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Abstract: In recent years, with the deepening of China’s electricity sales side reform and electricity
market opening up gradually, the forecasting of electricity consumption (FoEC) becomes an extremely
important technique for the electricity market. At present, how to forecast the electricity accurately
and make an evaluation of results scientifically are still key research topics. In this paper, we
propose a novel prediction scheme based on the least-square support vector machine (LSSVM) model
with a maximum correntropy criterion (MCC) to forecast the electricity consumption (EC). Firstly,
the electricity characteristics of various industries are analyzed to determine the factors that mainly
affect the changes in electricity, such as the gross domestic product (GDP), temperature, and so
on. Secondly, according to the statistics of the status quo of the small sample data, the LSSVM
model is employed as the prediction model. In order to optimize the parameters of the LSSVM
model, we further use the local similarity function MCC as the evaluation criterion. Thirdly, we
employ the K-fold cross-validation and grid searching methods to improve the learning ability. In
the experiments, we have used the EC data of Shaanxi Province in China to evaluate the proposed
prediction scheme, and the results show that the proposed prediction scheme outperforms the method
based on the traditional LSSVM model.

Keywords: electricity consumption forecasting; least-square support vector machine; maximum
correntropy criterion; K-fold cross-validation

1. Introduction

With rapid socioeconomic development and the improvement in living standards of residents,
the liberalization of the sales side has become an important part of the electricity reform. Electricity
selling enterprises have formed a new trading platform and profit model based on the power supply
and distribution service. However, the user’s electricity consumption (EC) is easily affected by many
factors and shows clear volatility. Therefore, it is necessary for electricity selling companies to make
reasonable electricity forecasting systems. For the current bilateral bidding system, electricity selling
enterprises buying more or less electricity will face unnecessary economic losses; thus the accuracy
requests of electricity demand forecasting are increasingly high.

At present, the methods for electricity consumption prediction (ECPM) can essentially be classified
into two types: the traditional prediction method and the intelligent prediction method. In [1],
a correction was introduced to correct the coefficients of the Non-homogenous discrete exponential
Grey Model (NGM) model, and the raw data was processed with the buffer operator. Finally, a gray
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prediction model with optimized coefficients was established. However, this model does not consider
some of the effects of other factors for electricity. Xue et al. [2] proposed a method of quantifying
stochastic change, and its quantized value as a predictive model was used for influencing factors
of monthly EC. In addition, the impact of stochastic changes on the monthly sales of electricity was
considered reasonable, and thus the model prediction accuracy was effectively improved. An improved
support vector regression algorithm was proposed by using the seasonal index adjustment strategy
to fine-tune the model prediction error and optimize the key parameters on the basis of the fruit fly
algorithm in [3]. A short-term prediction model of building energy consumption based on artificial
neural networks (ANNs) and a Bayesian regularization algorithm was developed in [4], and the
influence of the parameters such as the delay and the number of hidden neurons was discussed
carefully. In addition to the conventional factors such as temperature, the heat island effect as an
unconventional factor has also been considered in [5–8] to improve the accuracy of the prediction.
Although these methods above perform well, the following problems should be considered further:
(1) Good prediction results mostly depend on a large amount of historical electricity data; however,
most users cannot provide enough data; (2) The assumption of the prediction error with a Gaussian
distribution is usually used in most of the intelligent algorithms, but it is inconsistent with the diversity
of true prediction errors; (3) The prediction results are easily influenced by the type and characteristics
of the data.

In order to address these problems, the least-square support vector machine (LSSVM)-based
prediction model [9] is introduced to solve the problem of too few data samples effectively. At the
same time, the mean square error (MSE) is used as a risk function in the LSSVM model to evaluate
the performance obtained by the corresponding parameters [10]. However, the applicability of the
MSE to train a mapper (any model mapping an input–output relation, such as neural networks, SVMs,
etc.) is optimal only if the probability distribution function of the prediction errors is Gaussian [11,12].
In order to deal with the non-Gaussian and nonlinear problems in engineering applications, a novel
criterion, namely, the maximum correntropy criterion (MCC), was introduced in [12,13], and its
properties are discussed in [14,15]. Because the prediction errors under the small-sample electricity
data have non-Gaussian statistical characteristics, the LSSVM prediction mechanism using the MCC is
developed in this paper. Furthermore, the optimization method of grid optimization and the K-fold
cross-validation method are used to optimize the key parameters of the model, which can ensure the
universality of the parameters. Finally, we use the proposed prediction mechanism to predict the EC of
large industries in Shaanxi Province, Xi’an City and an educational institution in Xi’an for evaluating
its performance.

The rest of the paper is organized as follows: In Section 2, the LSSVM is briefly reviewed. In Section 3,
we give the implementation of the LSSVM method based on MCC. In Section 4, we evaluate the
accuracy of the proposed model in three cases. Finally, we conclude this paper in Section 5.

2. Review of the LSSVM and MCC

2.1. Least Square Support Vector Machine

SVM theory is the combination of structural risk minimization and VC dimension theory [16],
which are usually utilized for data analysis, pattern recognition, and fitting functions [17,18]. It is
superior to other models when dealing with small-sample datasets, nonlinear problems and
high-dimensional models. In this section, the LSSVM model is reviewed firstly.

We give a sample set as
S = {(x1, y1), ..., (xi, yi)} ⊂ Rn × R (1)

The essence of the regression problem is to search a function f corresponding to the sample space,
which can map the data from a low-dimensional input space to a high-dimensional output space.
The function f is a linear function of the variable ω.
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The original optimization problem is

min
1
2
‖ω‖2 (2)

Now we define a loss function as

I(y, f (x)) = (y− f (x))2 = e2 (3)

where e = y− f (x). The LSSVM can be derived by the following risk function:

J1 =
1
2
‖ω‖2 +

1
2

γ
l

∑
i=1

e2
i (4)

where γ is a penalty.
Then, we can solve the original optimization problem by minimizing Equation (4) as

min J1(ω, e) =
1
2
‖ω‖2 +

1
2

γ
l

∑
i=1

e2
i (5)

Now, using Equation (5) and the Lagrange multiplier method, we have

L =
1
2
‖ω‖2 +

1
2

γ
l

∑
i=1

e2
i −

l

∑
i=1

αi

{
ωT ϕ(xi − b + ei − yi)

}
(6)

where αi denotes the Lagrange multiplier.
Further, we compute the gradient with respect to each parameter and set it equal to zero, yielding

∂L
∂ω = 0⇒ ω =

l
∑

i=1
αi ϕ(xi)

∂L
∂b = 0⇒

l
∑

i=1
αi = 0

∂L
∂ei

= 0⇒ αi = γei
∂L
∂αi

= 0⇒ b = yi −ωT ϕ(xi)− ei

(7)

Now, eliminating ω and e in Equation (7), we obtain[
0 IT

I Ω + D−1
y

] [
b
α

]
=

[
0
y

]
(8)

where the element of the matrix Ω is Ωij = ϕ(xi)
T ϕ(xj), which denotes the identify matrix and is the

vector of Lagrange multipliers.
After obtaining the variables b and α by solving the above Equation (8), we can obtain the

regression function as

y(x) =
l

∑
i=1

αiK(xi, xj) + b (9)

In the formula, K(xi, xj) is a kernel function satisfying the Mercer condition [19,20], which
can map the feature quantities in the original space into the high-dimensional space. In LSSVM,
the commonly used kernel functions include the linear kernel function, the polynomial kernel function,
the Gaussian kernel function, the multi-layer perceptron kernel function and so on. Among these, the
Gaussian kernel function with its relatively simple structure is famous for its generalization ability
and generality [19], and it is defined as
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K(xi, yi) = exp(−‖xi − yi‖2

2σ2 ) (10)

The selection of the kernel function is an important issue for the SVM. For the process of forecasting
electricity, the data is usually stored in a low-dimensional vector space, which may lead to a difficulty
in extracting hidden information from the data. After continuous reasoning of mathematics, a feasible
method for the classification of low-dimensional vector sets is to map the low-dimensional-space
vector number set to a high-dimensional space, although the computation complexity will be increased.
In order to simplify the calculation steps, the kernel function was introduced for SVMs to solve the
mapping problem. SVMs map the sample space to a high-dimensional space by nonlinear mapping,
which transforms the nonlinear separable problem in the original sample into a linear separable
problem in high-dimensional space, which is called dimension increase and linearization.

2.2. Maximum Correntropy Criterion

Considering the non-Gaussian distributions feature of the EC, a suitable risk function minimizing
the information content of the error distribution instead of minimizing the MSE should be better
employed to guide the parameter optimization process, then improving the electricity prediction
accuracy efficiently. The MCC as a measure of the information content in information theoretic
learning was developed by principe with his team to deal with error distributions with non-Gaussian
characteristics, and it has been widely used in pattern classification, feature selection, dimension
reduction and adaptive filtering [21–25]. The MCC indicates the similarity between the predicted
output and the real sample in the correntropy sense; it shows good robustness for nonlinear and
non-Gaussian data processing, such as determining whether electricity is suitable for the prediction of
time series non-stationary and time-varying predictions [26]. The correntropy between two arbitrary
random variables X and Y is defined by

Vσ(X, Y) = E[Gσ(X−Y)]
=
∫

G(e) fe(e)de
(11)

where e = x − y is the error, Gσ(·) denotes the kernel function with the kernel width σ, and E(·)
represents the mathematical expectation. In practice, the joint distribution of X and Y is usually
unknown, and only a finite number of samples of these are available as {(xi, yi)}m

i=1; this leads to the
following sample estimator of correntropy using the Parzen window estimate [12] as follows:

Vσ(X, Y) =
1
N

N

∑
i=1

Gσ(xi − yi) (12)

where Gσ(xi − yi) = exp(− ‖xi−yi‖2

2σ2 ) is a Gaussian kernel function, and we know that the value of
Equation (12) is always positive and obtains its maximum when X = Y.

As mentioned above, the correntropy uses the high-order moment of the signal, which can be
represented by the Taylor series expansion of the Gaussian kernel function:

Vσ(X, Y) =
1√
2πσ

∞

∑
n=0

(−1)n

2nσ2nn!
E[(X−Y)2n] (13)

Remark: As one can see, when using the Gaussian kernel function, correntropy contains all
even-order sums of random variables X and Y [12,14]. By using the above index, the MCC contains
the high-order moment between the real value and the predicted value, and it is mostly guided by the
local similarity of the data. For the EC forecasting problem, if the overall similarity is only considered
while the local similarity is ignored, it is possible to meet the requirements of the local and global error
caused by a large and unacceptable error. Therefore, the introduction of the MCC, producing local
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similarity between real data and forecast data as an evaluation index, is more reasonable than the MSE,
which gives global similarity.

3. FoEC via LSSVM with MCC

On the basis of the theory’s foundation reviewed in Section 2, we design the FoEC method via
the LSSVM model with the MCC in this section. For the proposed FoEC, the details of the steps are
described as follows:

Step 1: Data preprocessing: Includes the processing of error data and data normalization.
Step 2: Dataset constructing: The normalized data samples are divided into training and testing

samples, which are used to train the LSSVM model and evaluate the performance of the
trained model, respectively.

Step 3: Parameter optimization: The parameters of the LSSVM model with the MCC are optimized
by the grid search method.

Step 4: Prediction: After training the LSSVM, the prediction accuracy and the generalization
performance are demonstrated by the testing data.

Step 5: Prediction result analysis: Applies certain evaluation criteria for performing evaluation tasks
and analyzing the various elements that affect the result of such a forecast.

We now give the detailed analysis of the prediction procedures in the following subsections.

3.1. Data Preprocessing

The collection and the preprocessing of historical data are very important for the prediction
scheme. However, some missing or unreasonable and even wrong data are usually contained in
the original dataset, which is often obtained by a statistical machine and artificial classification.
Accordingly, we should perform analysis and preprocessing of the original data to eliminate the
influence of the abnormal data in order to improve the accuracy of the prediction scheme.

(1) Error data and missing data processing.

On the basis of the analysis of the distribution of the EC data, we use the data at the same time
point in the last year to replace the error data or the missing data.

For the error data and the missing data in a dataset, these can be replaced by that of the same
period of the last year’s electricity and the last or the next month’s electricity of the same year.

(2) Normalization processing.

In our proposed prediction scheme, four variables are considered as the factors affecting the
electric power consumption with different dimension. Therefore, the data should be normalized by
a suitable method first. In this work, we use the following formula to normalize the data:

yi
′ =

yi − ymin

ymax − ymin
(14)

where yi denotes the electricity data before normalization, and ymax and ymin are the maximum and
minimum data in the dataset, respectively; yi

′ stands for normalized data.
We can easily obtain the anti-normalization data by the following formula:

yi = (ymax − ymin) ∗ yi
′ + ymin (15)

3.2. Selection of Influence Factors

In this work, we mainly focus on predicting the EC of Shaanxi Province, China by using the
proposed model. We have collected the EC data each month from 2009 to 2015 in Shaanxi Province.
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The trend of the EC is given in Figure 1. One can observe that although the EC fluctuated among
the different years, the trend of the EC for every year was essentially identical. This primary result
indicates that the EC has a certain regularity, and it is predictable.

Figure 1. 2009–2015 electricity consumption trend chart.

The main factors affecting EC are the economy, climate, electricity structure, electricity and so on.
After analyzing the existing data, from the point of view that it can best reflect the change in EC, this
paper chooses historical EC data, gross domestic product (GDP), and the regional temperature for a
total of three features supplemented by holidays to correct.

(1) The quantity of electricity data.

According to the historical electricity data analysis above, we can roughly observe the
development trend of the electricity demand. Consequently, it provides a profitable tool for extracting
rules from that experience and knowledge to estimate the overall distribution trend in the future.

Electricity data always contains hidden information; from these historical data can be summed
up the law of changes in demand for electricity; researchers on the basis of these laws can estimate the
future trend of the overall distribution of the EC. In order to describe the trend of EC more clearly, this
section uses the original quantity of electricity data, which is not normalized.

The historical EC is shown in Figure 1. Horizontally, there is a significant fluctuation in the amount
of electricity for the 12 months of the year. First, we calculate the standard deviation of the data by the
following Equation (16), and the degree of fluctuation as the proportion of the standard deviation and
average value are defined. The maximum fluctuation using Equation (16) of the above data is 23.4%.
Longitudinally, the amount of electricity consumed increases to different degrees every year, with an
average increase of 5.21%.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̄)2 (16)

where N denotes the number of the month, xi is the monthly electricity, and x̄ is the average annual EC.

(2) Regional temperature.

For the current residential or industrial EC, there is a relationship between the temperature and
the EC [27], as shown in Figure 2. In the season with a high temperature, the user’s power consumption
will be greatly increased as a result of the input of refrigeration facilities such as air conditioners, and
in the season with low temperature, the warmth will still consume a large amount of electric energy.
Therefore, this paper also sets the temperature as an important factor affecting the EC.

(3) GDP.

Economic factors, such as the development of industry and commerce, have an influence on
the power system, because the rapid development of industry and commerce necessarily leads to an
increase in electricity demand. In this paper, we use the GDP, which is the most representative in the
field of economy, to represent economic factors.
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(4) Number of holidays and types of holidays.

Holidays have significant impacts on the electricity demand. In general, holiday production will
be significantly reduced and electricity demand will decrease accordingly. However, the demand of
electricity may increase in the Spring Festival and on the National Day because of residential electricity
use substantially increasing. Accordingly, we should conduct an analysis of the characteristics of the
local electricity demand to confirm the change in its trend (i.e., increasing or decreasing). Finally,
after predicting the user’s EC using the proposed scheme, the prediction result may also be corrected
according to the holidays.

Figure 2. Scatter diagram of monthly average temperature and monthly electricity consumption.

3.3. Parameter Optimization

When the LSSVM model is used find to the quantity of electricity, the kernel parameters σ2 and
the regularization parameter γ have a very important effect for the prediction accuracy; thus they need
to be optimized firstly. The grid optimization method and K-fold cross-validation are combined to
optimize the parameters in this paper. The reasons and principle introduction are as follows:

Using this combination algorithm is simple and direct for searching the parameters of LSSVM,
and the searching speed compared with the test-set parameters may be faster.

The main mechanism of the combination algorithm combination?algorithm is to divide the
parameters in a predetermined range into a certain number of grids and then make the model traverse
all the parameters in the grid to determine the parameters of the model performance.

Just as for the traditional LSSVM model, two parameters in the proposed ECPM need to be
optimized. During the optimization process, we used the training samples to train the LSSVM model,
while the MCC instead of the MSE was employed to evaluate the optimal performance obtained by
the certain parameters in the set of parameters σ2 and γ.

In order to perform the parameter optimization, the MCC is introduced as a risk function.
When the training sample does not satisfy the Gaussian distribution, it can also find the appropriate
parameters, which is very helpful to improve the accuracy of the prediction of the quantity of electricity.
The MCC can be expressed by Equation (17):

MCC⇔ 1
m

m

∑
i=1

exp(−‖ai − bi‖2

2σ2
0

) (17)

where σ0 is the value of the kernel width optimized by the mesh optimization method.
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By Equation (17), we conclude that the larger the value of the MCC, the greater the similarity of
the data between the predictive value and the real value. To this end, we select the parameters that
make the MCC the maximum as the optimal parameter of the prediction model. The flow chart of the
parameter optimization is shown in Figure 3.

Figure 3. Parameter optimization flow chart.

3.4. Performance Evaluation Function (PEF)

The whole quantity forecast should also include the evaluation of the forecast results. From
the rigor of the study, using a single error indicator to evaluate the results of the prediction is not
reliable. As a result, we choose the mean relative error (MRE), correlation coefficient (R), and the
maximum prediction error (δmax) as the error statistical index to evaluate the performance of the
proposed prediction scheme, and the definitions of these are as follows:

MRE =
1
n

n

∑
i=1

∣∣yi − ypi
∣∣

yi
(18)

R =

√√√√1−
∑ (ypi − yi)

2

∑ (yi − y)2 (19)

δmax = max(
∣∣ypi − yi

∣∣) (20)

where N stands for 12 months, ypi is the forecasting electricity for every month, yi is the true electricity
of every month, and ȳ is the average annual EC.

4. Prediction Results and Analysis

In this section, we have performed an experiment using Matlab2013 and the LSSVM toolkit to
evaluate the prediction performance of the proposed model. Experimental data is from the national
grid company of Shaanxi Province from 2009 to 2015 with a period of 1 month. The prediction
accuracy of the electric quantity is influenced by many factors, including historical data, GDP growth,
meteorological factors and so on.
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In the forecasting of the electricity, all kinds of factors that affect the demand of electricity are
analyzed. In order to find out how the factors affect the electricity demand forecasting, we obtained
forecasting results by only considering electricity data first, and then obtained further prediction results
that considered other factors. Two prediction datasets were used to perform the contrast analysis.

For only using the historical electricity data to make predictions, the data samples needed to be
divided into prediction samples and training samples. The length of the training samples had to also
be divided naturally. In the setting of the experiment, we used the data of 2009–2014 as the training
sample. The training data samples were divided into four groups; in other words, we could train
four times by using 6 years worth of data, as shown in Equation (21), by using the first 2 years of
electricity data to predict the data of the third year, through increasing the number of training times to
make up for the reduction in the data dimension.

y2011 = f1(x2009, x2010)

y2012 = f2(x2010, x2011)

y2013 = f3(x2011, x2012)

y2014 = f4(x2012, x2013)

⇒ y2015 = f (x2013, x2014) (21)

4.1. Prediction Results of Large Industry in Shaanxi Province

In this section, we forecast the electricity of a large industry in Shaanxi Province that is closely
related to people’s lives, to research the impact of different industries on the EC using MCC–LSSVM
and MSE–LSSVM. The data comes from the electricity data of the large industrial power consumption
in Shaanxi Province.

The prediction results for the large industry in Shaanxi Province are shown in Figure 4, and
Tables 1 and 2. From Tables 1 and 2, we can clearly see that the prediction error using MCC–LSSVM
was 0.9% and using MSE–LSSVM was 3.12% throughout the year. We can conclude that the prediction
effect of the proposed model for large industrial EC is desirable, and the reasons for this result are
as follows: First, Shaanxi Province belongs to the inland city, its industrial development is relatively
stable, and EC data is neat. Second, the development of the large industry and the growth of the GDP
are closely related; the correlation between the two is very high, and thus the GDP factors as a result of
the impact of large industrial power factors can achieve better results.

Figure 4. Prediction results for large industry in Shaanxi Province.
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Table 1. Prediction results for large industry in Shaanxi Province.

Month Real/kWh MCC–LSSVM/kWh MSE–LSSVM/kWh

1 3222141989 3289063235 3294523968
2 2807359588 2770660550 2753838956
3 2905625349 2835276855 2766953282
4 3258028408 3193065850 3193625474
5 3123940121 3140143741 3130143486
6 3146763568 3118571548 3113648647
7 3200783187 3204753934 3201236988
8 3330358001 3347137347 3297138647
9 3169671810 3146624356 3196624769
10 3094490648 3140563342 3134963398
11 3197240745 3233100710 3216824659
12 3253492846 3246565684 3227682398

Table 2. Evaluation index.

Evaluation Index MRE (%) δmax/kWh R

MCC–LSSVM 0.9 73256684 0.9235
MSE–LSSVM 3.12 140348494 0.8952

From Figure 5, one can see that the MCC–LSSVM model and MSE–LSSVM model effectively
predict the regional EC. However, when using the MSE model, an error outlier appeared in March;
the MCC–LSSVM model effectively suppressed the occurrence of this error outlier.

Figure 5. Prediction error for large industry in Shaanxi Province.

4.2. Prediction Result for Xi’an

In order to verify the reliability of the proposed MCC–LSSVM model, we forecast the EC in
Xi’an City, Shaanxi Province.

The MCC–LSSVM and MSE–LSSVM model prediction results and error of the power consumption
in 2015 are shown in Figures 6 and 7. The detailed results are given in Tables 3 and 4. From Figure 6,
one can see that the prediction result of Xi’an City was worse than for the large industry in Shaanxi
Province. By Equation (18), using the MCC–LSSVM model, we obtained the annual average relative
error for Xi’an of 2.77%, and the MSE–LSSVM model produced 3.23%. We explain the above results by
the following two points: First, the Shaanxi Province electricity structure is more optimal, such that
the power consumption data of Shaanxi Province is by contrast neater. Second, we chose the GDP as
an influence factor in this experiment. As is known to all, the GDP is mainly contributed to by the
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manufacturing by machines; however, Xi’an is a service industry-based city. Therefore, the correlation
between the GDP factor and Xi’an’s electric power development is not very strong.

Figure 6. Prediction result for Xi’an.

Figure 7. Prediction error for Xi’an.

Table 3. Prediction result for Xi’an.

Month Real/kWh MCC–LSSVM/kWh MSE–LSSVM/kWh

1 2664166276 2661798254 2641798254
2 2275553927 2276537980 2246537980
3 2021181824 2066396013 2066396013
4 2025719576 1904917602 1928943561
5 1850231091 1792863625 1792863625
6 2011974726 1904917602 1872354896
7 2215976398 2276963182 2192662853
8 2664937423 2717665734 2596348624
9 2326022304 2350413608 2348629858
10 1906840712 1818905227 1956189345
11 2038734324 1940165576 1889654236
12 2350000000 2303946621 2329946654
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Table 4. Evaluation index.

Evaluation Index MRE (%) δmax/kWh R

MCC–LSSVM 2.77 120801974 0.9534
MSE–LSSVM 3.23 145653478 0.9316

4.3. Prediction Results of Electricity Consumption in an Educational Institution in Xi’an

The electricity prediction results and error in an educational institution are shown in Figures 8
and 9, and Tables 5 and 6. According to these results, one can conclude that the MCC–LSSVM model
describes the change trend of the history of the electricity more accurately than the MSE–LSSVM
model, and it makes an accurate prediction of the future EC. Using the above two models to predict
the EC in an educational institution, we found that the prediction error of the MCC–LSSVM model
was 3.98%, and the prediction error of the MSE–LSSVM model was 6.41%. At the same time, the
MCC–LSSVM model effectively avoided the situation in which local errors were too large in June
and July.

Figure 8. Prediction results of electricity consumption in an educational institution in Xi’an.

Figure 9. Prediction error of electricity consumption in an educational institution in Xi’an.
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Table 5. Prediction results of electricity consumption in an educational institution in Xi’an.

Month Real/kWh MCC–LSSVM/kWh MSE–LSSVM/kWh

1 5526468 5789523 6034028
2 6435286 6317452 6211205
3 6215832 6194268 6268253
4 6231532 6267145 6518210
5 6231102 6294423 6207253
6 6315468 6354652 5986242
7 6221536 6258553 5912131
8 6189358 6124125 6145128
9 6294825 6378632 6255368

10 6314653 6290058 6353895
11 6277436 6219389 6503896
12 6231862 6123568 6017658

Table 6. Evaluation index.

Evaluation Index MRE (%) δmax/kWh R

MCC–LSSVM 3.98 2635648 0.9619
MSE–LSSVM 6.41 3296821 0.9106

At the same time, the two key parameters of the MCC–LSSVM model are γ = 15 and σ2 = 31.
In the previous article, the selection of γ and σ2 had a great impact on the prediction accuracy. As can
be seen from Figure 10, in the [10 15] interval of γ and for σ2 in the [20 31] interval, the increase in
γ and σ2 increases the prediction accuracy accordingly. When γ and σ2 are out of the above ranges,
increasing the value of these two parameters will cause varying degrees of loss in the accuracy of
the prediction.

Figure 10. Three-dimensional map of prediction accuracy, varying with parameters γ and σ2.

5. Conclusions

Aiming to address the current situation of the non-Gaussian characteristics in the prediction
of EC, the MCC as the risk function of the LSSVM, which can effectively avoid the local error, is
introduced in this paper. Furthermore, the grid optimization method and K-fold cross-validation
method with shorter computational times and relatively faster search speeds are utilized to search
two key parameters of the proposed model. The prediction mechanism has been evaluated for a large
industry in Shaanxi Province, Xi’an City and an educational institution in Xi’an. The results show that
the proposed prediction mechanism has a certain guiding value for the electricity side in formulating
the electricity purchase plan and the user pricing.
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