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Abstract

Generation of desired cell types by cell conversion remains a challenge. In particular,

derivation of novel cell subtypes identified by single-cell technologies will open up

new strategies for cell therapies. The recent increase in the generation of single-cell

RNA-sequencing (scRNA-seq) data and the concomitant increase in the interest

expressed by researchers in generating a wide range of functional cells prompted us

to develop a computational tool for tackling this challenge. Here we introduce a web

application, TransSynW, which uses scRNA-seq data for predicting cell conversion

transcription factors (TFs) for user-specified cell populations. TransSynW prioritizes

pioneer factors among predicted conversion TFs to facilitate chromatin opening

often required for cell conversion. In addition, it predicts marker genes for assessing

the performance of cell conversion experiments. Furthermore, TransSynW does not

require users' knowledge of computer programming and computational resources.

We applied TransSynW to different levels of cell conversion specificity, which reca-

pitulated known conversion TFs at each level. We foresee that TransSynW will be a

valuable tool for guiding experimentalists to design novel protocols for cell conver-

sion in stem cell research and regenerative medicine.
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1 | INTRODUCTION

Cell conversion is fundamental to many biological processes. Control

of cell conversion has significant relevance in stem cell research. For

example, generation of functionally specific cells by cell conversion is

of clinical interest for cell replacement therapies. However, several

roadblocks need to be overcome for achieving optimal cell conversion,

such as the accurate characterization of cell populations and the iden-

tification of cell conversion factors. Single-cell RNA-sequencing

(scRNA-seq) technologies have made it possible to address these

challenges. Due to the greater amount of scRNA-seq data generated

across the world, experimental researchers are increasingly expressing

their interest in deriving novel functional cell types.

Here, we present TransSynW, a scRNA-seq based web applica-

tion for identifying cell conversion transcription factors (TFs) applica-

ble in stem cell and clinical research (Figure 1A). It prioritizes pioneer

factors (PFs) in the prediction of conversion TFs. Evidence suggests

that PFs have a key role in chromatin opening, a process often

required for cell conversion.1 Indeed, including PFs on cell conversion

protocols has been shown to improve their outcome.1 Furthermore, it
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predicts marker genes for each target cell type, enabling researchers

to assess the fidelity of experimentally converted cells. In addition, it

is user-friendly, and it does not require users' computer programming

or computational resources. We also created a comprehensive video

tutorial for guiding users through the web interface.

The application of TransSynW to various cell systems well-

recapitulated known cell conversion TFs and made novel predictions,

including the phenotypic conversion between cells in organoids and their

in vivo counterparts. Moreover, predicted marker genes were consistent

with experimentally known ones. These results highlight the applicability

of TransSynW to a wide range of cell conversion experiments.

2 | RESULTS

2.1 | Method overview

The TransSynW algorithm first identifies specifically and nonspecifically

expressed TFs, and selects the combination that exhibits the highest

synergistic interactions among them (see Methods) (Figure 1B). Nota-

bly, here we considered for the nonspecific part only PFs that have pre-

viously been reported to be involved in cell conversion protocols

(Table S1). Predicted conversion TFs are then ranked by the expression

fold change between the target and starting cell populations and users

can prioritize the TFs for experimental follow-ups based on this ranking.

(A)

(B)

F IGURE 1 A, Application of TransSynW to stem cell research and regenerative medicine. B, Schematic overview of TransSynW algorithm
(see also Methods). First, transcription factors (TFs) most specifically expressed in the selected target cell population (specific TFs) and
nonspecifically expressed pioneer factors (PFs) are computed. The most synergistic combination of specific TFs and nonspecific PFs is then
identified. The predicted set of TFs are ranked by expression fold change between target and starting cell populations. In parallel, top
10 candidate marker genes for target cell population are computed by JSD

Significance statement

The study proposes a computational web application, Tran-

sSynW. To the best of the author's knowledge, it is the only

computational tool that can identify cell conversion tran-

scription factors (TFs) for any cell population in single-cell

RNA-sequencing data. TransSynW does not require prior

biological information, computer programming, and users

computational resources. In addition, TransSynW prioritizes

pioneer factors among predicted conversion TFs to facilitate

chromatin opening often required for cell conversion. Fur-

thermore, TransSynW predicts marker genes for assessing

the performance of cell conversion experiments. Thus, Tran-

sSynW will be a staple tool for guiding experimentalists to

design novel protocols for cell conversion in stem cell

research and regenerative medicine.

A WEB APPLICATION FOR CELL CONVERSION EXPERIMENTS 231



We compiled the scRNA-seq data of starting cell types frequently used

in cell conversion experiments from various scRNA-seq platforms

(Table S2). For optimal results, users are recommended to use starting

and target cell type data obtained from the same scRNA-seq platform

or, if not available, from the closest sequencing platform. In general, it is

recommended to select at least one PF and one specific TF from the

predicted conversion TFs. It may be advisable to select more factors if

the phenotypic difference between the starting and target cell types is

large. Finally, TransSynW also predicts potential marker genes of the

target cell populations. This feature enables researchers to select

markers for assessing the performance of their cell conversion

experiments.

TABLE 1 Predicted specific transcription factors (TFs) and nonspecific PFs

Cell type Specific TFs Nonspecific PFs
Annotation in
data

Data source
(PubMed ID)

(1) Conversion into broad cell type

Myoblast MYF5, MYOD1, PAX7, GLIS3, PAX3 CEBPB, IRF8, PBX1 1,3,4,5,7 30283141

Keratinocyte TRP63, GATA3, NFIB KLF4, GRHL2, CEBPA 0-16 30283141

Cardiomyocyte NKX2-5, TBX5, PROX1, ZFP579, NR0B2 GATA4, MEIS1, PBX1 9,14 30283141

Hepatocyte NR1I2, ZFP750, ZFHX4, HNF1A, ZBTB48 HNF4A, FOXA3, FOXA2 4,5,10,11,12,15 30283141

HSC HLF, HOXA9, GATA2, TAL1, MYCN CEBPB, CEBPA, PBX1 0,4,8 30283141

Neuron EOMES, NEUROD6, EGR4, RARB, DLX6 FOXG1, NEUROD1, PBX1 9,10,12 30283141

Oligodendrocyte/OPC NKX6-2, OLIG1, SOX10, OLIG2, NFE2L3 SOX2 0,6,11 30283141

Macrophage RUNX3, BATF3, BATF, NFE2, E2F1 SPI1, CEBPA, ARID3A Different tissues 30283141

Beta cell NKX6-1, PDX1, MAFA, OVOL2, MNX1 NEUROD1, ISL1, FOXA2 0,8,9,11,17 30283141

NSC ZFP275, ASCL1, TCF3 FOXG1, SOX2, PBX1 All young NSCs 30827680

(2) Conversion into subtype

Dopaminergic neuron NPAS4, MYT1L, EBF3, POU6F1, BNC2 FOXA2, ASCL1, GATA3 hDA 27716510

Medial floorplate progenitor LMX1A, SP2, NR2F6, LMX1B, HMGA2 FOXA2, ASCL1, SOX2 hProgFPM 27716510

GABAergic neuroblast GATA3, SOX14, MYT1L, BNC2, ZBTB38 ASCL1, SOX2, PBX1 hNbGaba 27716510

Oculomotor neuron PHOX2B, PHOX2A, ISL1, RXRG, NR2F2 FOXA2, ASCL1, “PBX1 hOMTN 27716510

Serotonin neuron FEV, GATA3, SOX1, DPF1, LMX1B GATA2, PBX1 hSert 27716510

CD4+ central memory T cell RBSN, RFX3, NR4A1, KLF9, ID3 GATA3, CEBPB TCM 29352091

CD8+ memory T cell EOMES, BACH2, KLF7, MYC, ID3 CEBPB, GATA3 4,6,11,13 31754020

Memory B cell KLF13, LMO4, PCBD1, KLF10, ZBTB38 IRF8, SPI1, CEBPB Memory B cell 31968262

(3) Phenotype conversion

Primed mESC 1 LIN28A, MYC, ID1, FOXP1, ID3 POU5F1, ESRRB, KLF4 FBSLIF 25471879

Naive mESC 1 ZFHX2, MEIS2, ZIC2 POU5F1, ESRRB, KLF4 2iLIF

Primed mESC 2 LIN28A, FOXP1, SOX4 SOX2, POU5F1, KLF4 mES_lif 26431182

Naive mESC 2 SPIC, MITF, MEIS2 ESRRB, KLF4, POU5F1 mES_2i

Active NSC CENPS, EGR1, INSM1, MXD3, E2F1 ASCL1, SOX2, PBX1 All young aNSCs 30827680

Quiescent NSC DBP, EPAS1, ID2 FOXG1, PBX1, ASCL1 All young qNSCs

Fetal hepatocyte ZGPAT, KLF11, ZBTB20 GATA4, HNF4A, CEBPA Fetal hepatocyte 30500538

Organoid hepatocyte HES6, LEF1, THAP8, SOX9, HTT FOXA2, HNF4A, MEIS1 Fetal hepatocyte

organoid

Adult hepatocyte 1 KLF9, CEBPD, KLF6 FOXA2, HNF4A, CEBPB Hepatocyte 31292543

Adult hepatocyte 2 SCAND1, NR3C1, EDF1 HNF4A, FOXA2, PBX1 Hepatocyte 30348985

Adult excitatory neuron MLXIPL, PEG3, HLF, BHLHE40, KLF9 FOXG1, CEBPB, PBX1 adult_Ex 31619793

Organoid excitatory neuron NEUROG2, SOX11, SOX4, CSRP2,

CARHSP1

FOXG1, PBX1 hOrga_EN

Adult inhibitory neuron PEG3, MLXIPL, HLF, PPARGC1A, KLF9 FOXG1, SOX2, PBX1 adult_In 31619793

Organoid inhibitory neuron SIX3, PAX6, ID4, KLF10, MEIS2 ASCL1, SOX2, SOX9 hOrga_IN

Note: Experimentally validated conversion TFs are marked in bold. TFs are ordered from left to right by fold change to MEF/HFF. Cluster IDs annotated to

same cell types in PanglaoDB were merged prior to analysis. Macrophage data from different tissues (heart, kidney, lung, muscle, brain, pancreas, skin

spleen, trachea) were merged. See Table S3 for literature evidence for predicted conversion TFs.

232 RIBEIRO ET AL.



2.2 | Application to various cell conversions

To demonstrate the applicability of TransSynW, we applied it to dif-

ferent cell systems, which encompassed conversions into broad cell

types, subtypes, and phenotypic states (Tables 1 and S3). For example,

in the first category, FOXA2, FOXA3, and HNF4A were predicted for

the hepatocyte, which, together with HNF1A predicted in the specific

part, are known for hepatocyte conversion.2 The predicted TFs for

the beta cells included NKX6-1, MAFA, PDX1, and NEUROD1, which

have been shown to induce beta cell conversion.3-5 Moreover, in both

cases the predicted marker genes recapitulated commonly used ones

(Tables 2 and S4). Indeed, many predicted conversion TFs are known

to regulate each other and the predicted marker genes (Figure 2A,B),

supporting the biological relevance of synergistic interactions cap-

tured by TransSynW.

Next, we analyzed different subtypes of neurons, as they are one

of the most well studied subtypes. Among the predicted TFs for dopa-

minergic (DA) neurons, MYT1L, ASCL1, FOXA2, and GATA3 have

TABLE 2 Predicted marker genes with documented evidence

Cell type Predicted marker gene with evidence Reference (PubMed ID or website)

(1) Conversion into broad cell type

Myoblast CALCR, FGFR4, DES, ANKRD1, FITM1 12223412, 26440893, 26492245,

24644428, 8120103

Keratinocyte KRT5 22028850

Cardiomyocyte NPPA, MYH6 27123009, https://www.rndsystems.

com/cn/research-area/cardiac-stem-

cell-markers

Hepatocyte SRD5A2, FGF21 25974403, 28515909

HSC ESAM, LHCGR, SLC22A3, TIE1, ANGPT1,

RBP1

https://www.rndsystems.com/cn/

research-area/hematopoietic-stem-cell-

markers

27365425, 27225119

Neuron HTR2C, NTNG1, HS6ST3 30078709

Oligodendrocyte/OPC MAG, CLDN11, PLEKHH1, ASPA, TRF 29024657

Macrophage FOLR2, F13A1, LYZ2, PF4, MGL2, MMP13,

CLEC10A

28576768, 29622724, 25477711,

Beta cell INS1, INS2, G6PC2 22745242, 15133852, 25322827

NSC NUDC, TUBA1B, TUBA1A 21771589, 29057214, 29281841

(2) Conversion into subtype

Dopaminergic neuron ALDH1A1, TH 30096314, http://www.abcam.com/

neuroscience/neural-markers-guide

Medial floorplate progenitor WNT1, MDK 31080111, 24125182, 11750071

GABAergic neuroblast GAD2 http://www.abcam.com/neuroscience/

neural-markers-guide

Oculomotor neuron PRPH, FGF10, SLIT3, EYA1 24549637, 9221911, 20215354,

31080111

Serotonin neuron TPH2, SLC6A4 http://www.abcam.com/neuroscience/

neural-markers-guide

CD8+ memory T cell SELL, CXCR5, DRC1 29236683, 18000950, 30243945

Memory B cell TNFRSF13B, CD27 Company ebioscience, miltenyibiotec

(3) Phenotype conversion

Primed mESC 1 BMP4 26860365

Active NSC CENPF 29727663

Quiescent NSC GJA1 29727663

Fetal hepatocyte FGB, CYP2E1 28166538, 29622030

Adult hepatocyte 1 CYP3A4 26838674

Adult hepatocyte 2 APOA1 28166538

Adult excitatory neuron CCK 12815247

Adult inhibitory neuron CCK, PVALB, CRH 12815247, 2196836, 2843570

Note: See Table S4 for full list of predicted marker genes.
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been shown to generate DA neurons.6-8 The predicted TFs for the

medial floorplate progenitor, LMX1A and FOXA2, are consistent with

the previous attempt to derive this cell subtype.9 ASCL1 is sufficient

to convert fibroblasts into GABAergic neurons.10 Consistently, the

predicted TFs for GABAergic neuroblasts contained ASCL1 and no

other TFs known to generate other neuronal subtypes. The predicted

(A)

(C)

(D) (E)

(B)

F IGURE 2 Transcriptional regulatory interactions among predicted conversion transcription factors (TFs) and marker genes for, A, hepatocyte
and B, beta cell. Interaction data were retrieved from MetaCore from Clarivate Analytic in May/2020. C, Experimental strategy to improve cell
conversion protocols for GABAergic neurons (Gaba) and medial floorplate progenitor (ProgFPM) based on TransSynW predicted core TFs. Dashed
outlines represent nonvalidated TFs in the literature. D, Processing time vs number of cells in input scRNA-seq file (n = 3). Target population size was
fixed to 8% of total size. E, Processing time for Rds files vs number of cells in target population (n = 3). Input population size was fixed to 10 000
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TFs for oculomotor neuron included ISL1, PHOX2A, and PHOX2B

which have been reported to generate motor neurons via a synergistic

interaction.11,12 FEV, GATA2, and LMX1B were predicted for seroto-

nergic neurons, which are among the TFs used for deriving this cell

subtype.13 We considered memory T and B cells as subtypes of their

naive counterparts. Although a defined set of TFs for generating T

cells has not been reported, the nonspecific PFs for both CD4+ and

CD8+ T cells contained GATA3 and CEBPB, suggesting that these fac-

tors are primary candidates for experimental validation. Indeed,

GATA3 is implicated in CD8+ memory T cell conversion.14 Among the

specific TFs, ID3, MYC, BACH2, and EOMES are reported to initiate

CD8+ memory T cell conversion.15-17 The known marker genes, such

as SELL and CXCR5, were also identified. Finally, the nonspecific PFs

for the memory B cells included IRF8 and SPI1, which together are

implicated in the generation of B cell memory.18

Another type of cell conversion is phenotypes of a same cell type.

The predicted nonspecific PFs for the two mouse embryonic stem

cells (mESC) datasets are known to induce pluripotency.19-21 The spe-

cific conversion TFs predicted for both primed mESC populations

were LIN28A and FOXP1. LIN28A is known to induce the transition

from naive to primed mESCs.22 FOXP1 is implicated in maintaining

pluripotency under non-2i conditions.23 Whether FOXP1 induces a

transition from a naive state to a primed state calls for further investi-

gations. MEIS2 was predicted for both naive mESC populations. Little

is known about its role in mESC regulation and hence it constitutes a

novel candidate gene. The nonspecific conversion PFs for both active

(aNSCs) and quiescent (qNSCs) consisted of known NSC-conversion

TFs (eg, ASCL1, SOX2, FOXG1). The specific TFs for aNSCs contained

EGR1 known to activate EGFR and accelerate proliferation of NSCs,24

and E2F1, which is a cell cycle regulator linked to EGFR signaling in

NSCs.25 The conversion TFs for qNSCs included ID2, a BMP effector

that has been inferred to regulate qNSCs.26 Furthermore, CENPF and

GJA1 are implicated as markers for late-aNSCs and qNSCs, respec-

tively.27 Next, the scRNA-seq data of organoid28 and in vivo hep-

tocytes28-30 were analyzed. The nonspecific PFs included general

hepatocyte conversion TFs (eg, HNF4A, FOXA2, GATA3). Among the

specific TFs for the in vivo hepatocytes were ZBTB20, KLF6, KLF9,

CEBPD, and NR3C1. ZBTB20, KLF9 are important for hepatocyte

proliferation,31 whereas KLF6, CEBPD, KLF9, and NR3C1 regulate

hepatic glucose and lipid metabolism,32-34 suggesting that the deriva-

tion of in vivo hepatocytes might require sustained cell proliferation

and proper metabolization of glucose and lipids. Known hepatocyte

marker genes, such as FGB, CYP2E1, CYP3A4, APOA1, were

predicted only for the in vivo hepatocytes but none for the in vitro

ones. Finally, TransSynW was applied to in vivo and organoid excit-

atory and inhibitory neurons.35 TFs predicted only for the in vivo

excitatory and inhibitory neurons contained many common TFs

(PEG3, KLF9, HLF, and MLXIPL), suggesting a common maturation

mechanism. KLF9 is known to be necessary for late-phase matura-

tion of neurons.36 BHLHE40, which was only predicted for the

in vivo excitatory neurons, is implicated in the regulation of neuronal

excitability.37 Moreover, a few known markers (CCK, PVALB, CRH)

for excitatory/inhibitory neurons were predicted only for the

adult samples. It would be of interest to experimentally test if

predicted conversion TFs could indeed convert organoid cells into

functional ones.

Taken together, we demonstrated that TransSynW can be effec-

tively applied for identifying conversion TFs for a wide range of cell

types. An example experimental strategy for using TransSynW

predicted conversion TFs is shown in Figure 2C.

2.3 | Processing speed

The processing speed of TransSynW was assessed using text file, Rds

file and a sparse matrix saved as Rds file (sparse-Rds). The time

required for the upload of the data was not considered for this analy-

sis. Thus, depending on the users internet connection speed, the over-

all processing time may vary to a certain degree. Rds files were the

most efficient in processing 10 000 cells (6 minutes) (Figure 2D). In

addition, up to 40 000 cells were successfully processed with Rds

files, whereas only 25 000 cells in the other formats. This is in accor-

dance with the respective file sizes (Table S5). If users wish to use

datasets larger than 40 000 cells, we recommend to down-sample

them. Next, we benchmarked the execution time against the target

cell population size in 10 000 cells. The processing time peaked at

11 minutes for 3500 cells (Figure 2E). Afterwards, it started decreas-

ing due to the reduced size of the background populations. Our gen-

eral recommendation to users is to use Rds files for datasets with

more than 10 000 cells.

3 | DISCUSSION

We have introduced a scRNA-seq based web application, TransSynW,

for unbiased identification of cell conversion TFs, following the

increasing interest from experimental researchers in generating novel

functional cell types identified by scRNA-seq. TransSynW does not

require prior biological knowledge, computer programming and com-

putational resources. Moreover, TransSynW identifies potential

marker genes for target cell types, which researchers can use for

assessing the performance of conversion experiments. Furthermore,

prioritization of PFs well recapitulated known conversion TFs in vari-

ous systems, and predicted novel ones. We foresee that TransSynW

will be a valuable tool for the experimental community, particularly for

the generation of novel cell populations for stem cell research and

regenerative medicine purposes.

4 | MATERIALS AND METHODS

4.1 | Implementation

TransSynW is written in HTML, JavaScript (frontend), PHP and

Bash (backend), and runs on a virtual server hosted by Luxembourg

Centre of Systems Biomedicine (LCSB, University of Luxembourg).
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The frontend allows users to upload all required data, which are then

parsed to the backend as different variables. In the backend bash

script, the variables are parsed to the TransSynW main R script as

different arguments. The output files are compressed into a .zip folder

and sent to the user-specified E-mail address.

4.2 | Identification of conversion TFs

The main algorithm is based on the notion that conversion TFs consist

of a combination of TFs that are specifically expressed in a target pop-

ulation and TFs that are more broadly expressed in the background

population, and that these TFs synergistically interact with each

other.38 The algorithm follows four major steps.

• Step 1: Identification of candidate TFs.

TransSynW first normalizes the data by the total RNA counts. Then

TFs whose expression value is 0 across all cells in the target cell

population are discarded. Next, it selects top 300 lowest CV (coef-

ficient of variation) TFs as potential candidate TFs, since using

more than this number of TFs often resulted in an out-of-memory

error during the subsequent computation and conversion TFs usu-

ally exhibit low expression variation.

• Step 2: Identification of most specifically expressed TFs.

The set of TFs that are specifically expressed in the target popula-

tion is determined by Jensen-Shannon Divergence (JSD). JSD is

computed for each TF in each cell and the summed JSD value for

each TF over all cells is calculated. The top 10 lowest summed-JSD

TFs are selected as the most specifically expressed TFs.

• Step 3: Identification of most synergistic set of specifically expressed TFs.

Next, TransSynW identifies the most synergistic subset of TFs among

the most specifically expressed TFs by computing MMI.39

MMI Sð Þ= −
X

T⊆S
−1ð Þ Tj jH Tð Þ,

where S = {X1, X2, …, Xk}, T is a subset of S, jTj denotes the cardinal-

ity of T, and H is Shannon's entropies. Negative MMI values imply

a synergistic interaction among the TFs.39 TransSynW first com-

putes MMI of all sets of three TFs among the most specifically

expressed TFs. Then a new TF is added to this set and MMI is com-

puted again. If MMI is synergistic, then the next TF is added to the

previous set, and so on. This iteration continues until either MMI

no longer shows synergy, or when the maximum core size is

reached. Here, the maximum core size was set to five.

• Step 4: Addition of PFs.

The specific TF set from step 3 is extended with the nonspecific part,

consisting solely of PFs. Every subset of three PFs is added to the

specific part. MMI is computed for each set of all TFs and the most

synergistic combination is selected as the final conversion TF set.

The final conversion TFs are ranked by the expression fold

change calculated between the target cell population and starting cell

population.

4.3 | Identification of marker genes

The marker gene set (Table S6) was collected from the following

sources; extracellular proteins and membrane receptors,40 cytoskele-

tal genes (http://www.informatics.jax.org/), metabolic genes (https://

www.vmh.life/#human/all) and CD markers for immune cells (www.

abcam.com/CDmarkers). These genes are relatively easily accessible

for experimental validation. TransSynW identifies the top 10 candidate

marker genes among this compiled set by computing JSD. Literature

evidence for predicted markers were collected either manually or

from CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/).

4.4 | PF set

Information on PFs that have previously been reported to be involved

in cell conversion protocols was manually collected from literature.

The list is available in Table S1.

4.5 | scRNA-seq data of starting cell populations

scRNA-seq data of starting cell types were collected from Cell Ranger,

GEO and Array Express databases, log 2 transformed and mean gene

expression was calculated and compiled in TransSynW (Table S2).

4.6 | scRNA-seq dataset of target cell populations

scRNA-seq data used in this study were obtained from the following

sources.29-31,35,41-48 For References 43, 48, the reprocessed data

were retrieved from PangloaDB,49 as the cell annotation was more

accurate than the original one.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.
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