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Background. The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to
image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult
Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical
projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and
structure of the adult anatomy. Methodology. We have used OPT to visualize in 2D and 3D the detailed internal anatomy of
the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy.
Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that
suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-
lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this
stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. Conclusion. We show
for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is
also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that
organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three
planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect
mutant phenotypes and to globally map gene expression in both 2D and 3D.
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INTRODUCTION
Imaging is a vital tool in all areas of Drosophila research; routinely

the tissue is dissected and imaged either at low-magnification using

the stereomicroscope or at high-magnification using either

compound or confocal microscopy. All three techniques are

associated with specific disadvantages. Both the stereomicroscope

and compound microscope only image in one plane and neither

can focus on a point deep within a tissue. Furthermore the upright

microscope is used to visualize manually cut sections of tissue, and

the processing and sectioning of samples can result in a loss of

tissue integrity. Only the confocal can image clearly through the

depth of a sample, however it too has disadvantages, for example

the tissue may shrink after dissection and can be subjected to shape

distortion due to dissection and the mounting procedure. One

imaging method that can image internal organs without the need

for dissection is optical projection tomography (OPT). OPT

images samples in 3D and using associated software the data is

used to generate 2D optical sections in each of the three planes,

and 3D models. OPT images are estimated to have a pixel

resolution of 5–10 mm [1]. However this resolution is dependent

upon good signal intensity, a weaker signal will have a resolution

that is lower than this estimate.

Since the introduction of OPT there have been several

publications of its use in a variety of organisms, for example, the

human embryo was imaged and structures within the nervous

system were detected without the use of markers [2,3]. OPT has

also been employed to visualize developing plant material [4] and

more recently OPT was used to image adult mouse organs [5].

Until now it was believed that the dark exoskeleton of Drosophila

would prevent the organism from being imaged by OPT. Here we

show that not only can the pigment be bleached, but also that

adult Drosophila is cleared well enough to allow the visualization of

anatomical structure in all 3 planes and in 3D. To investigate the

benefit of this technique to Drosophila research, OPT was used to

model neurodegeneneration and to visualize reporter gene

expression.

Fly neurodegeneration is regularly visualized using standard

histology techniques such as hematoxylin and eosin staining of thin

head sections [6,7]. This technique has many inherent disadvan-

tages, including loss of tissue integrity due to the processing and

sectioning procedure, which can create cracks that appear similar

to vacuoles in the brain. In addition to this, only one plane can be

sectioned, which in flies is often either frontal or horizontal

(coronal or transverse). It would therefore be an advantage if

a technique could be found which could display the data in all

three virtual planes, and in addition, could visualize the adult in

3D. We therefore set out to test OPT for this purpose and to ask

whether it could be used as a method for detecting vacuoles in

brains of Adar mutants that suffer from age-related neurodegen-

eration due to a lack of RNA editing. The Adar 5G1 strain contains

a deletion over the Adar gene [8], which encodes an adenosine

deaminase that acts on dsRNA. Once bound to its pre-mRNA

substrate ADAR deaminates specific adenosines into inosine,

which is read as a guanosine by the translational machinery; this

can change amino acid usage thereby increasing protein diversity.

Specific editing activity is targeted to transcripts that are expressed

Academic Editor: Suzannah Rutherford, Fred Hutchinson Cancer Research Center,
United States of America

Received June 15, 2007; Accepted August 8, 2007; Published September 5, 2007

Copyright: � 2007 McGurk et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: LM was funded by a MRC Capacity Building Area Research Studentship
and this work was funded by the Medical Research Council
U.1275.01.005.00001.01.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: Mary.O’Connell@hgu.
mrc.ac.uk

PLoS ONE | www.plosone.org 1 September 2007 | Issue 9 | e834



in the CNS, some of which encode subunits of ion channels [9,10].

Editing events can affect splicing of the pre-mRNA [11], and can

affect properties of the receptor subunit such as channel

permeability [12], and the rate of subunit assembly [13]. Flies

lacking Adar are ataxic and, with age the flies undergo age-related

neurodegeneration [8,14]. Here we demonstrate that OPT can

indeed detect regions of neurodegeneration in whole adult flies

and have further confirmed this by subsequent sectioning and

staining of the imaged heads.

The efficient bleaching and clearing of Drosophila makes it an

ideal organism to be imaged by OPT, and may be of use for other

microscopy techniques, and so we specifically show the utility of

this procedure for confocal microscopy. Additionally OPT may

assist in imaging large numbers of Drosophila lines that express GFP

or b-galactosidase reporters. Large-scale genetic screens have

dominated Drosophila research for many years. Originally reverse

genetics in Drosophila relied upon random P-element insertions that

induced mutations [15–17]. Now mutations can be specifically

targeted by homologous recombination [18–20] or specific gene

products can be depleted by expressing siRNAs to genes in specific

tissues or cells [21–23]. Cell or neuron specific gene silencing,

driven by GAL4, currently underlies the functional dissection of

neuronal networks in Drosophila and relies upon detailed spatial

and temporal expression data on the neuronal GAL4 driver lines.

Moreover these expression patterns must be referenced precisely

and consistently to specific points in the standard Drosophila brain

[24,25].

In order to determine if the reporter gene is expressed in the

PNS or CNS the Drosophila adult is often bisected or decapitated

[26,27], however in large-scale screens this can be very time

consuming. Staining the adult in wholemount would be more

efficient, however traditional imaging techniques cannot indicate

how well the stain has penetrated and it cannot relate the data to

the internal organs. To determine whether OPT is a suitable

method to overcome this problem, a b-galactosidase fusion to

bovine TAU was imaged [26]. TAU is found within protein

aggregations in neurodegenerative diseases, [28,29] and when it is

expressed in Drosophila it localizes to the axons in the thorax and

CNS [26]. OPT was used to image the b-galactosidase activity in

brightfield conditions and these data were then superimposed onto

the anatomy of the fly created by the fluorescent signal. The

reconstructed data sets in all three planes clearly show that the

stain penetrated the fly and was detected within the CNS and

PNS.

RESULTS

Drosophila is suitable for imaging by OPT
Previously it was thought that the pigment of the Drosophila

exoskeleton would be too dark to allow full transmission of light

and so initially it was essential to ascertain whether Drosophila was

a suitable organism for OPT. The Drosophila adult was fixed in

paraformaldehyde, and then the pigment was bleached in

hydrogen peroxide, before being dehydrated and cleared as

previously described for vertebrate embryos [1]. The Drosophila

adult was successfully cleared to almost transparent levels when

bathed in 1 part benzyl alcohol and 2 parts benzyl benzoate

(Murray’s clear) and hence this treatment results in full trans-

mission of white and fluorescent light (Figure 1 and Movie S1).

Upon excitation by light of specific wavelengths some tissues auto-

fluoresce. In OPT this is a useful tool as it can provide information

on shape and structure without staining for cellular markers, and

can indeed provide anatomy onto which gene expression patterns

can be mapped [1,3]. We wanted to determine whether this

technique could be used to visualize the internal anatomy of the

intact Drosophila. The wild-type fly-line w1118 was fixed in

paraformaldehyde, a fixative known to create autofluorescence,

and was found to have sufficient autofluorescence to mark out

internal anatomy when excited at 480 nm (Figure 1C and E). To

determine whether there was increased fluorescence in a GFP

background a fly expressing GFP in the cholinergic neurons (w;

Cha-GAL4 (19B), UAS-GFP S65T) [30] was imaged by OPT and

compared to w1118. When the two fly strains, comprising of six flies

in total, were imaged at equal exposure times it was seen that two

out of three Cha.GFP flies had significantly more fluorescence not

only in the CNS but also throughout the body (Figure 1E and F).

Exposure time was set at a level that was just below saturation

levels. It should be noted there is a difference in fluorescence levels

between flies with the same background and how efficiently the fly

has been bleached can influence this.

Visualizing the data in 2D and 3D
The data were visualized in 2D in each of the three planes and the

two datasets, fluorescent and brightfield, were superimposed

(Figure 2). The brightfield data mark out the fly exoskeleton,

and are colored red. Due to the clearing of the fly the exoskeleton

is almost transparent and in some regions it is completely

transparent resulting in some optical sections lacking the bright-

field signal in some regions (Figure 2E). The fluorescent image, in

green, clearly delineates various anatomical features such as the

thoracic muscles, the heart and the ovaries, and to some degree

the gut (Figure 2A–D and Movie S2). The variation in signal

intensity in the fly means that the a reasonable threshold must be

applied such that there is not over saturation of strong signal, for

example the thorax, and loss of weaker signal such as the gut.

Importantly, as shown in Figure 2F and Movie S3, we were able to

visualize the adult anatomy in 3D. To test OPT at its maximum

resolution, individual Cha.GFP heads were imaged (Figure 2E).

The brain can be seen clearly, and regions such as the mushroom

body calyces and retina are easily identifiable.

Figure 1. The raw data produced by OPT. Drosophila cleared in
Murray’s clear, is almost transparent when imaged under brightfield
conditions (A–B). The cleared fly allows full excitation and emission of
fluorescent light when excited at 480640 nm (C–F). w1118, and
Cha.GFP [30] both have detectable levels of autofluorescence (C–D).
However when compared at equal exposure times the GFP line shows
greater fluorescence (E–F).
doi:10.1371/journal.pone.0000834.g001
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Clearing the Drosophila head for use for confocal

microscopy
We have shown that OPT can be used to image the structure

within the intact head after efficient bleaching and clearing. This

method may also assist confocal microscopy, where at present

dissection is necessary as the exoskelton prevents visualization of

the CNS. To test this clearing method for confocal microscopy

heads of Cha.GFP and w1118 were fixed and cleared. Autofluor-

escence has been used to visualize neuroanatomical structure in

wax sections of the Drosophila brain [31] and so assessment of the

clearing procedure and its use in confocal microscopy relied upon

autofluorescence. Clearing was efficient enough to allow visuali-

zation of the CNS (Figure 3A–H), and internal structures such as

the fan shaped body and the ellipsoid body were detected

(Figure 3H). One main advantage of OPT is that the data is

imaged from 400 angles, so if a structure is blocked by a pigmented

area at one angle it can be imaged from another angle. This is not

the case for confocal microscopy, imaging occurs in only one plane

and so any data underneath a pigmented region is lost (Figure 3G–

H). However this method does opens up the possibility that the

whole head may be used in immunohistochemistry.

Neurodegeneration is detected by OPT
OPT was explored as a method to assess vacuolization in the brain

of Adar mutants. Adar 5G1 males, in the Cha.GFP background (w;

Cha-GAL4 (19B), UAS-GFP S65T), were aged until 20 days and

visualized using OPT (Figure 4A–C). Regions that lacked GFP

signal were marked as regions of possible neurodegeneration.

MAPaint software, developed by the Edinburgh Mouse Atlas

Project [32–34], was used to analyze these vacuoles. The regions

that lacked fluorescence were painted and this was repeated for

each section that showed putative vacuoles (Figure 4D–F). The

painted regions (domains) were then processed into 3D with

respect to the Drosophila head (Figure 4I and J and Movie S4). In

order to determine whether this painted domain was a region of

neurodegeneration the heads were removed from the agarose and

subsequently embedded in paraffin wax. Frontal sections were cut

and sections that contained regions of neurodegeneration were

compared to the OPT sections. The paraffin sections confirmed

that vacuolization of the optic lobe had indeed occurred (Figure 4G

and H). This confirms that OPT can be used to visualize

neurodegeneration from within the intact adult head, which is

a procedure that traditionally relies upon analysis of heavily

processed paraffin sections.

b-galactosidase staining can be mapped onto an

anatomical atlas of Drosophila
Wholemount b-galactosidase staining of a bisected adult fly

expressing a TAU-LacZ fusion revealed that TAU, a microtubule

binding protein, localizes to the axons of the thoracic ganglion and

adult CNS [26]. However, when imaging using a standard

stereomicroscope only surface staining can be detected. Therefore

one advantage of this technique is that one is able to determine

how penetrant the stain is without any manipulation. Staining for

b-galactosidase activity was carried out on wholemount adults and

the staining pattern was imaged in the brightfield channel using

OPT (Figure 5A–C and L). The brightfield data were super-

imposed onto the anatomy that was obtained from the fluorescent

channel. The b-galactosidase activity was clearly seen to be in the

region of thoracic ganglion (Figure 5D–I and Movie S5). This

staining is distinct from the gut that has endogenous b-

galactosidase activity in Drosophila. Finally the 3D reconstruction

of the data clearly shows that the staining detected in the brain

does indeed extend along the ventral nerve cord and connect to

the thoracic ganglion (Figure 5J–K and Movie S6).

DISCUSSION
OPT is an imaging technique that models data in 3D. Originally it

was designed to image the mouse embryo [1] but it has since been

used to image human embryos, adult mouse tissue and plant tissue

[2,4,5]. This is the first time that imaging of the Drosophila adult in

3D has been reported. We show that Drosophila can be cleared and

that the clearing permits the transmission of white and fluorescent

light to allow detection of detailed anatomy. Upon excitation with

fluorescent light, the cleared adult emits light, even from deep

within the intact body, so that detailed 3D images of the Drosophila

anatomy can be produced. The clearing of the Drosophila adult is

very efficient and we also show that it can be used when imaging

Drosophila using confocal microscopy. Here we show that OPT can

be applied to two important areas of Drosophila research, analysis of

mutant phenotype, namely neurodegeneration, and 3D visualiza-

tion of reporter gene expression.

Drosophila is widely accepted as an important model organism

for studying neurodegenerative diseases [35,36]. Previously

identification of neurodegeneration in Drosophila has relied upon

sectioning of wax embedded heads [6,8], however the difficulties

associated with sectioning often result in damage to the tissue,

which can be misinterpreted as neurodegenerative vacuoles. Here

we have shown that OPT can be used to visualize neurodegenera-

tion in 3D from within the intact adult Drosophila head and have

confirmed by sectioning that indeed these brains contained

vacuoles. It is possible to warp high-resolution data captured

from wax sections onto the framework obtained by OPT and

display it in 3D [2,3,32–34].

Figure 2. The data output. The data from the scans are reconstructed
in 3D, the two datasets, brightfield (red, exoskeleton) and fluorescent
(green, anatomy), are superimposed, and the information is displayed in
all three planes (A–D). Single heads can be imaged (E). The data can also
be displayed and explored in 3D (F, G).
doi:10.1371/journal.pone.0000834.g002
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Figure 3. Visualizing through the head cuticle with confocal microscopy. The CNS can be visualized through the cleared head. Both w1118 (A–F) and
Cha.GFP (G–H) were visualized. The brain was imaged from the front (A–C, and G–H) and back (D–F) and structures such as the fan shaped body and
ellipsoid body were detected (H arrow and arrowhead).
doi:10.1371/journal.pone.0000834.g003

Figure 4. Identification of neurodegenerative vacuoles using OPT. OPT was used to identify regions of neurodegeneration in the brains of flies
lacking the RNA editing enzyme Adar. Regions that lacked fluorescence were identified from sections in different orientations (A–C) and then these
potential vacuoles were highlighted as domains (with different colors) using the MAPaint software (D–F). This was repeated in all sections that the
vacuole extended into and this was reconstructed in 3D with respect to the Drosophila head. (I–J). The vacuoles were confirmed by haematoxylin and
eosin staining of the OPT imaged head (G–H).
doi:10.1371/journal.pone.0000834.g004
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As well as analyses of mutant phenotype, gene expression patterns

can provide insight into gene function. Large-scale screens to identify

expression patterns of interest commonly use GFP or LacZ reporter

genes [37]. Currently great effort is directed toward elucidating the

link between neuronal networks and neuronal function. The use of

directed mutagenesis strategies and the creation of network specific

GAL4 drivers will be fundamental to this field. However the correct

detailing of GAL4 expression patterns is vital, and OPT has the

potential to benefit this in two ways. Firstly we show the Drosophila

can be stained in wholemount and this could aid rapid identification

of drivers that are specific to the CNS or the PNS. Secondly, it

images the brain from within the intact head capsule and can

therefore potentially provide a structure which could aid the

construction of a standard atlas that represents the true size and

shape of the adult Drosophila brain. We have also shown that this

processing procedure can be used to image with the confocal the

brain from within the head capsule. This method could also be used

to create a reference brain from mapping gene expression patterns

and can give detailed images that show neuroanatomical structures

such as the fan shaped body and ellipsoid body.

This is the first report of imaging through the Drosophila cuticle

in 3D. At the current level of resolution OPT provides detailed

images on the gross anatomical structure of the fly. The anatomy

shown here is dependent upon autofluorescence and this varies

between flies and within the fly itself, therefore the user must set

a threshold of intensity which is optimum for each fly. This may

result in the loss of signal from gut structure in the abdomen, but

other structures such as the nervous system, cardia, thorax muscles

and gonads are easily visible. These images can be used as an

anatomical framework onto which gene expression patterns can be

mapped, as demonstrated here with tau-lacZ. Furthermore the data

has the potential to be used as a framework onto which high-

resolution data can be superimposed allowing it to be displayed in

3D [2,3,32–34]. By assisting many of the traditional image capture

methods such as compound and confocal microscopy OPT may

potentially benefit all areas of Drosophila research.

MATERIALS AND METHODS

Fly stocks and fly maintenance
All fly stocks were raised on standard corn meal-agar medium

supplemented with live baker’s yeast. For aging experiments flies

were maintained at 25uC on standard corn meal-agar medium but

the vials were not supplemented with live bakers yeast. A single fly

was maintained in a vial and each vial was tipped on every 1–

3 days. Prof. Paul Salvaterra, Stanford University provided w; Cha-

GAL4 (19B), UAS-GFP S65T and the tau-lacZ enhancer trap line,

3,358, was obtained from Prof J. Thomas at the Salk Institute [26].

Sample preparation and imaging for OPT
Whole flies were fixed in 4% paraformaldehyde for 8 hours

whereas heads were fixed for 4 hours. The samples were then

bleached in hydrogen peroxide and paraformaldehyde at 4uC.

Samples were mounted in 1% agarose, dehydrated in methanol

and then cleared in BABB (1 part Benzyl Alcohol: 2 parts Benzyl

Benzoate). The sample was imaged in both the brightfield and

fluorescence channels (480 nm) and the images were reconstructed

using in-house software designed as part of the Edinburgh mouse

atlas project [33,34]. Bioptonics 3001 OPT Scanner software was

used to generate the 3D adult flies. Neurodegeneration was

mapped using the MAPaint programme also designed as part of

the Edinburgh mouse atlas project [33,34].

Imaging Drosophila heads using the confocal

microscope
Heads were fixed in 4% paraformaldehyde for 4 hours at room

temperature, after an overnight dehydration step in methanol they

were cleared in BABB for at least six hours. The heads were

mounted with a raised coverslip in a small amount of BABB. To

achieve maximum fluorescence heads were visualized using the

following emission filters: LP650 BP500-530 BP 565-615.

Removal of heads from agarose and embedding

into paraffin wax
Agarose was removed from the sample by incubation in warm

0.29M sucrose. The sample was dehydrated, embedded in paraffin

wax and 7 mm sections were stained with haematoxylin and eosin

b-glactosidase staining of tau-lacZ expressing flies
Whole tau-lacZ adult flies were fixed for 3 hours in 4%

paraformaldehyde at 4uC, and rinsed for one hour. Flies were

incubated in reaction buffer (pH 7.2) containing 1 mg/ml 5-

bromo-4-chloro-3 indolyl 3-D-galactoside (X-GAL) for 12–

18 hours at 37uC with rotation. Flies were then bleached in

15% hydrogen peroxide and 2% paraformaldehyde at 4uC for 2–

3 days and then mounted for OPT.

SUPPORTING INFORMATION

Movie S1 An example of raw data produced under white light.

Four hundred images are captured as the cleared adult rotates

a full 360u.
Found at: doi:10.1371/journal.pone.0000834.s001 (1.38 MB AVI)

Movie S2 Optical sections through the frontal plane of the adult.

The fluorescent channel (green) delineates the anatomy, and the

brightfield channel (red) marks out the exoskeleton.

Figure 5. Visualization of â-galactosidase activity. The tau-lacZ
enhancer trap flies [26] were stained for â-galactosidase and imaged
in brightfield (L). The brightfield channel captured both the â-
galactosidase activity and the transparent exoskeleton, both of which
are represented in red. The brightfield signal was then superimposed
onto the anatomical information generated from the autofluorescence
of the same specimen, this is shown in green (A–I). Finally the b-
galactosidase activity was painted blue, and reconstructed in 3D along
with the other two channels, brightfield red and anatomy green (J–K).
doi:10.1371/journal.pone.0000834.g005

3D Imaging of D.melanogaster
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Found at: doi:10.1371/journal.pone.0000834.s002 (3.05 MB

MPG)

Movie S3 3D reconstruction of the intact Drosophila adult. The

exoskeleton from the brightfield channel is gray and the anatomy

from the fluorescent channel is brown.

Found at: doi:10.1371/journal.pone.0000834.s003 (16.15 MB

AVI)

Movie S4 Reconstruction of the vacuolization in Adar mutant

brains. The vacuolization was marked (painted) on each of the

optical sections; the painted regions were then saved as a domain

and superimposed onto the fluorescent Drosophila head.

Found at: doi:10.1371/journal.pone.0000834.s004 (1.54 MB

MPG)

Movie S5 Optical sections through a tau-lacZ adult stained for

b-galactosidase activity. The fluorescent signal (green) identifies

the adult anatomy and the brightfield signal (red) marks out the

b-galactosidase activity and the exoskeleton.

Found at: doi:10.1371/journal.pone.0000834.s005 (3.04 MB

MOV)

Movie S6 3D reconstruction of the b-galactosidase activity of

a tau-lacZ expressing adult. The b-galactosidase activity was

painted and saved as a separate domain. This along with the

brightfield signal (red) and fluorescent signal (green) were

reconstructed in 3D using Bioptonics 3001 OPT scanner software.

Found at: doi:10.1371/journal.pone.0000834.s006 (12.11 MB

MOV)
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