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Abstract
A computational strategy based on the finite element method for simulating the mechanical response of arterial tissues is 
herein proposed. The adopted constitutive formulation accounts for rotations of the adventitial collagen fibers and introduces 
parameters which are directly measurable or well established. Moreover, the refined constitutive model is readily utilized in 
finite element analyses, enabling the simulation of mechanical tests to reveal the influence of microstructural and histologi-
cal features on macroscopic material behavior. Employing constitutive parameters supported by histological examinations, 
the results herein validate the model’s ability to predict the micro- and macroscopic mechanical behavior, closely matching 
previously observed experimental findings. Finally, the capabilities of the adopted constitutive description are shown inves-
tigating the influence of some collagen disorders on the macroscopic mechanical response of the arterial tissues.

Keywords Multiscale homogenization · Nonlinear finite element formulation · Collagen fiber rotation · Tension–inflation 
test

1 Introduction

The etiology of cardiovascular diseases is debated, and 
the therapeutic approaches, as well as the diagnosis, still 
have a high percentage of failure (Kelly and Fuster 2010). 
Advanced screening and effective treatments for vascular 
pathologies can be developed with an improved under-
standing of cardiovascular biomechanics and mechanobiol-
ogy. Recently, computational biomechanical models have 
provided a novel point of view into the mechanics of bio-
logical tissues, in both diagnostic and treatment scenarios 
(Bianchi et al. 2017; Falcinelli et al. 2019; Morganti et al. 
2019; Perrin et al. 2015). In the context of arterial tissues, 
the constitutive description represents a key aspect, espe-
cially for insight on the mechanisms that govern the onset 

of the vascular pathologies. Although several models exist 
to describe the mechanical behavior of the arterial tissue, 
they generally are based on phenomenological parameters 
(Holzapfel et al. 2000; Auricchio et al. 2012). This prevents 
from the possibility to understand if some histological fea-
tures can promote a pathological behavior of the arterial 
tissues. Alternatively, the structurally motivated constitutive 
model proposed by (Marino and Vairo 2013) has been effec-
tive in describing the anisotropic and nonlinear features of 
arterial mechanical responses by introducing parameters that 
directly translate to histological and structural properties. 
However, this approach neglects the non-affine kinematics 
of the collagen fiber network within the arterial structure. 
In fact, several works and experimental studies (Cavinato 
et al. 2020; Krasny et al. 2017; Chandran and Barocas 2006; 
Screen et al. 2004) demonstrate the occurrence of non-affine 
deformations in the soft fibrous tissue. For this reason, in 
this work, the constitutive description of the arterial tissue 
integrates both the non-affine fiber kinematics, addressed 
via the Eshelby’s inclusion problems theory (Morin et al. 
2018) and a structural approach able to recover the non-
linear features of collagen fibers (mainly de-crimping) by 
means of histological intrinsic parameters (Marino and 
Wriggers 2017). In addition, since the use of hypoelastic-
ity has been demonstrated as a suitable tool for soft tissue 
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biomechanics (Freed 2008, 2010; Morin et al. 2018), the 
constitutive description is based on a hypoelastic formula-
tion. The work herein also develops an integrated computa-
tional procedure for nonlinear finite element (FE) analyses 
to extend the utility of our model into the FE framework and 
to analyze the nonlinear mechanical response of the arterial 
tissue. Moreover, the computational framework is applied to 
reproduce experimental tests (Krasny et al. 2018) in order 
to validate the model prediction in both micro- and macro-
mechanical behavior. Furthermore, thanks to the adopted 
constitutive model, case studies addressing collagen disorder 
(e.g., reduction in content, morphological related changes) 
are investigated. Finally, the novel capabilities of the devel-
oped numerical framework are discussed.

2  Modeling assumption and governing 
equations

In this paper, the mechanical problem of tensile–inflation 
tests on an arterial segment is numerically addressed. The 
main assumptions related to this problem read as:

• the initial configuration is a hollow cylinder with length 
Lo , internal radius �o and thickness �o , composed of two 
concentric layers, namely the adventitia as the outer layer 
and the media as the inner one (with respective thickness 
�A
o
 and �M

o
 ). The intima is not modeled due to its negligi-

ble role in the arterial mechanics. The initial configura-
tion is considered as unloaded;

• the arterial segment is subjected to a tension–inflation 
loading, characterized by the application of a pressure 
field Pim(t) on the inner surface Σi and of an axial dis-
placement field Uim(t) on the right transverse section Σ+ . 
No force is applied on the external surface Σe ; a zero 
displacement is imposed on the left transverse section 
Σ− (Fig. 1a). Two loading paths are considered, namely 

a tensile test under a uniform and constant inner pressure 
and an inflation test at a constant imposed stretch;

• under the previous assumptions, the governing equations 
read as follows: 

 The boundary conditions are: 

 and the initial conditions read as: 

 whereby div is the divergence operator, ∇ is the Eulerian 
gradient operator, t  is the transpose operator, X is the 
macroscopic location vector, t is the time, ̇(⋅) is the mate-
rial derivative of (⋅) , U , V  , n , � and � are, respectively, 
the displacement, velocity, unit outward normal vector, 
Cauchy stress and Eulerian strain rate fields; ℂ(X, t) is 

(1)div[�(X, t)] = 0 ∀X ∈ �,

(2)�(X, t) =
1

2
[∇V(X, t) + t∇V(X, t)] ∀X ∈ �,

(3)V(X, t) = U̇(X, t) ∀X ∈ 𝛺,

(4)�̇(X, t) = ℂ(X, t) ∶ �(X, t) ∀X ∈ 𝛺.

(5)�(X, t) ⋅ n (X, t) = Pim(X, t) n (X, t) ∀X ∈ Σi,

(6)�(X, t) ⋅ n (X, t) = 0 ∀X ∈ Σe,

(7)U(X, t) = Uim(X, t) ∀X ∈ Σ+,

(8)U(X, t) = 0 ∀X ∈ Σ−,

(9)�(X, 0) = �(X, 0) = � ∀X ∈ �,

(10)U(X, 0) = V(X, 0) = 0 ∀X ∈ �,

Fig. 1  Representation of: a 
geometry of the problem with 
the associated local refer-
ence system ( K , T  , N ), b the 
Eulerian angles defining the 
orientation in space of the fiber 
and the material reference sys-
tem ( c, ⟂c, Nc ) of the fiber-like 
inclusions
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the effective hypoelastic macroscopic stiffness at point 
X and instant t;

• the stiffness tensor ℂ results from the current microstruc-
tural arrangement of the arterial tissue constituents. In 
particular, addressing medial and adventitial layers, the 
mechanical response of the arterial tissue is described 
via a multiscale procedure which is detailed in Sect. 3. 
In both media and adventitia, a hypoelastic formulation 
is adopted neglecting dissipative mechanism;

• the presence of crimped collagen fibers in the unloaded 
adventitia induces a nonlinear mechanical response as 
a consequence of fiber de-crimping and fiber rotation. 
These processes are explicitly modeled in the constitutive 
relation of the adventitia. To this aim, different collagen 
fiber families are incorporated in the model, and the con-
stitutive model takes into account their strain-induced 
de-crimping and rotation;

• the media are considered as purely elastic.

3  Constitutive model

The constitutive response of arterial tissue is modeled via a 
multiscale approach coupling the non-affine fiber kinemat-
ics, addressed via nonlinear random homogenization (Morin 
et al. 2018), with the nonlinear behavior of collagen fibers 
resulting from their progressive de-crimping (Maceri et al. 
2010, 2013; Marino and Wriggers 2017). The multiscale 
formulation links the apparent tissue stiffness to the current 
deformation state and to structural properties in terms of 
histological features. Moreover, to describe the anisotropic 
behavior characterizing the arterial tissue, a local reference 
system ( K , T  , N ) is defined at each macroscopic point X . 
In detail, the local orthonormal reference system ( K , T  , N ), 
depicted in Fig. 1, is defined as follows:

• N is the outward unit normal to Σe : it defines the radial 
direction;

• T  is orthogonal to N , lying in the tangential plane to Σe , 
and parallel to the centerline direction of the arterial seg-
ment: it represents the axial direction;

• K is such that K = T × N (with × as the cross product), 
lying in the tangent plane to Σe : it represents the circum-
ferential direction.

3.1  Medial layer

The medial layer is mainly made of elastic lamellae and 
smooth muscle cells. For the sake of simplicity, and since 
the focus of the paper is laid on the fiber kinematics in the 
adventitial layer, the medial layer is modeled as a homogene-
ous layer, having a hypoelastic stiffness ℂMchosen isotropic 

and characterized by a Young’s modulus EM and a Poisson’s 
ratio �M (Table 1 for numerical values).

3.2  Adventitial layer

3.2.1  At a scale of few hundred micrometers

According to multiphoton imaging and histology, the adven-
titial layer is composed of different fiber networks (mainly 
elastin and collagen) and fibroblasts being embedded in a 
surrounding matrix. Consequently, each point X of the pre-
viously described structure is modeled as a representative 
volume element (RVE) with a characteristic size l , being 
much smaller than the characteristic size of the structure L , 
and much larger than the characteristic size of the hetero-
geneities r c.

For the description of the microstructure, a statistical 
approach is chosen and material phases are defined, namely 
a collagen phase, represented by infinitely long cylindrical 
inclusions, having a volume fraction f c , and a matrix phase 
filling the rest of the volume and having therefore a volume 
fraction f m = 1 − f c (Fig. 2).

With respect to the (macroscopic) local reference system 
( K , T  , N ), the orientation of each i-th fiber phase is defined 
through the Euler angles �i and �i , as represented in Fig. 1. 
In addition, a (microscopic) reference system ( c, ⟂c, Nc ) is 
defined with respect to the (macroscopic) local reference 
system by

The elastin fibers are not explicitly modeled here, but 
are accounted for in the definition of the matrix stiffness 
(Table 1).

The mechanical response of the RVE is modeled in the 
framework of large strain continuum micromechanics, as 
proposed by Morin et al. (2018). In this context, the aver-
age strain rate and spin of each phase are linearly related to 
the strain rate � imposed at the boundary of the RVE via 
fourth-order tensors:

where �c, i is the average strain rate tensor of the i-th col-
lagen fiber family, �c, i is the average spin tensor of the 
same fiber family and the fourth-order tensors �c, i and ℝc, i 
represent the strain rate concentration tensor and strain 
rate-to-spin concentration tensor for the i-th collagen fiber 
phase, respectively. The semi-analytical expressions of 
these fourth-order tensors can be suitably estimated from 
the matrix inclusion problem (Eshelby 1957), extended to 

(11)

⎧⎪⎨⎪⎩

c i = (cos�i cos �i)N + (sin�i cos �i)T − (sin �i)K
⟂c i = −(sin�i)N + (cos�i)T
Nc i = (cos�i sin �i)N + (sin�i sin �i)T + (cos �i)K

(12)�
c, i = 𝔸

c, i ∶ �, �
c, i = ℝ

c, i ∶ �



2556 D. Bianchi et al.

1 3

the Mori–Tanaka scheme (Mori and Tanaka 1973), since the 
adventitial microstructure is modeled as a matrix-inclusion 
problem, where the interactions between the inclusions are 
taken into account via the strain rate seen by the matrix (for 
more details, the reader is referred to (Morin et al. 2018)).

The sum of the microscopic strain rate and of the spin 
allows to update the orientation of the fibers, which, besides 
the de-crimping process, are also rotating under the application 
of a mechanical load:

At the microscopic scale, both the matrix and the collagen 
fibers exhibit a hypoelastic constitutive behavior, whereby 
the local strain rates and the objective stress rates are 
proportional:

with x as the microscopic location vector describing position 
within the RVE and ℂ as the location-dependent elasticity 
tensor expressed as a function of the phase Young’s modulus 
E and Poisson’s ratio �,

The objective Jaumann rates of the Cauchy stress are chosen, 
i.e.,

(13)ȧ = (�c, i + �
c, i) ⋅ a ∀ a ∈ {c i, ⟂c i, Nc i}

(14)
△

� (x) = ℂ(x) ∶ �(x)

(15)ℂ(x) =

{
ℂ

m = ℂ
m(Em, �m) ∀ x ∈ matrix

ℂ
c = ℂ

c(Ec, �c) ∀ x ∈ fibers

(16)△

� = �̇ + � ⋅ � − � ⋅ �

Finally, the macroscopic fields are retrieved by use of stress 
and strain rate average rules (Morin et al. 2018). In addi-
tion, combining the macro-to-micro-relation (12), with the 
constitutive relation (14) and (16), and by means of the stress 
average rule, the homogenized stiffness of the adventitia ℂA 
can be computed.

3.2.2  Collagen fiber modeling

In the adventitia, the collagen fibers, which are modeled 
as straight cylinders in the upper scale RVE, are actually 
crimped in the unloaded configuration (Fig. 2). The crimp-
ing is progressively reduced under the application of a 
mechanical load. A different modeling strategy is adopted in 
order to account for this de-crimping mechanism: neglecting 
any effect induced by the vessel curvature, the collagen fib-
ers in the arterial tissue are modeled as planar homogeneous 
beams with a constant circular cross section with radius r c 
(Marino and Wriggers 2017). In agreement with histological 
evidence, the collagen fiber has a periodic shape modeled 
by a sinusoid:

with s as the curvilinear coordinate along the centerline, h 
and � the sinusoid amplitude and period, respectively (Mac-
eri et al. 2010).

The application of a mechanical load leads to the progres-
sive de-crimping, i.e., to an evolution of the parameters � 
and h (with �o and ho as initial values), as well as to a change 
in the axial apparent stiffness of the crimped beam. These 

(17)g(s) = h sin
(
s

�

)

Fig. 2  Schematic representation 
of micro-to-macro-homogeniza-
tion rationale including a sketch 
of the representative volume 
element (RVE) of the arterial 
tissue. Picture a, b reproduces 
from Krasny et al. (2017), 
and picture c reproduces from 
Ushiki (2002)
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evolutions are retrieved from the combination of a con-
strained Hu-Washizu variational principle and the principle 
of virtual work (for technical details, the reader is referred to 
(Marino and Wriggers 2017)). As a result, the chord elastic 
modulus of the collagen fiber is expressed by:

whereby ⟨⋅⟩ denotes the curvilinear average operator defined 
along the curvilinear coordinate s following the fiber center-
line, Ef  is the elastic modulus of the collagen fiber, 
Ac = �(r c)2 is the cross-sectional area, Ic = �(r c)4∕4 is the 
inertial moment of the crimped fiber and � =

h

�
cos

(
s

�

)
 is 

the fiber centerline slope (Table 1 for their numerical val-
ues). Finally, the chord Young’s modulus Ec is incorporated 
into the hypoelastic stiffness tensor of the collagen fibers ℂc 
of the upper scale RVE together with a constant Poisson’s 
ratio �c.

4  Numerical strategy

4.1  Overall strategy

Temporal and spatial integrations are needed to solve 
Eqs. (1)–(10). Concerning the spatial discretization, a finite 
element approach is used; concerning the temporal discre-
tization, all mechanical variables are evaluated at a series of 
discrete time instants tn , n ∈ {0, ...,N} , which are all sepa-
rated by a time interval �t . A subscript n after any variable 
a denotes the time instant at which the variable is evaluated: 
a(tn) = an . The applied loading is discretized accordingly. 
An explicit forward Euler scheme is chosen, i.e., for any 
quantity a, its time derivative reads as:

Assuming that the problem is solved up to time tn , the solu-
tion is then computed at the next time step tn+1 . Multiplying 
Eq. (1) by a virtual velocity field Ṽ  and integrating over the 
structure’s volume, one gets a weak formulation, reading, 
at time tn+1 , as

whereby �̃ is the virtual strain rate computed from Ṽ  . For 
the sake of clarity, the spatial dependence of all variables 
is implicit. Considering the forward Euler scheme (19), 
together with the constitutive Eq. (4), one gets:

with

(18)Ec = Ef Ic⟨cos � ⟩[Ic⟨cos2 �⟩ + Ac⟨g2⟩]−1

(19)ȧn 𝛥t = 𝛥an = an+1 − an

(20)∫
𝛺n+1

�n+1 ∶ �̃ d𝛺 = ∫Σn+1

[�n+1 ⋅ nn+1
] ⋅ Ṽ dΣ ∀ Ṽ

(21)�n+1 = �n + �̇n𝛥t = �n + ℂn ∶ �n𝛥t

Besides, the right-hand side integral of (20) is decomposed 
over different surfaces; when accounting for Eqs. (5) - (8), 
one gets

and

which, when inserted in Eq (20), provides

and

whereby Ṽ  is any virtual velocity, �̃ any virtual surface trac-
tion in the sets of continuous and continuously differentiable, 
respectively, first-order tensors and second-order tensors.

This weak formulation displays two major difficulties: 
the unknown character of the geometrical configuration 
�n+1 and the evolving character of ℂn due to local rotations 
and de-crimping of the fibers. As a consequence of the first 
difficulty, the first term on the left side of equation (25) 
does not simplify with the first term implying the load-
ing at tn on the right-hand side. The simplification of the 
terms shows an error strictly related to the discretization 
step size. Numerous preliminary simulations, reproducing 
uniaxial and biaxial stretching tests, have been performed 
in order to minimize the error, while maintaining a light 
computational cost. The results of the performed analyses 

(22)ℂn(X) =

{
ℂ

A
n

∀X ∈ adventitial layer

ℂ
M
n

∀X ∈ medial layer

(23)

∫Σn+1

[�n+1 ⋅ nn+1
] ⋅ Ṽ dΣ

= ∫Σi, n+1

Pim
n+1

n
n+1

⋅ Ṽ dΣ+

+ ∫Σ+, n+1∪ Σ−, n+1

[�n+1 ⋅ nn+1
] ⋅ Ṽ dΣ ∀ Ṽ

(24)
∫Σ+, n+1∪ Σ−, n+1

U
n+1

⋅ [ �̃ ⋅ n
n+1

] dΣ =

= ∫Σ+, n+1

Uim ⋅ [ �̃ ⋅ n
n+1

] dΣ ∀ �̃

(25)

∫
𝛺n+1

�n ∶ �̃ d𝛺 + ∫
𝛺n+1

�n ∶ ℂn ∶ �̃ d𝛺 =

= ∫Σi, n+1

Pim
n

n
n+1

⋅ Ṽ dΣ + ∫Σi, n+1

𝛥Pim n
n+1

⋅ Ṽ dΣ+

+ ∫Σ+, n+1∪ Σ−, n+1

[�n+1 ⋅ nn+1
] ⋅ Ṽ dΣ ∀ Ṽ

(26)
∫Σ+, n+1∪ Σ−, n+1

U
n+1

⋅ [ �̃ ⋅ n
n+1

] dΣ =

= ∫Σ+, n+1

Uim
n+1

⋅ [ �̃ ⋅ n
n+1

] dΣ ∀ �̃
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show that the choice of a small enough discretization step 
size assures a negligible error. Accordingly, the solution 
algorithm neglects this difficulty for the sake of simplicity. 
To overcome the other difficulties, the problem is solved 
iteratively, by splitting the set of equation in two subsets:

• the weak form of the equilibrium equations (25) - 
(26) is solved by considering that the stiffness tensor 
remains constant over the time interval;

• the stiffness tensor is locally updated, by considering 
that the computed strain rate field �n remains constant 
over the time interval.

4.2  Enforcing the constitutive relations 
and updating the reference systems

The solution of the equilibrium equation provides a dis-
placement increment �U

n
 , which allows calculation of the 

deformation gradient as

with ��n = � + ∇(�U
n
) as the incremental deformation gra-

dient and � as the second-order identity tensor. This, in turn, 
is used to update the macroscopic reference system as:

On the other hand, each macroscopic point X undergoes an 
Eulerian strain rate �n = ��n∕�t , which is applied in terms 
of a velocity field v

n
(x) on the RVE attached to that macro-

scopic point X:

Then, the homogenization procedure runs as follows: based 
on the known configuration at time tn , the concentration ten-
sors �c, i

n
 and ℝc, i

n
 can be evaluated; the macroscopic average 

fields follow from (12) and the update of the local reference 
system from applying the explicit Eulerian scheme (19) to 
(13); finally, the updated local reference system reads as:

The updated orientation of the collagen fiber inclusion can 
be directly calculated as

(27)� n+1 = ��n ⋅ � n

(28)

⎧⎪⎨⎪⎩

K
n+1

=
𝛥�n⋅K n

‖𝛥�n⋅K n
‖

T
n+1

=
T̄

n+1
−(T̄

n+1
⋅K

n+1
)K

n+1

‖T̄
n+1

−(T̄
n+1

⋅K
n+1

)K
n+1

‖ with T̄
n+1

=
𝛥�n⋅T̄ n

‖𝛥�n⋅T̄ n
‖

N
n+1

= K
n+1

× T
n+1

(29)v
n
(x) = �n ⋅ x ∀ x ∈ ��.

(30)

⎧⎪⎪⎨⎪⎪⎩

c i
n+1

=
c i

n
+�(c i

n
)

‖c i
n
+�(c i

n
)‖

⟂c i
n+1

=
⟂c i

n
+�(⟂c i

n
)

‖⟂c i
n
+�(⟂c i

n
)‖

Nc i
n+1

=
Nc i

n
+�(Nc i

n
)

‖Nc i
n
+�(Nc i

n
)‖

In regard to the evolving stiffness of the collagen fibers, it 
is worth remarking that the modulus Ec,i of the ith collagen 
fiber depends on the along-the-chord strain �i whose incre-
ment is defined in the material reference system as

resulting in a current strain in the fiber direction of 
�i
n+1

= �i
n
+ ��i

n
 . With the updated chord elastic modulus, 

the macroscopic homogenized stiffness can be obtained. The 
overall algorithm is summarized in Fig. 3

5  Case studies definition: validation 
on P‑tests and S‑tests

The presented model is validated by comparing its predic-
tions to experiments performed on a cylindrical segment of 
carotid arteries from New Zealand White rabbits (Krasny 
et al. (2018)). To this aim, tension–inflation tests are simu-
lated. According to the experiments, five loading scenarios 
are numerically addressed:

• two inflations under a constant axial stretch (P-test). 
The P-tests simulate the whole experimental process. 
Starting from the unloaded ex vivo configuration (on 
which the morphological parameters are determined), 

(31)

𝜙i
n+1

=

{
cos−1[⟂c i

n+1
⋅ K

n+1
] if sin[⟂c i

n+1
⋅ K

n+1
] ≥ 0

2𝜋 − cos−1[⟂c i
n+1

⋅ K
n+1

] if sin[⟂c i
n+1

⋅ K
n+1

] < 0

𝜃i
n+1

= cos−1[Nc i
n+1

⋅ T
n+1

]

(32)��i
n
= c i

n
⋅ �c, i

n
⋅ c i

n

Fig. 3  Flowchart of the solution algorithm based on a finite element 
implementation. LRS: local reference system; FEM: finite element 
method
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an axial stretch � is first applied on the structure, 
Uim(t) = Uim = (� − 1)Lo ; then, maintaining a constant 
stretch of either 1.5 or 1.8, a pressure Pim(t) is monoto-
nously applied from 0 to 140 mmHg.

• three axial tensions under constant imposed pressure 
(S-test). The S-tests simulate the whole experimental 
process. Starting from the fully unloaded ex vivo con-
figuration (on which the morphological parameters are 
determined), an inner pressure Pim is incrementally 
imposed on the structure, Pim(t) = Pim ∈ {20, 100, 140} 
mmHg ; then, maintaining the inner pressure constant 
at one of the three pre-cited values, an axial stretch 
Uim(t) = Uim = (� − 1)Lo is monotonously applied from 
a stretch of 1 to a 1.8 stretch.

A sketch of the computational case study is provided in 
Fig. 4.

For all cases, the simulations incorporate four fiber fami-
lies. Since they lie in the axial-circumferential plane, the 
angle � is set to ± �

2
 (to keep the symmetry of the model) and 

the two angles � are determined from image processing of 
the initial microstructure configuration (as measured by sec-
ond harmonic generation). In more details, the angle prob-
ability density obtained from image processing is fitted by 
a sum of two Gaussian curves, and the highest peak is con-
sidered as the principal orientation of the fibers, labeled �1 
in the sequel and reported first in Table 1. It is worth noting 
that the initial mechanical state of the tissues is reproduced 
in the simulation by defining the tissue model histological 
parameters directly measured from the microscopic analyses 
of the initial experimental configuration (Krasny et al. 2017, 
2018) and with available data (Maceri et al. 2012, 2013; 
Marino and Vairo 2013; Morin et al. 2018; Khamdaeng et al. 
2012). Values of parameters are summarized in Table 1.

The proposed integrated computational approach has 
been implemented via a parametric code developed in 
the Python environment (Python Software Foundation), 
exploiting finite element solver-core libraries of ABAQUS 
(ABAQUS / Standard; SIMULIA Inc, Providence RI). In 
particular, the code, solving the structural analysis at each 
discrete time instant tn by means of the ABAQUS librar-
ies for mechanics (i.e., part, sketch, step, interaction, load, 
mesh, job, odbAccess), drives the enforcement of consti-
tutive relations and the update of the reference systems 

Fig. 4  Representation of the case study: main geometrical features 
defining the computational domain and sketch of the boundary condi-
tions

Table 1  Values of model parameters employed in numerical simulations

Parameter Symbol Value in S-test Value in P-test References

Initial arterial segment length Lo (mm) 7.8 8.0 Macro-measure from Krasny et al. (2018)
Initial arterial average radius �o (mm) 1.2 1.1 Macro-measure from Krasny et al. (2018)
Initial arterial thickness �o (mm) 0.19 0.155 Macro-measure from Krasny et al. (2018)
Initial medial layer thickness �M

o
 (mm) 0.125 0.1 Image processing from Krasny et al. (2018)

Initial adventitial layer thickness �A
o
 (mm) 0.065 0.055 Image processing from Krasny et al. (2018)

Collagen volume fraction f c (%) 15.0 20.0 Image processing from Krasny et al. (2018)
Initial collagen inclusion orientation vec-

tors
�o ( 

◦ ) �o ( 
◦) {60,−60, 10,−10} 

{90,−90, 90,−90}

{70,−70, 35,−35} 
{90,−90, 90,−90}

Image processing from Krasny et al. (2018)

Initial fiber crimp amplitude ho 0.2�o 0.25�o Image processing from Krasny et al. (2018)
Collagen fiber radius r c 0.04�o 0.04�o Maceri et al. (2012, 2013); Bianchi et al. 

(2016)
Initial fiber period �o ( �m) 50.0 50.0 Image processing from Krasny et al. (2018)
Collagen Poisson’s ratio �c 0.35 0.35 Morin et al. (2018)
Matrix Young’s modulus Em (kPa) 10.0 10.0 Morin et al. (2018)
Matrix Poisson’s ratio �m 0.4 0.4 Morin et al. (2018)
Media Young’s modulus EM (MPa) 0.12 0.12 Khamdaeng et al. (2012)
Media Poisson’s ratio �M 0.49 0.49 Bianchi et al. (2016)
Collagen fiber Young’s modulus Ef  (MPa) 50.0 50.0 Marino and Vairo (2013); Bianchi et al. 

(2016)
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for next time step tn+1 via a post-processing of the results 
obtained at the previous step. The arterial domain is dis-
cretized by means of eight-node brick elements. As a result 
of a preliminary sensitivity analysis, an average mesh size 
equal to �o∕12 is adopted. In regard to the discretization of 
the load and stretch steps, a sensitivity study was performed, 
and the step size of �P = 5 mmHg and of �� = 0.03 (i.e., 
an incremental displacement of |�Uim| = 0.3 mm) has been 
chosen for pressure load and stretch assuring a negligible 
discretization error less than 1%.

6  Results and discussion

6.1  Model validation at the fiber scale

The simulations of the tensile tests under constant pressure 
(S-test) and of the inflation tests at constant axial stretch 
(P-test) provide insight on the evolving fiber orientation with 
respect to the applied load, shown in Fig. 5 with compari-
sons to experimental data. More precisely, the average value 
of the first collagen fiber family, over the central region (with 
length L∕4 as shown in Fig. 4), is reported, in order to avoid 
boundary effects and to compare with experiments, in which 
the microstructure was imaged at the center of the samples. 
It is particularly interesting to note the very good agree-
ment between the model prediction and the experimental 
data, given the fact that no angle adjustment was performed 
between different simulations. The maximum error on the 

angle prediction indeed amounts to 20% and is obtained at 
a stretch of 1.8 and a pressure of 20 mmHg.

Based on the definition of the � angle, the 0 corresponds 
to the axial direction which, in turn, corresponds to the 
asymptote of the fiber orientation under axial stretch. How-
ever, the higher the inner pressure, the less reorientation is 
observed, since the circumferential stress prevents the rota-
tion (Fig. 5a). On the other hand, the �∕2 angle corresponds 
to the circumferential direction. It is interesting to see that 
the simulation well predicts the very limited reorientation 
occurring during inflation. This is a consequence of the large 
axial stretch imposed on the sample, which already produced 
a large reorientation toward the axial direction. Moreover, 
applying 140 mmHg does not produce a large stretching of 
the sample, which also explains the limited reorientation 
toward the circumferential direction. Furthermore, Fig. 6 
provides the spatial distribution of the �1 angle of the main 
fiber family at different levels of stretch imposing a constant 
pressure Pim = 20 mmHg and it highlights the stretch-based 
re-orientation. As expected, because of the symmetry of the 
problem, the �1 keeps a constant value in the adventitial layer 
excepted at the ends of the segment due to the boundary 
conditions.

6.2  Macroscopic mechanical response 
during tensile–inflation tests

The simulations also provide access to the macroscopic 
mechanical response of the samples. Figure 7a reports the 
evolution of the circumferential stretch, computed as the 

Fig. 5  Orientation evolution of the main collagen family fiber during: the stretching simulation under different constant imposed pressure levels 
S-test (a); the inflation test under different constant axial stretch levels P-test (b)
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average relative diameter over the central region, with respect 
to the applied axial stretch during the tensile tests. Similarly, 
Fig. 7b shows the evolution of the average relative diameter 
as a function of the applied pressure during inflation tests. For 
both series of tests, a very good prediction of the macroscopic 
kinematics of the samples is highlighted, as quantified by a 
maximum error of 15% between the model prediction and 
experimental data.  

7  Model capabilities analysis

7.1  Collagen disorder investigation

Several collagen-related alterations cause malfunction in the 
mechanical response of arterial tissues triggering remod-
eling mechanisms that can lead to arterial diseases (e.g., 
aneurysms). The adopted multiscale constitutive framework 
allows evaluation of the influence of the histological features 
on the macroscale tissue behavior as well as providing an 
insight into the micromechanical quantities that can repre-
sent the main features in the remodeling phenomena of the 
arterial tissues. For instance, some genetic disorders (such 
as the Ehlers–Danlos syndrome) are associated with a reduc-
tion in collagen content (Tsamis et al. 2013; Mao et al. 2002) 
leading to a higher risk of vascular rupture. Aiming at high-
lighting the behavior and the influence of collagen features 
on the mechanical response, using the parameters reported 
in Table 1 except for the histological features investigated, 
a stretching test is performed increasing the axial stretch 
(along the T  direction) from � = 1 to � = 1.6 and imposing 
a constant pressure of Pim = 20 mmHg. Demonstrating the 
capabilities of the adopted constitutive model, Fig. 8 shows 
the influence of the collagen volume fraction f c and of the 
collagen fiber crimp amplitude h on the strain-induced evo-
lution of macro- and micro-mechanical quantities adopting 
a range of values, respectively, of [10%, 20%, 40%] for f c 
and of [0.1�0 , 0.2�0 , 0.3�0] for h. The mean values of the 
mechanical quantities shown in Fig. 8 are averaged over the 
central region �c (Fig. 4) in order to avoid boundary effects. 
Figure 8a, c and e show the influence of the collagen volume 
fraction on the collagen fiber stress, the tissue stress, and 
stiffness, respectively. In this analysis, the variation in f c 
from 20 to 40% at stretch � = 1.6 causes a threefold increase 

Fig. 6  Spatial distributions of �1 angle, representing the orientation 
of the main family fiber 1 in the plane at different levels of stretch � 
imposing a constant pressure of Pim

= 20 mmHg

Fig. 7  Mean radius evolution during: the stretching simulation under different constant imposed pressure levels S-test (a); the inflation test under 
different constant axial stretch levels P-test (b)
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Fig. 8  Influence of collagen volume fraction f c and of the collagen fiber crimp amplitude h, respectively, on: collagen fiber stress (a, b) , the 
axial stress of the arterial tissue (c, d) and the axial stiffness of the arterial tissue (e, f)
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in the axial stress and a twofold increase in the axial stiff-
ness that corresponds to a 15% increase in fiber stress at the 
microscale. Moreover, Fig. 8b, d and f shows the influence 
of the collagen crimp on the same mechanical quantities 
highlighting different levels of the collagen fiber recruit-
ment. In particular, for the value of h0 = 0.3�0 , collagen 
fibers are still undulated, even at stretch � = 1.6 , causing a 
lower stiffness in the arterial tissue.

Furthermore, Fig. 9 clearly illustrates the link between 
the histological features and the macroscopic mechani-
cal response of the arterial tissue obtained thanks to the 
structural homogenization approach, with a P-test impos-
ing a constant stretch of � = 1.2 . The obtained results at a 
pressure Pim = 140 mmHg highlight the effect of the fiber 
crimp amplitude on the displacement field, with an increase 
in about two times in the displacement norm ‖U‖ when the 
crimp amplitude ho is increased by a factor of 0.7, demon-
strating that the morphological features of the collagen fiber 
affect the mechanical properties of the tissue and, in turn, the 
mechanical response to the imposed pressure.

In conclusion, the presented results highlight that the pro-
posed computational strategy is able to describe the strong 
coupling among macroscopic tissue constitutive response, 
non-affine deformation in the microstructure and local stress 
and/or strain field. In fact, Figs. 8 and 9 show the possibil-
ity to analyze the effects of interactions and crossed effects 
between different microstructural parameters, within the 
frame of known diseases.

7.2  Relevance and contribution

In the framework of arterial constitutive modeling, although 
several effective methods exist to model the mechanical 
behavior of the arterial tissues (Holzapfel et al. 2000; Hol-
lander et al. 2011), they generally exhibit a weak relation-
ship between model parameters and tissue histological/bio-
chemical features (though often inspired from those). This 

prevents from any possibility to understand if a specific 
biological or histological feature of the tissue can contrib-
ute in a mechanical response. In fact, a phenomenological 
model foregoes any attempt to explain why the variables 
interact, and simply attempts to describe the response. 
Instead, the main objective of the developed model is to 
give an insight into micromechanics of the arterial tissues 
and, as a prospect, into the mechanism that can drive tis-
sues to pathological remodeling. For this reason, the param-
eters in our mechanistic model have biological definitions 
and the hypothesized relationship between the variables 
derives from the description of the nature of the relation-
ship in terms of the mechanical and biological processes. 
This fundamental aspect allows our model to investigate how 
a specific histological feature contributes to the micro- or 
macro-mechanical environment of the tissue. Moreover, this 
capability naturally extends our model for the investigation 
of microstructural remodeling. In addition, with respect to 
other structurally motivated constitutive models presented 
in the literature (Marino and Vairo 2013; Maceri et al. 2010, 
2013), the developed model reproduces the non-affine kin-
ematics of the collagen fibers allowing the model to analyze 
the real mechanical environment of the fiber and of the arte-
rial tissue. In fact, the microscopic kinematics represents a 
key aspect of the constitutive modeling in soft tissues and 
many recent experimental evidences in mechanics of the 
biological tissues, especially when load bearing is primarily 
handled by a fiber network, highlight that the assumption 
of affine fibers movement with macroscopic deformation is 
not accurate. In particular, the experiments show that each 
fiber is free to move inside the soft matrix and the fiber strain 
is contained by an extensive re-orientation (Cavinato et al. 
2020; Krasny et al. 2017; Chandran and Barocas 2006). In 
the developed model, the non-affine kinematics of the fibers 
is naturally taken into account.

Additionally, the proposed constitutive model is able 
to predict experimental evidences which are hardly dealt 

Fig. 9  Spatial distribution of the 
displacement norm ‖U‖ : influ-
ence of the initial fiber crimp 
amplitude ho on the displace-
ment field imposing an internal 
pressure of Pim

= 140 mmHg
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with in the literature. For example, the work of Deng et al. 
(1994) shows the evolution of the shear modulus in relation 
to stretch and pressure of the arterial tissue. The experi-
mental results have been used highlighting the ability of the 
model to reproduce the coupling observed concerning the 
shear stiffness. In particular, Fig. 10 shows the comparison 
between the evolution of the shear stiffness between axial 
and circumferential directions measured in (Deng et al. 
1994) and the simulated one.

Figure 10a, b shows the evolution of the shear stiffness 
during a stretching test maintaining a constant imposed pres-
sure of 120 mmHg and a pressurization test maintaining a 
constant stretching level � = 1.3 , respectively. This compari-
son highlights the good agreement regarding the coupling 
between shear stiffness and stretch of the tissue. In fact, an 
increase in longitudinal (i.e., stretching test) and circumfer-
ential (i.e., pressurization test) stretch level corresponds to 
an increase in the shear stiffness. To get these results, the 
contribution of Deng et al. (Deng et al. 1994) did not report 
the histological data of the samples necessary to retrieve the 
material parameters. Therefore, for this specific case, the 
comparison is made using a model parameter in agreement 
with the literature for arterial tissues (Morin et al. 2018; 
Bianchi et al. 2016; Marino and Vairo 2013; Khamdaeng 
et al. 2012).

8  Conclusion

This paper presents a novel constitutive model that cap-
tures the complexity of load-induced micro-structural 
morphological changes and links the mechanical response 

of the tissue with the histological features of the constitu-
ents. Moreover, the proposed computational approach 
implemented in a finite element-based numerical tool can 
be employed in numerical simulations reproducing any 
mechanical test and can be straight forwardly applied to a 
patient-specific framework.

The computational model has been validated on the 
basis of experimental tests reproducing microscopic and 
macroscopic mechanical behavior of the arterial tissue. 
In detail, using values of model parameters fully con-
sistent with histological and morphological experimen-
tal evidence, numerical simulations addressing different 
mechanical tests have been compared with experimental 
results proving effectiveness and accuracy of the proposed 
multiscale approach.

Moreover, the utility of the model to locally evaluate 
histological features and the microstructure of the arterial 
tissue during the physiological loading can elucidate local 
mechanical stimuli affecting tissue cellular environment in 
pathological remodeling, enabling key insight on patho-
genesis and progression.

Future works will address the microstructure of the 
medial layer considering the collagen and elastin fiber 
inclusions and will take into account damage and viscous 
effects occurring in the arterial tissue at different scales. 
Furthermore, in order to obtain useful results for clinical 
application, patient-specific geometries will be investi-
gated including density distributions for the orientation 
of the fibers (e.g., collagen, elastin). Moreover, exploiting 
the flexibility of the computational approach based on FE, 
the transmural effects (e.g., the stress variation inside the 
tissues) will be analyzed.

Fig. 10  Evolution of the shear stiffness between axial and circum-
ferential directions during: the stretching simulation under constant 
imposed pressure P = 120 mmHg (a); the inflation test under con-

stant axial stretch levels � = 1.3 (b). Comparison with experimental 
data (Deng et al. 1994)
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