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Abstract

Mass production and use of antibiotics has led to the rise of resistant bacteria, a problem

possibly exacerbated by inappropriate and non-optimal application. Antibiotic treatment

often follows fixed-dose regimens, with a standard dose of antibiotic administered equally

spaced in time. But are such fixed-dose regimens optimal or can alternative regimens be

designed to increase efficacy? Yet, few mathematical models have aimed to identify optimal

treatments based on biological data of infections inside a living host. In addition, assump-

tions to make the mathematical models analytically tractable limit the search space of possi-

ble treatment regimens (e.g. to fixed-dose treatments). Here, we aimed to address these

limitations by using experiments in a Galleria mellonella (insect) model of bacterial infection

to create a fully parametrised mathematical model of a systemic Vibrio infection. We suc-

cessfully validated this model with biological experiments, including treatments unseen by

the mathematical model. Then, by applying artificial intelligence, this model was used to

determine optimal antibiotic dosage regimens to treat the host to maximise survival while

minimising total antibiotic used. As expected, host survival increased as total quantity of

antibiotic applied during the course of treatment increased. However, many of the optimal

regimens tended to follow a large initial ‘loading’ dose followed by doses of incremental

reductions in antibiotic quantity (dose ‘tapering’). Moreover, application of the entire antibi-

otic in a single dose at the start of treatment was never optimal, except when the total quan-

tity of antibiotic was very low. Importantly, the range of optimal regimens identified was

broad enough to allow the antibiotic prescriber to choose a regimen based on additional cri-

teria or preferences. Our findings demonstrate the utility of an insect host to model antibiotic

therapies in vivo and the approach lays a foundation for future regimen optimisation for

patient and societal benefits.
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Author summary

Research into optimal antibiotic use to improve efficacy is far behind that of cancer care,

where personalised treatment is common. The integration of mathematical models with

biological observations offers hope to optimise antibiotic use, and in this present study an

in vivo insect model of systemic Vibrio infection was used for the first time to determine

critical model parameters for optimal antibiotic treatment. By this approach, the optimal

regimens tended to result from a large initial ‘loading’ dose followed by subsequent doses

of incremental reductions in antibiotic quantity (dose ‘tapering’). The approach and find-

ings of this study opens a new avenue towards optimal application of our precious antibi-

otic arsenal and may lead to more effective treatment regimens for patients, thus reducing

the health and economic burdens associated with bacterial infections. Importantly, it can

be argued that until we understand how to use a single antibiotic optimally, it is unlikely

we will identify optimal ways to use multiple antibiotics simultaneously.

Introduction

The increased availability of antibiotics has led to the overuse, and often inappropriate use, of

these substances. This has resulted in bacterial diseases such as gonorrhoea, sepsis and tuber-

culosis becoming increasingly difficult to treat due to the emergence of multi-drug resistant

strains [1–5]. Resistant bacteria pose significant health and economic burdens that has necessi-

tated research into preventing their spread in attempts to prolong antibiotic effectiveness.

Unfortunately, research indicates that the fight against antibiotic resistance will not be won by

simply restricting when antibiotics are prescribed, therefore we must consider how they are

prescribed [6–8].

Bacterial antibiotic resistance is not only of great concern for human patients, but it also

has a significant impact in agriculture [9], aquaculture [10–11], horticulture [12], and the natu-

ral environment [13]. With the growth of the human population and the increased demand

for animal protein in particular, the use of antibiotics in food production continues to increase

[14]. Antibiotics are used extensively in these industries to treat infections and prevent dis-

eases. Due to the importance of antibiotics for human and animal health, many countries have

tight legislation surrounding the use of antibiotics within livestock production [15]; however,

enforcement of such legislation still represents a major challenge in some territories.

The ‘prudent’ use of antibiotics has long been recommended as a way to slow the spread of

antibiotic resistance [16]. However, for this to be fully effective, the treatment regimens under

which they are administered should be optimal. Optimal antibiotic treatment strategies using a

single antibiotic consist primarily of two variables: the dose and the duration of treatment. For

most antibiotics, the drug developer identifies a treatment regimen which then is implemented

by clinicians and veterinary surgeons when prescribing these antibiotics [17]. Conventional

treatment regimens usually consist of a fixed dose administered typically equally split in time

for a specified duration, e.g. 100 mg (or one tablet) given once per day for 7 days. Pharmacoki-

netics and pharmacodynamics studies of target populations are used to determine the dose

and duration for these treatment regimens. However, one limitation of this approach is that it

only provides information for the regimen being analysed and offers no indication for other

potential regimens [18]. While these fixed-dose treatment regimens may be effective, they may

not be the optimal dose or duration at which to administer the antibiotic most efficaciously or

to prevent the emergence and spread of resistance [19].
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The use of mathematical modelling in disease modelling and antibiotic resistance research

has grown considerably over the past few decades and is now an invaluable tool [20]. Despite

this, there is still little consensus on how individual antibiotic dosage regimens should be

applied. D’Agata et al. [21] examined a series of models that included an immune response

and a constant concentration of antibiotic (when present). These authors concluded that one

of the most important factors was the early initiation of antibiotic treatment; however, they

also argued that shorter antibiotic treatment durations resulted in the survival and selection of

resistant strains [21]. Geli et al. [22] incorporated pharmacodynamics into their mathematical

model by considering the antibiotic-induced death rate to be a function of the concentration

of antibiotic present, although the concentration was modelled as a (non-dynamic) step func-

tion. These authors found that all antibiotic use increased the selection of resistance, regardless

of the treatment regimen, although this was minimised for shorter durations of treatment,

which also saw the time with symptoms decrease [22]. Ankomah and Levin [23] addressed the

issue of a constant concentration of antibiotic by assuming that when antibiotics were not

added to the system the concentration of antibiotic declined exponentially. They showed that

under most conditions, high dose therapy is more effective than more moderate dosing to

clear the infection and decrease the likelihood of emergence of antibiotic resistance; although

these authors acknowledge that antibiotics can produce unwanted side-effects at greater con-

centrations [23]. Gjini and Brito [24] investigated the concept of adaptive treatments, whereby

treatments are linked to bacterial load, further demonstrating that classical treatments (fixed

dose and duration) are sub-optimal [24].

Given the increasing number of studies aiming to optimise antibiotic dosage regimens,

advanced computational search algorithms, such as Genetic Algorithms (GA) [25], are signifi-

cantly under-utilised in this field. This is in contrast to areas such as cancer chemotherapy

where such approaches have been used for more than a decade [26–27]. GAs, which are a form

of Evolutionary algorithms, allow a much wider search space to be studied and allows the

relaxation of assumptions such as constant concentration of antibiotics or fixed daily doses.

They are also adept for studying multi-objective optimisation problems, where the quality of a

solution is defined by its performance in relation to several, often conflicting, objectives. Most

real-world optimisation problems are multi-objective. However, they are traditionally trans-

formed into a single-objective function, by means of a weighted sum of sub-functions, in order

to make optimisation tractable. This approach suffers from a number of drawbacks; it assumes

that we can capture preferences (weights), even before knowing the possible range of feasible

solutions; and that these preferences remain static. Evolutionary algorithms have proven suc-

cessful in finding high-quality solutions in high-dimensional spaces with difficult features such

as constraints and discontinuities, and are currently the state of the art in many multi-objective

optimisation problems [28].

Paterson et al. [29] was first to apply a GA to antibiotic dosing, allowing the size of each

individual dose within a treatment regimen to vary. These authors found that tapering the

antibiotic dosages, with a high first dose followed by subsequent decreasing doses, maxi-

mised the survival of hosts. Khan and Imran [30] confirmed these findings in a similar

model, taking an optimal control theory approach. A second study using a GA [31] investi-

gated a model of granulomas in a Mycobacterium tuberculosis infection, identifying the dose

size and the dosing frequency to eradicate the bacteria quickly while keeping individual

antibiotic dosages low.

Many of these previous studies are built around theoretical systems, with arbitrarily created

parameter sets. There is little to no evidence at present whether these proposed treatment regi-

mens will remain optimal inside an infected living host. Furthermore, there are very few
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mathematical models of antibiotic treatment systems that have been parameterised using bio-

logical data, and even the majority of these rely on in vitro studies [32–35].

There are two primary aims for this present study: firstly, to create and parameterise a

mathematical model using host survival data from biological experiments in an infected living

organism that can be treated with antibiotics; this mathematical model will be tested and vali-

dated by a set of follow up biological experiments. Secondly, the GA will be applied to this vali-

dated model to derive optimal treatment regimens, initially with the objective of maximising

host survival and, subsequently, maximising host survival while minimising the total amount

of antibiotic used. Due to the novel approach, which combines in vivo experiments with math-

ematical modelling and artificial intelligence, we consider only a scenario encompassing a sin-

gle antibiotic used against only a single strain of pathogen, and the inclusion of multiple

strains of varying susceptibility to the antibiotic is reserved for future study.

Animal models such as mice and rats are used in infection and treatment studies typically

as a surrogate for humans, but despite the importance of such in vivo experiments there is a

strong movement to reduce the number of vertebrates used in experimentation. Thus, less sen-

tient alternative hosts such as insects are used increasingly for in vivo studies due to their

greater ethical acceptance and low cost. In particular, the larva of the greater wax moth Galleria
mellonella has become a popular choice amongst infection researchers and it has also been

used successfully to assess the efficacy of antibiotic therapy in vivo [36–37]. Therefore, this

insect host offers the ability to assess the in vivo efficacy of different antibiotic regimens against

systemic bacterial infections. In earlier work, G. mellonella was demonstrated to be a suitable

alternative host for studying the virulence of Vibrio anguillarum, an opportunistic bacterial

pathogen of fish that causes sepsis in the host [38]. Virulent isolates of V. anguillarum can rep-

licate inside the insect but antibiotics to which the bacterium is susceptible can be adminis-

tered to save the host from a lethal inoculum of bacteria [38]. Notably, V. anguillarum was

recently reported to be responsible for a lethal human infection [39]. Therefore, this host–

pathogen system was selected for application in the present study as a model of systemic Vibrio
infection.

Methods

Biological experiments

Reagents, culture media and antibiotics. All chemicals and reagents were purchased

from Sigma-Aldrich Ltd (Gillingham, UK) unless stated. All solutions were made with distilled

water. Phosphate-buffered saline (PBS) was prepared according to Desbois and Coote [36].

Bacteria were cultured routinely on 1.5% (w/v) NaCl-supplemented tryptone soy agar (TSA;

Oxoid, Basingstoke, UK) and broth (TSB; Oxoid), while Mueller-Hinton broth (MHB; Oxoid)

supplemented with 2% (w/v) NaCl was used for minimum inhibitory concentration (MIC)

determinations. Water, PBS and culture media were sterilised by autoclaving at 121˚C for 15

min. Tetracycline hydrochloride (TET) was dissolved in distilled water, filter-sterilised (0.22 μ
polyethersulfone; Millipore, Watford, UK) and then diluted to required concentration in PBS.

Fresh stocks of TET were prepared daily.

Bacteria. V. anguillarum serotype O1 isolate Vib 79 (LMG 12101) [40] was kept routinely

at -70˚C in 15% (v/v) glycerol. Before use, bacteria were recovered initially onto agar, incu-

bated at 22˚C for 48 h, and then single colonies inoculated into broth. Cultures were incubated

(22˚C; 150 rpm; 12 h) until mid- to late-exponential phase and then bacterial cells were har-

vested by centrifugation (2700 × g; 15 min; 4˚C). The cell pellet was washed by resuspension in

PBS, centrifuged as before, re-suspended again in PBS, and then cell density determined by

measuring absorbance at 600 nm (A600). Bacterial suspensions were diluted with PBS to 1×107
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CFU/mL, and all inoculums were serially diluted in PBS in quadruplicate and plated on TSA

to confirm cell density.

Insects. G. mellonella larvae in their final instar stage were purchased (approximately 220

mg each; UK Waxworms Ltd, Sheffield, UK), stored in the dark at 4˚C, and used within 14

days. A 50-μL Hamilton syringe (Sigma-Aldrich Ltd) was used for all injections of bacterial

suspension, TET solution or PBS.

In vitro minimum inhibitory concentration. To identify a suitable TET dose to adminis-

ter to infected G. mellonella larvae in an attempt to rescue them from a lethal inoculum of V.

anguillarum, minimum inhibitory concentrations were determined according to a method

modified from the Clinical and Laboratory Standards Institute standard [CLSI; 41]. Briefly, the

wells in the last column of a flat-bottomed polystyrene 96-well microtitre plate (Sarstedt, Nüm-

brecht, Germany) were dispensed with 100 μL MHB containing antibiotic at double the great-

est desired concentration for the assay. Two-fold dilutions were performed across the plate in

fresh MHB and the final column contained just 100 μL MHB (no antibiotic control). Then,

5 μL of V. anguillarum suspension at 1×107 CFU/mL was added to each well of duplicate rows

on the plate. Microtitre plates were incubated (22˚C; 180 rpm; 24h) and then the wells were

examined by eye for growth. The MIC was recorded to be the lowest concentration of antibi-

otic at which no turbidity is observed.

Antibiotic treatment experiments. All experiments were completed in triplicate using

larvae from different batches. Initial antibiotic experiments used groups containing 15 larvae

(total n = 45) while model validation experiments used groups of 30 larvae (total n = 90). First,

10 μL of bacterial suspension was injected into larvae via the last left proleg before treatment at

2 h, 24 h and 48 h with 10 μL of TET solution, diluted to various concentrations in PBS,

according to a published protocol [36]. The syringe was cleaned between experiments and

treatment groups with consecutive washes of 1% (w/v) sodium hypochlorite, 70% ethanol and

sterile water. A positive control group was injected with bacterial suspension, and PBS only

instead of antibiotic. Three negative control groups were always prepared: one group that

underwent no manipulation to control for background larval mortality (no manipulation con-

trol), a second group (uninfected control) that was injected with PBS only at initial challenge

and all treatment time points, and a third group which assessed for the toxicity of the TET

treatment by inoculation with the greatest antibiotic concentration used at each time point.

There was never more than one death per control group per experiment. Larvae were stored in

Petri dishes in the dark at 15˚C for up to 192 h. Larvae were inspected every 24 h so that per-

centage survival could be calculated for each group; larvae were considered dead if they did

not move after being touched with a sterile inoculation loop. This process was further refined

for the model validation experiments when larvae were examined for movement under an

Olympus VMZ 1× 4× VM stereo microscope (Tokyo, Japan).

Half-life of tetracycline. Inhibition of V. anguillarum growth by wax moth haemolymph

spiked with TET was examined in vitro by disk diffusion assay to determine the relationship

between TET concentration in haemolymph and the diameter of a growth inhibition zone. A

single colony of V. anguillarum was added to 2 mL of PBS and vortexed for 30 s to suspend the

bacteria. Bacterial lawns were prepared on 1.5% (w/v) NaCl-supplemented TSA plates by

spreading 50 μL of bacterial suspension across the agar surface with a sterile cotton wool swab

before drying for 1 h at room temperature. The haemolymph (ca. 5–20 μL from each animal)

from 15 unmanipulated larvae was harvested according to McMillan et al. [38] and pooled in a

bijou bottle on ice. Aliquots of haemolymph were prepared on ice to contain concentrations of

TET between 0.625 mg/L and 40 mg/L, as described in MIC method (above). Then, 20 μL of

each TET dilution was pipetted onto separate sterile antibiotic assay disks (Whatman 6 mm;

GE Healthcare Life Sciences, Little Chalfont, UK). Once dry, the disks were placed onto the

PLOS COMPUTATIONAL BIOLOGY Optimising antibiotic treatment regimens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008037 August 3, 2020 5 / 20

https://doi.org/10.1371/journal.pcbi.1008037


agar plates that had been inoculated with V. anguillarum, and then incubated (22˚C; 24h).

Then the diameters of the zones of inhibition were measured with calipers. This experiment

was completed in triplicate. To estimate the decay rate of TET in vivo, half-life experiments

were completed in wax moth larvae. TET was inoculated into wax moth larvae at 5 mg/kg.

Haemolymph was harvested from larvae at 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 24 h and

30 h, then transferred onto antibiotic assay discs and tested for growth inhibition as described

above. This experiment was performed in triplicate and larvae injected with PBS only were

included as a negative control.

Mathematical modelling

From here on in, for simplicity, we refer to G. mellonella larvae as the ‘host’, V. anguillarum as

the ‘bacteria’ and TET as the ‘antibiotic’.

Bacteria. We assumed the bacteria population, with density given by B(t), is identical in

terms of its antibiotic sensitivity – by which we mean the concentration of antibiotic required to

kill off the population. The two actions in this model were: (i) replication, creating new bacterial

cells, with rate R+, increasing the bacterial population; and (ii) the death of bacterial cells, R−,

due to either the host immune system or by the antibiotic, reducing the bacterial population.

For the bacterial population, the replication process was modelled by an exponential growth

term (we initially tried a logistic growth function, but upon initial parameterising the model the

carrying capacity was estimated to be 1012, which is considerably in excess of the bacterial load

of 109 at which the host dies [38]). The death rate due to the immune system was modelled by a

saturating function, and the death rate due to the antibiotic was modelled by a sigmoidal func-

tion, where A is the quantity of antibiotic present to act against the bacterium causing the infec-

tion [28, 33–34]. The functional forms of these are given below in Eq (1):

Rþ ¼ rB
z}|{
Replication

R� ¼ mBn
|{z}

Immune
þ

a1BAk

Ak þ ak
2|fflfflfflffl{zfflfflfflffl}

Antibiotic induced

ð1Þ

The number of bacteria was modelled using a Markov chain approach, specifically the Gil-

lespie Algorithm [42] (described below). Due to the high population size of bacteria, up to 109,

the standard Gillespie Algorithm would have a high run-time (as the time between each indi-

vidual event would be close to zero). Hence, we took an approximation of the Gillespie Algo-

rithm, known as Tau-leaping [43]. Following preliminary runs of the mathematical model, we

settled on a fixed time step of τ = 0.25 (15 minutes), and updated the number of bacteria using

Eq (2)

Bðt þ tÞ ¼ BðtÞ þ PðtRþðtÞÞ � PðtR� ðtÞÞ ð2Þ

where P(τx(t)) is a Poisson distributed random variable with mean τx(t). Initially, the bacteria

population was B(0) = 105, matching the biological experiments. To model host heterogeneity,

for each run of the mathematical model, r and m were drawn from a normal distribution with

means rμ and mμ respectively, and a shared standard deviation v, i.e. r~N(rμ,v) and m~N(mμ,

v).

Antibiotic. The antibiotic concentration was based on a standard pharmacokinetic /

pharmacodynamics (PK/PD) approach, where A is the quantity of antibiotic present to act

against the bacterium causing the infection, and a is the decay rate of the antibiotic. We
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modelled this using the commonly taken approach [44], with equations shown in (3):

Aðt þ tÞ ¼ AðtÞ þ PðtaAðtÞÞ ð3Þ

As the time t passed a dosage time point, ti = 2h, 24h, 48h, the next dose of antibiotic, di, was

applied to the system. Initially, we assumed there was no antibiotic in the host, so A(0) = 0.

As this was a stochastic model, the behaviour of the antibiotic and bacteria population size

changed with each run. For this reason, we carried out 5000 runs of the model, and counted the

number of runs where treatment was a ‘success’: a model run was a ‘success’ if the host survived to

192 h, as measured by the bacterial population size staying below a threshold, i.e. B(t)<Bdead for all

t2[0,192]; whereas a model run was a ‘failure’ if the host died, if the bacterial population exceeded

the threshold, i.e. B(t)>Bdead for any t2[0,192]. McMillan et al (2015) found in their experiments

that the host (the larvae) died when the bacterial abundances reached approximately 109 [38]; this

provides a value for the ‘death threshold’ Bdead of 109. The success of an antibiotic treatment was

then measured by the fraction of runs where the host survived to 192 h, denoted Nsurv.

The parameter definitions are given in Table 1.

Computational Optimisation

Genetic Algorithms (GA) were proposed by John Holland in the early 1970s [25]. They belong

to the larger class of evolutionary algorithms, which generate solutions to optimisation prob-

lems using techniques inspired by natural evolution, such as inheritance, mutation, selection

and crossover [45]. GAs have previously been used to generate treatment schedules for chemo-

therapy of cancer patients [26–27], but have rarely been used in antibiotic therapy [29,31].

Despite being a randomised search GAs are by no means random, instead they use historical

information to direct the search into the region of better performance within the search space.

Here, the GA was used for two purposes:

Parameterisation. To parametrise the mathematical model, we used the GA to find a set

of parameters that allowed the model to best match the biological data. The GA generated sets

of parameter values for rμ, v, mμ, n, a, a1, a2 and k, represented by a vector of real numbers. For

each set, the GA ran the mathematical model 5000 times, and computed how well the mathe-

matical model fitted the data, as measured by a least squares approach calculating the differ-

ence between host survival at each 24-h interval from the mathematical model and the

biological experiments; the fit is denoted by the function Fpar and is given in (5):

Fpar ¼
X3

i¼1

X5

T¼0:

ðBð24TÞ � Di;24TÞ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No Antibiotic data

þ
X3

j¼1

X8

T¼0:

ðBð24TÞ � Dj;24TÞ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Antibiotic data

ð5Þ

Table 1. Parameter definitions. The parameter values were those found during the optimisation process in the

Results section.

Parameter Definition Value

rμ Average Replication rate of bacteria 0.4779

mμ Co-efficient for the host immune response 0.6772

n Hill co-efficient in the immune response 0.9193

v Standard deviation for host heterogeneity 0.0525

a1 Maximum kill rate of antibiotic 0.7281

a2 Level of antibiotic giving half max kill rate 0.1910

k Hill co-efficient in AB induced death. 2.9821

a Decay rate of antibiotic (half-life = 5.9hrs) 0.1174

Bdead Bacterial load at which the host dies [38] 109

https://doi.org/10.1371/journal.pcbi.1008037.t001
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The first term compared the model to the data in McMIllan et al. [38], summarised in the

Supporting Information (S1 Table), where hosts were infected but not treated with antibiotic,

and host survival determined at 24-h intervals from 0 h to 120 h. The second term compared

the mathematical model to the biological data from Table 2, where hosts were infected and

treated with antibiotic, and host survival measured at 24-h intervals from 0 h to 192 h.

Optimising dosage regimens. Antibiotic regimens are represented by dosage vectors (d1,

d2, d3,. . .), where di denotes the quantity of antibiotic (measured in mg) to be given at time ti.
The GA aimed to find the optimal dosage vector that minimised our objective function, which

comprised of up to two components: first, to maximise the number of runs of the mathemati-

cal model where the host survived the infection, i.e. B(t)<Bdead for all t, denoted Nsurv; second,

to minimise the total amount of antibiotic used, as measured by the sum of the entries in the

dosage vector, ∑idi. In addition, we had constraints: ∑idi�0.9 mg, where 0�di�0.9 (except for

the final section in the results, ‘(iv) Maximise survival vs. minimise total antibiotic’, where we

increased the total quantity of antibiotic). For each regimen, the GA ran the mathematical

model 5000 times, with a population size of 50 potential solutions (dosage vectors), for 80 gen-

erations and the whole process was repeated 50 times. At the end of the complete GA run, we

produced 50 sets (one from each GA run), each containing 50 possible solutions (dosage vec-

tors). The run lengths, generations and population sizes were arrived at from prior calibration

of the configuration that confirmed that minimal further improvement in performance was

gained by increasing these values.

Results

Initial antibiotic experiments

Initially the larvae hosts were treated with 0.9 mg of tetracycline, split into fixed dosages at

24-h intervals, either: all 0.9 mg in one dose at 2 h; split into two equal doses of 0.45 mg each at

2 h and 24 h; split into three equal doses of 0.3 mg each at 2 h, 24 h and 48 h. The survival rates

of the larvae are shown in Table 2.

Half-life experiments. To gain a more accurate estimate for the decay rate of the antibi-

otic (TET), the antibiotic activity in the haemolymph was measured over time (Fig 1, with

exact values in Supporting Information (S2 Table)). Fitting a curve to these data, along with

the 95% confidence intervals, provided an estimation of the half-life of TET to be approxi-

mately 5.89 h, with a confidence interval of 3.72–9.26 h, which is in accordance with previous

biological estimates [46]. This provided an appropriate interval for the decay rate of the antibi-

otic, a. (Following subsequent application of the GA, a half-life of 5.90 h was settled upon.)

Table 2. Host survival at the end of each 24-h interval for different ‘fixed dose’ treatments, i.e. 0.9 mg either administered as a single dose, or split equally over 2

days, or split equally over 3 days (n = 45). PBS = phosphate-buffered saline; Vib 79 = V. anguillarum (bacterium).

group infected treatment (mg/kg) Host survival (proportion of host alive at each measure)

0 h 2 h 24 h 48 h 24h 48h 72h 96h 120h 144h 168h 192h

unmanipulated - - - - 1 1 1 1 1 1 1 1

PBS only PBS PBS PBS PBS 1 1 1 1 1 1 1 1

antibiotics only PBS 0.9 0.45 0.3 1 1 1 1 1 1 1 1

positive control Vib 79 PBS PBS PBS 1 0.02 0 0 0 0 0 0

0.9 mg Vib 79 0.9 PBS PBS 1 1.00 0.98 0.82 0.69 0.62 0.53 0.53

0.9 mg Vib 79 0.45 0.45 PBS 1 1.00 0.89 0.78 0.67 0.58 0.42 0.38

0.9 mg Vib 79 0.3 0.3 0.3 1 0.96 0.44 0.27 0.13 0.09 0.04 0.04

https://doi.org/10.1371/journal.pcbi.1008037.t002
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Parameterisation of the mathematical model

The survival rates in Table 2, and the survival rates from McMillan et al. [38] summarised in

Supporting Information (S1 Table), were used to parameterize rμ, v, mμ, n a, a1, a2 and k.

The GA showed strong convergence and provided a set of parameter values that best fit the

data. The model with these parameters showed a reasonable fit with the biological data

(Table 2) when mean host survival over time was plotted (Fig 2). (In the Supporting Infor-

mation (S1 Fig), the bacteria densities within the host are plotted over time for case the

infected host is not treated with antibiotics. Comparing the model output with the biologi-

cal data from [38] shows that the model’s maximum growth rate of bacteria is biologically

credible).

Fig 1. Decay rate of the antibiotic (TET) over time in G. mellonella host. Biological data of the decay rate of the

antibiotic over time in G. mellonella (red points); and fitted curves for the experimental data (black lines) and the

estimate for the half-life of the antibiotic (blue lines). The black and blue dotted lines represent the respective 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008037.g001

Table 3. Host survival from the biological validation experiments. Host survival was recorded at 192 h for five dif-

ferent antibiotic treatment regimens, with both the ‘raw’ data given, along with the ‘normalised’ data, whereby host sur-

vival for four of the treatments were increased by 0.28 to bring host survival for (0.45,0.45) and (0.9,0) treatments in

line with those in the initial experiments, in Table 2. (n = 90.) Full data in the Supporting Information (S3 Table).

infected treatment (mg/kg) Host survival at 192h

0 h 2h 24h Raw Normalised

Vib 79 0.20 0.70 0 –

Vib 79 0.45 0.45 0.10 0.38

Vib 79 0.56 0.34 0.21 0.49

Vib 79 0.76 0.14 0.26 0.54

Vib 79 0.9 PBS 0.24 0.52

https://doi.org/10.1371/journal.pcbi.1008037.t003
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Validating the Model

To determine the effect of the size of the first dose, and whether a bigger first dose leads to a

higher survival, we consider a general two-dose strategy of the form (d1, 0.9−d1), with dose d1

at 2 h and the second (remaining) dose at 24 h. This strategy used 0.9 mg of antibiotic in total.

Our parameterised mathematical model was run for values of d1 from 0 to 0.9, in increments

of 0.01, with survival rate recorded at 192 h (Fig 3). There is a strong correlation between the

Fig 2. Comparison of mathematical model and experimental results for survival rates for different ‘fixed dose’ treatments, with 0.9 mg either

administered as a single dose, or split equally over 2 days, or split equally over 3 days: (A) 0.9 mg administered at 2 h; (B) 0.45 mg administered

at 2 h and at 24 h; (C) 0.3 mg administered at 2 h, 24 h and 48 h. n = 45 for biological experiments; n = 5000 for mathematical model.

https://doi.org/10.1371/journal.pcbi.1008037.g002

Fig 3. Survival rates at 192 h for various first doses, d1; where the second dose is (0.9−d1). The mathematical model

results are in black; blue circles represent the initial biological experimental data (Table 2), and green circles are the

additional biological experiments (Table 3). Red circles represent the normalised data from Table 3 (with each of the

four points increased by 0.28). (The model runs for these solutions were increased to 10000 to confirm the accuracy of

the results).

https://doi.org/10.1371/journal.pcbi.1008037.g003
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first dose and host survival, with a Spearman Rank co-efficient of 0.96. There is a small drop in

host survival for first doses d1 between 0.65 and 0.85, however, this is only small.

To validate the mathematical model, five two-dose treatments were then chosen, and bio-

logical experiments of these treatments were carried out for n = 90 larvae (Table 3; the full data

set, with survival at the end of each 24-h interval is given in the Supporting Information (S3

Table)).

The survival rates in these in vivo experiments (Table 3) were significantly lower than those

of the initial experiments (Table 2), and a direct comparison of the regimens (0.9,0) and

(0.45,0.45) showed a consistent drop of ~0.28 in the survival rate at 192 h. This is likely due to

seasonal variation in the condition of the larvae, which can occur [47–48]. Therefore, for

modelling purposes, we normalised the survival rate of the regimens (0.45,0.45), (0.56,0.34),

(0.76,0.14) and (0.9,0) by increasing the survival rates universally at 192 h by 0.28. Comparing

these new scaled survival rates to our mathematical model (Fig 3) showed that the model suc-

cessfully predicted the survival rates of the previously untested regimens.

Optimisation of treatment regimens

We applied the GA to the parameterised mathematical model to search for optimal antibiotic

dosage regimens to maximise host survival at 192 h under various conditions:

i. Daily dose treatments: Taking a daily dose treatment strategy, with doses at 2 h, 24 h, 48

h and 72 h, we found that to maximise host survival at 192 h, using 0.9 mg of TET, the

best strategy was to administer all 0.9 mg at 2 h, with 0 mg at the remaining dose times.

This gave a host survival rate at 192h of 0.566.

ii. Two-dose, variable timings: Next, we allowed the timing of the doses to vary, initially

limiting the solutions to two-dose treatments, whereby a dose d1 is given at 2 h, and a sec-

ond (remaining) dose of 0.9-d1 is given at t2 hours. Given we only had two variables, d1

and t2, we carried out a brute force (exhaustive) search for d1 between 0 and 0.9 (in inter-

vals of 0.01), and t2 at hourly intervals between 3 h and 24 h. In Fig 4, we plot host survival

Fig 4. Two-dose treatment regimen with the first dose d1 is taken at 2 h and the second dose 0.9-d1 at t2 h. Host

survival at 192 h is plotted against the size of the first dose d1: and the time of the second dose t2. Model runs = 10000.

https://doi.org/10.1371/journal.pcbi.1008037.g004
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at 192 h against the time of the second dose t2, and the size of the first dose d1. We found

that the optimal strategy was to administer a first dose of 0.54 mg of TET at 2 h and a sec-

ond dose of 0.36 mg at 11 h, giving a survival rate at 192 h of 0.795. This is significantly

greater than the survival rate of 0.566 for administering all 0.9 mg of TET in a single dose

at 2 h.

iii. Multiple-doses, variable timings: We extended the search to find the optimal treatment

regimen, using 0.9 mg of antibiotic, by allowing any number of doses. A GA was applied

to this problem, allowing the individual dosage quantities and timings of these doses to

vary, to find the regimen that maximised host survival at 192 h. We found the optimal

regimen was a four-dose strategy, giving: 0.43 mg at 2 h, 0.22 mg at 7.1 h, 0.13 mg at 11.7

h, and 0.13 mg at 16.8 h, which gave a host survival rate of 0.803. (Note, total antibiotic

adds to 0.91 mg due to rounding.) Given this is a stochastic model, it would be difficult to

test experimentally in vivo whether the improvement over the two-dose treatment above,

with survival of 0.795, is significant.

iv. Maximise survival vs. minimise total antibiotic: Taking a multi-objective approach, we

aimed to maximise host survival at 192 h while minimising the total quantity of antibiotic

used. Again, we allowed both the individual doses and the timing of these doses to vary.

In Fig 5, Pareto Front is plotted–in the context of multi-objective optimisation, a Pareto

Front is a set of non-dominated solutions, which are considered optimal if no objective

can be improved without sacrificing at least one other objective; this was done using a

well-known GA suited for multiple objectives, NSGA-II [49]. Each point represents the

host survival rate and quantity of antibiotic used, assuming that that the amount of antibi-

otic is used optimally. Before deriving solutions for a particular regimen, we had to ensure

that the results were consistent and therefore we repeated the optimisation process over

Fig 5. (A) Combined Pareto Fronts for 50 repeat runs; (B) subset of points along the upper edge of combined Pareto Fronts in (A). Both graphs

show the trade-off between the total amount of antibiotic used in a treatment regimen and maximum host survival at 192 h. The colours of the

points represent the number of (non-zero) antibiotic doses used to achieve that optimal point. Population = 50, generations = 80, model

runs = 5000, repetitions = 50.

https://doi.org/10.1371/journal.pcbi.1008037.g005
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50 independent runs. The combined set of Pareto Fronts for these 50 optimisation runs is

given in Fig 5A and shows a consistency across the repeat runs with regard to the trade-

off between total antibiotic use and host survival at 192 h. From this set of 50 repeat runs,

we extracted the points along the upper edge of the combined Pareto Fronts to produce a

final composite Pareto Front that is optimal across all 50 runs (Fig 5B). There exists a

strong, non-linear, positive correlation between survival and the total quantity of antibi-

otic used. In fact, for total antibiotic dosage of between 0.56 mg and 0.95 mg, there is a

very strong linear correlation (r = 0.997), with a gradient of 2.12, i.e. every 0.1 mg increase

in antibiotic gives an increase in host survival at 192 h of 0.212. In addition, we saw

almost distinct boundaries between where the optimal regimen involved increasing the

number of doses: a single (initial) dose when using less than 0.49 mg, two-doses when

using between 0.49 mg and 0.64 mg in total, three-doses when using between 0.64 mg

and 0.9 mg in total, and four-doses when using more than 0.9 mg in total.

To understand the form of the optimal dosage vectors in the Pareto front, we explored the

treatment regimens that were found by the GA and extracted the best regimen for a particular

objective. Table 4 shows the solutions from Fig 5B where we consider treatments that have a

survival rate at 192 h of at least (a) 0.9, and (b) 0.99 for different objectives. These objectives

were: (i) the least total antibiotic used (i.e. to minimise ∑di); (ii) the least number of doses (i.e.

least number of non-zero entries in dosage vector); (iii) the lowest maximum dose (i.e. to min-

imise max(di)); (iv) the earliest final dose (i.e. to minimise max(ti)).

All the treatments in Table 4 have a similar pattern in that the first dose is the largest dose,

with many of the subsequent doses decreasing throughout, e.g. (0.48, 0.28, 0.24). There is also

an appearance of possible additional trade-offs. For example, comparing row 1 and row 5 in

Table 4, in reducing the maximum concentration of individual doses may require an increase

in the total quantity of antibiotic used and an increase in the duration of treatment. Calculating

the Spearman Rank co-efficient for Fig 5B, we get 0.55, indicating that there is no longer a

strong correlation between the first dose and host survival; given the wider range of treatments

in terms of number of doses (e.g. more, smaller doses) and timings (e.g. smaller doses closer

together), this is to be expected.

Table 4. Optimal treatment regimens from within the Pareto Front (Fig 5B) for different criteria, given host survival at 192 h of at least (a) 0.9, or (b) 0.99. (�Only

4-dose treatments were found along the upper edge of Pareto Front with host survival more than 0.99).

Objective Dose 1 Dose 2 Dose 3 Dose 4 Total AB Survival at 192h

style="border-right:thick">Lowest total antibiotic 0.48 mg

2 h

0.28 mg

9.0 h

0.24 mg

17.1 h

– 1.00 mg 0.900

0.52 mg

2 h

0.38 mg

8.4 h

0.15 mg

17.4 h

0.17 mg

21.1 h

1.22 mg 0.990

Least number of doses 0.50 mg

2 h

0.29 mg

7.6 h

0.23 mg

14.5 h

– 1.02 mg 0.927

0.60 mg

2 h

0.34 mg

9.0 h

0.27 mg

14.3 h

– 1.21 mg 0.988�

Lowest maximum dose: 0.33 mg

2 h

0.23 mg

5.7 h

0.28 mg

11.1 h

0.18 mg

17.8 h

1.02 mg 0.925

0.44 mg

2 h

0.29 mg

6.7 h

0.18 mg

10.9 h

0.34 mg

18.8 h

1.25 mg 0.992

Earliest final dose: 0.38 mg

2 h

0.22 mg

4.4 h

0.17 mg

9.7 h

0.24 mg

13.4 h

1.01 mg 0.913

0.48 mg

2 h

0.33 mg

7.0 h

0.18 mg

12.2 h

0.31 mg

17.5 h

1.30 mg 0.997

https://doi.org/10.1371/journal.pcbi.1008037.t004
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Discussion

The first aim of this study was to build and parameterise a mathematical model that accurately

represents a systemic bacterial infection (V. anguillarum) in an in vivo host (G. mellonella) that

can be treated with different fixed-dose antibiotic regimens. The mathematical model of this

system was then tested with additional experiments, including some new antibiotic regimens

where daily doses were no longer fixed. The model was shown to perform well in these subse-

quent experiments, and hence provides a useful new approach for researchers investigating the

optimisation of antibiotic therapy.

The second aim of this study was to apply an advanced computational search technique, a

Genetic Algorithm (GA), to this model to find optimal antibiotic dosage regimens that maxi-

mised host survival, while also minimising total antibiotic usage. In searching for the optimal

regimen, we relaxed the commonly made assumptions of fixed doses (where each dose is, say,

X mg) at fixed intervals (e.g. every 24 h) – the widened search space of possible treatments

makes the application of artificial intelligence algorithms essential. When using a fixed total

antibiotic dose of 0.9 mg, the best two-dose regimen was to apply 0.54 mg at 2 h and 0.36 mg

at 11 h, giving a host survival rate of 0.795. This only increased slightly to 0.803 with a four-

dose regimen. However, both of these were predicted to be significantly greater survival than

administering all 0.9 mg in a single dose at 2 h. When aiming to minimise the total quantity of

antibiotic used while maximising host survival, all the treatments found (including those in

Table 4) show a similar pattern: the first dose is the largest dose, with many of the subsequent

doses decreasing thereafter. Many of the treatment durations were relatively short, with the

final dose being applied before the 24 h mark (Table 4). Here, the treatment intervals were rela-

tively consistent; for example, with antibiotic being administered at 2 h, 9 h and 17 h (Table 4,

row 1) or 2 h, 7 h, 12 h and 17 h (Table 4, row 8). Treatment intervals could therefore be an

important, yet understudied area, with few studies of their effect on survival [50] or develop-

ment of resistance [51]. There was also an appearance of possible additional trade-offs: for

example, in reducing the maximum concentration of any individual doses required an increase

in the total quantity of antibiotic used and an increase in treatment duration; similarly shorter

dosage regimens appeared to increase the total antibiotic required and increased the individual

dosage sizes. A further study exploring these trade-offs, carrying out a multi-objective optimi-

sation approach with the four objectives in Table 4, along with maximising host survival, is

certainly worthy of attention. Furthermore, the mathematical model was parameterised using

a standard GA; however, when parameters are encoded as real numbers we can apply modern

evolutionary algorithms that specialise in the continuous domain, such as Differential Evolu-

tion (DE) [52–53] and Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [54–55].

It may be possible that these methods can produce improved solutions in shorter computa-

tional time, which would be an interesting follow-up study.

Significantly, this present study provides further evidence supporting the previous theoreti-

cal results that optimal dosage patterns for antibiotics follow a tapering pattern [29–30]. Given

that the tapered treatment patterns in this present study were derived from a biologically vali-

dated model, it provides evidence that further research into this observation is needed. Obvi-

ously, the next step would be to validate these optimal treatments in follow-up biological

experiments, directly testing conventional fixed-dose treatments against the optimal tapered

treatments and evaluating host survival across time. Furthermore, this present study focused

on the single outcome of host survival; however, future studies could integrate further benefi-

cial outcomes such as the risk associated with selecting for antibiotic-resistant strains [56–58].

Our results also reinforce previous findings in humans, including studies that have shown

that shorter treatment regimens can be effective in treating bacterial infections [59–60] and
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the use of initial high loading dose treatments being beneficial in treating patients in critical

care medicine [61]. Interestingly, tapered regimens are effective when treating infections

caused by Clostridium difficile [62–63]; however, the use of tapered regimens has resulted in

sub-optimal performance in bacterial clearance in some previous infection studies [35,64]

underlining the importance of deriving an optimal tapered strategy.

The duration under which a bacterium is exposed to antibiotics increases the likelihood of

resistance developing [65]. The selection of current treatment durations is relatively arbitrary,

albeit with supporting data from pharmacokinetic and pharmacodynamics trials, to ensure thera-

peutic concentrations of antibiotic are maintained in the host, and several studies have indicated

that shorter treatment regimens can be just as effective [66–68]. By altering the interval between

the constant doses, the GA produced treatment regimens that were shorter and showed little

change in the total quantity of antibiotic used. Shorter treatment durations have been identified

as being as effective as longer durations in treating a number of bacterial diseases [60,67,69], indi-

cating that current treatment guidelines, while effective, may not be the optimal way to adminis-

ter antibiotics. In addition, exposing the environment to larger quantities of antibiotic can

increase the abundance of resistant bacteria [70–71]. Optimal antibiotic treatments may also be

highly dependent on the current quantity of the target bacterial cells present in the host [72–76],

and it would be interesting to see how well the optimal treatments would perform across popula-

tions of individuals where variation in drug metabolism would play a significant role.

The conventional treatment regimen of a standard dose administered at equal intervals in

time is appealing to both manufacturers and patients. However, to increase the effectiveness of

antibiotics may require a move away from these conventional regimens. Changing the interval

between doses of antibiotics would be more preferable for manufacturers, as the doses of anti-

biotic remain constant and a single, standard product is manufactured. This shifts the burden

of responsibility to adhere to the new regimes more to the prescriber and the patient. Altering

the quantities of antibiotics given at set time intervals is another approach that could be effec-

tive, and in such a scenario different doses are prepared by the manufacturer for administra-

tion during the course of treatment. The constant time interval between doses is probably

simpler for the patient to comply and, interestingly, patient compliance rates are greatest

(almost 100%) for daily doses [77–78]. In the most complex scenario, both the quantities of

antibiotic given and the timings of each treatment during therapy are altered for an optimal

outcome. Unfortunately, lack of patient compliance remains a common problem [79–80] and

much further work is needed before changes to conventional treatment regimens could be

translated to the clinic. Of course, this would include the complete involvement of stakeholders

and a full understanding and consent around acceptable levels of safety and risk, particularly

the implications of inadvertently deviating from an optimised treatment. In this regard, it may

be in veterinary medicine where significant gains may be achieved more quickly.

With the increase in antibiotic resistant bacteria, research has begun to examine the effec-

tiveness of using multiple antibiotics, either sequentially or together in combinations [81–82].

Still, there is a need to ensure single antibiotics are used in an optimal manner, as this is

another key approach that may deliver considerable benefit to patients. The findings of this

present study highlight the potential amendments that could be made to single daily fixed-

dose antibiotic treatment regimens to increase their efficacy, thus reducing the health and eco-

nomic burdens associated with bacterial infections.
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