster L, Renfrew C, Forster M. 2020. Phylogenetic network
analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A.
117(17):9241–9243.

G�omez-Carballa A, Bello X, Pardo-Seco J, Martin�on-Torres F, Salas A.
2020. Mapping genome variation of SARS-CoV-2 worldwide high-
lights the impact of COVID-19 super-spreaders. Genome Res.
30(10):1434–1448.

Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. 2018. A
Reference Viral Database (RVDB) to enhance bioinformatics analysis
of high-throughput sequencing for novel virus detection. mSphere
3(2):e00069–e00118.

Grubaugh ND, Hanage WP, Rasmussen AL. 2020. Making sense of mu-
tation: what D614G means for the COVID-19 pandemic remains
unclear. Cell 182(4):794–795.

Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. 2008. The
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