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The role of Pannexin (PANX) channels during collective and single cell migration is
increasingly recognized. Amongst many functions that are relevant to cell migration,
here we focus on the role of PANX-mediated adenine nucleotide release and associated
autocrine and paracrine signaling. We also summarize the contribution of PANXs with the
cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive
ATP releasing channels, provide a unique link between cell migration and purinergic
communication. The functional association with several purinergic receptors, together
with a plethora of signals that modulate their opening, allows PANX channels to integrate
physical and chemical cues during inflammation. Ubiquitously expressed in almost all
immune cells, PANX1 opening has been reported in different immunological contexts.
Immune activation is the epitome coordination between cell communication and
migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while
migrating towards the injury site. In the current review, we summarized the contribution
of PANX channels during immune cell migration and recruitment; although we also
compile the available evidence for non-immune cells (including fibroblasts,
keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of
PANX1 and PANX3 channels as a both positive and/or negative regulator in different
inflammatory conditions, proposing a general mechanism of these channels contribution
during cell migration.

Keywords: cell communication, leukocytes, cancer, inflammation, Ca2+ signaling, amoeboid migration,
mesenchymal migration, mechanotransduction
1 INTRODUCTION

Cell communication and cell migration are key phenomena for development, tissue repair, and
immune response; thus coordination of these responses are key for sustaining life (1–4). Indeed, a
fine coordination of leukocyte communication is required for migration to clear an infection, or
recruit other migrating cells towards an injury site. Interestingly, immune cells use different
migratory strategies associated with their immune function and location (5–7). For example, under
resting conditions immune cells would randomly patrol the tissue, but upon activation undergo
directional migration to reach the secondary lymphoid organs (8). Despite presenting unique
features, immune cell migration follows the general rules of cell migration, and depends on
org December 2021 | Volume 12 | Article 7504801
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cytoskeletal dynamics (actin, non-muscular myosin II [MyoII]),
and microtubules, as described in detail in the following reviews
(6, 9–11). The study of immune cell migration is directly linked
to development of new techniques to monitor the behavior of
these cells in their native microenvironment (5, 12, 13), although
this is still very challenging. However, researchers have
developed ex vivo (i.e., tissue slices), and in vitro systems that
mimic some tissue properties (i.e., confinement, properties of the
extracellular matrix, etc). Thus, motility has been studied in
models with different levels of microenvironment complexity
(i.e., 1D, 2D, and 3D), topographies (that do or do not impose
cellular deformation), or that mimic their transmigration
through tissue layers (6, 13, 14).

1.1 Danger Signals and the Role
of Purinergic Signaling
Immune cell migration is also controlled by microenvironmental
chemical cues, such as chemokines and danger signals, affecting cell
positioning along the tissue (15–17). Danger signals are molecules
that trigger the immune system, and are classified due to their origin:
damage-associated molecular patterns (DAMPs) [such as
extracellular adenosine-5′-triphosphate (ATP)], and pathogen-
associated molecular patterns (PAMPs) [such as lipopolysaccharide
(LPS) (16). Both DAMPs and PAMPs trigger immune cell
maturation, and expression of receptors (i.e. chemokine receptors)
promoting directional migration towards the injury site.
Interestingly, extracellular ATP acts both as a DAMP when
released from damaged cells, or as signaling molecule when
released from healthy cells. In both cases, ATP activates purinergic
receptors (P2) triggering subsequent downstream signaling that
depends on the activated receptor.

P2 receptors are classified into ionotropic (P2X) receptors
that allow calcium ions (Ca2+) influx, and metabotropic (P2Y)
receptors that trigger Ca2+ release from intracellular stores (18).
Both families of P2 are widely expressed on immune cells,
controlling a plethora of functions (18), including cell
communication. The activation of specific P2X and P2Y
receptors family members depends on the exposure time and
agonist concentration, which allows the spatiotemporal
regulation of the signaling (19). In addition to the differential
activation of P2 receptors the concentration of adenine
nucleotides, such as ATP, is integrated by immune cells and
decoded as low or high inflammatory state (18). Immune cells
use different cell communication mechanisms dependent or
independent on cell contacts, which amplify signals according
to that inflammatory state (2, 6, 7, 20). The release of small
molecules via plasma membrane channels, such as connexins
(CXs) and pannexins (PANXs), and its coupling to purinergic
signaling represents a widely used mechanism for cell
communication, which plays a role in paracrine (between cells)
and autocrine (cell autonomous) signaling (2, 18, 21).

1.2 Cell Polarity and PANX-
Dependent Signaling
CXs and PANXs are membrane proteins that allow the exchange
of small molecules (i.e., glucose, ATP) and ions between the
Frontiers in Immunology | www.frontiersin.org 2
cytoplasm and the extracellular milieu (22). Upon docking, CX
channels of adjacent cells form intercellular channels that
connect their cytoplasm, namely gap junction channels,
although PANX channels until now are shown to form only
hemichannels at the plasma membrane. The latter puts PANX
channels and purinergic signaling in the center stage of both cell-
autonomous signaling and contact-independent cell
communication (23), which are required for efficient motility.
Migrating cells use cellular polarity, the asymmetric organization
of intracellular components, as the navigation system that
determines the direction of migration (6, 10, 11). Cell polarity
is dynamically set by changing the position of organelles,
cytoskeleton, and signaling proteins (10, 24). Thus,
polarization of the actin cytoskeleton allows the establishment
of a front-rear migration axis, which subsequently polarizes
other proteins (10). Interestingly, F-actin and its regulator
Arp3 directly interact with PANX1 (25–27), suggesting that F-
actin polarization and nucleation of new microfilaments might
directly control PANX1 localization. Indeed, actin flow and
polarization permits the concomitant polarization of PANX1
to the leading edge in migrating immune cells (28–30). Similarly,
PANX3 stability at the plasma membrane requires intact actin
cytoskeleton (25), suggesting that a similar mechanism might
take place during cell migration.

Altogether, the co-polarization of PANXs with the actin
cytoskeleton, and their indirect functional impact on microtubules,
via protein-protein interaction with a microtubule stabilizer (31),
could imply a polarization of the PANX-dependent signaling.
Therefore, ATP and other molecules that permeate through
PANX-channels will be released in a polarized manner that might
sustain the cell polarity and direction of migration (28, 30, 32).

In this review, we summarize the contribution of PANX1
channels during cell migration. The first part of this review is
focused on different immune cells, as example of PANX1
channel contribution to leukocyte migration and recruitment.
Then, we describe PANX1 and PANX3 contribution to
migration of non-immune cells, such as astrocytes, skin cells,
and cancer cells, as well as the few available evidence for the
PANX2 and its putative role during cell migration. Afterwards,
we dedicate a final section of PANX1 contribution to cell
migration during neuroinflammatory conditions, and aging.
2 IMMUNE CELL MIGRATION

Most leukocytes use amoeboid migration to move within tissues.
This migration mode is characterized by limited adhesion to the
extracellular matrix with little (or non-) proteolytic activity,
preventing extracellular matrix modification (5). Therefore, in
order to undergo fast migration after damage, immune cells must
deform their cellular body while facing microenvironment
obstacles (6, 9). Leukocytes highly rely on acto-myosin
cytoskeleton contractility, and mechanosensitive channels,
including PANXs channels (6, 9, 30). Interestingly, PANX1 is
required for homing of bone-marrow derived immune cell
precursors (33), suggesting that these channels are required
December 2021 | Volume 12 | Article 750480
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from early stages of development. Moreover, since leukocytes
reside in different tissues and are exposed to different mechanical
and chemical signals, these cells exhibit different migration
strategies. Despite this cell-specific migratory behavior, the
contribution of PANX1 channels to purinergic and Ca2+

signaling, and to cytoskeleton regulation is well established. In
general PANX1 channels are positive regulators of immune cell
migration as summarized in this section (Table 1).
Frontiers in Immunology | www.frontiersin.org 3
2.1 Neutrophils
Neutrophils, key components of the innate immune system, are
polymorphonuclear phagocytic cells found in the bloodstream.
Upon danger signal (i.e. chemokine/cytokine detection after
infection or injury) neutrophils leave the bloodstream to
invade vascular tissues (52). In the tissue, neutrophils have
phagocytic activity, producing reactive oxygen species, forming
neutrophil extracellular traps (NETs), and releasing cytokines,
TABLE 1 | Summary of CXs and PANX channels contribution to immune cell migration.

Cell type Channel Channel blockers//receptor inhibitors P2R,
AR

Migratory stimuli Migration techniques Ref.

DCs
BMDCs (m) CX43 aGA, CX43 KO n.e. CCL21 3D chemotaxis in collagen (34)
DEC205+ DCs (m) CX43, CX45 n.e. n.e. BaCl muscle

damage
In vivo homing to LNs (35)

BMDCs (m) PANX1 PANX1 KO//
A-740003, Apyrase, BAPTA, KN-62, oATP

P2X7 Extracellular ATP microchannels, 3D collagen, in vivo
homing to LNs

(32)

Macrophage
Peritoneal
macrophages (m)

PANX1-
indep.

PANX1 KO//P2Y2 KO, P2Y12 KO, AR-C69931
MX, 8-SPT, MRS-2179, NF449

P2Y2,
P2Y12

2D chemotaxis 2D chemotaxis (36)

Cortical CX3CR1+

microglia (m)
und. Cbx, FFA//Apyrase, RB2, PPADS, Suramin P2Y Laser ablation,

extracellular ATP
In vivo recruitment to injury site 2PEF (37)

Retinal CX3CR1+

microglia (m)
PANX1 Pbc//Apyrase, Suramin P2 AMPA Ex vivo retinal explants process

dynamics
(38)

Cortical CD68+

microglia (m)
PANX1 Trovafloxacin n.e. Controlled cortical

impact
In vivo recruitment to injury site (39)

BV-2 microglia cell
line

PANX1 Trovafloxacin, BBFCF, 10PANX1 P2 C5a Transmigration in transwells (39)

Monocytes
PBMCs (m) CX43 aGA, octanol n.e. MCP-1 Transmigration through endothelial

layer
(40)

PBMCs (h), THP-1
cell line

PANX1? P2Y6 siRNA, BMSCCR222, PTX, U73122, BAPTA,
Apyrase, MRS2578

P2Y6 CCL2, fMLP Transmigration in transwells (41)

Neutrophils
PMNs (m) PANX1 Cbx, 10PANX1, P2Y2 KO, DIDS, Suramin P2Y2 fMLP Chemotaxis in 2D release from a

pipette
(42)

PMNs (h), HL-60
cell line

PANX1 Cbx, 10PANX1//CSC, CGS21680, H89 A2a fMLP Chemotaxis in 2D release from a
pipette

(43)

Lung neutrophils
(m)

CX43 CX43+/-, Gap26 n.e. LPS Counting of in vivo homing to the
lungs

(44)

HL-60 cell line CX43 (as
neg. reg.)

Gap19, 10PANX1//P2Y1 KO, SB 203580 P2Y1 LPS Chemotaxis in 2D confined under
agarose

(45)

Neutrophils (z.f.) CX43 Cbx, CX43 morphans, lyz:cx43DN-T2A-mCherry n.e. Laser ablation In vivo recruitment to injury site 2PEF (46)
T cells
Innate lymphoid
cells (ILCs)

PANX1 PANX1 KO n.e. House dust mite No direct effect (47)

CD4+ T cells (m) PANX1 PANX1 KO n.e House dust mite In vivo recruitment to lung (47)
CD4+ PMBCs (h) PANX1 Cbx, PANX1 KD, 10PANX1//Apyrase, suramin,

CCCP
P2X4 CXCL12 Chemotaxis in 2D, transmigration in

transwells
(29,
48)

CD4+ splenocytes
(m)

PANX1 PANX1 KO n.e. Tissue CXCL12 Counting of in vivo spinal cord
recruitment

(29)

CD4+ T cells (m) PANX1 Cbx P2Y10 CCL19 Transmigration in transwells (49)
CD3+ cells (m) PANX1 Pbc n.e. und. Counting of in vivo spinal cord

recruitment
(50)

Other
Brain mast cells (m) CX43,

PANX1
n.e. n.e. Amyloid b-Peptide Cortical recruitment in APPswe/

PS1dE9 Alzheimer’s model.
(51)

HSPCs (m) PANX1 10PANX1 und. G-CSF, AMD3100 In vivo homing to tissue (33)
D
ecember 2021 | Volume 12 | Article 75
2PEF, 2-photon excitation microscopy; aGA, a-glycyrrhetinic acid; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; BMDCs, Bone-marrow derived DCs; Cbx,
Carbenoxolone; HSPCs, hematopoietic stem/progenitor cells; FFA, flufenamic acid; G-CSF, granulocyte colony-stimulating factor; h, human; fMLP, N-formyl-Met-Leu-Phe peptide; KD,
knock-down; KO, knock-out; LPS, lipopolysaccharide; LN, lymph node; m, mouse; N.E., not evaluated; oATP, oxidized ATP; PBMCs, peripheral blood mononuclear cells; PTX,
Pertussis toxin; PMNs, Polymorphonuclear cells; Pbc, Probenecid; und., undetermined; z.f., zebra fish.
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chemokines and bactericidal peptides (17, 53). PANX1 channels
are highly expressed in neutrophils and contribute to their
activation (42, 43, 54, 55). For instance, after exposure to non-
esterified fatty acids (i.e., oleic and linoleic acid), NET formation
requires activation of P2X1 receptors by extracellular ATP,
released via PANX1 channels (55).

Indeed, adenine nucleotide release and purinergic signaling
cascade activation are key for neutrophil migration, particularly
when the release of ATP is used as a navigational cue (43, 54).
Accordingly, several purinergic receptors regulate neutrophil
migration, including P2X1 (45), P2Y2 (42, 54, 56), P2Y6 (57),
P2Y11 (58), P2Y14 (59), A1 (60), and A2a (61). Interestingly,
components of the purinergic signaling that contribute to
migratory response are polarized (Figure 1), and therefore
provide a spatio-temporal dimension to this phenomenon (43, 54).

Neutrophils migration towards a N-formyl-Met-Leu-Phe
(FMLP) gradient, which mimics a bacterial-induced chemotactic
Frontiers in Immunology | www.frontiersin.org 4
response, also depends on extracellular ATP sensing. During
FMLP-induced migration ATP is released in a polarized manner,
as PANX1 is polarized to the leading edge together with F-actin
(42). This polarization towards the leading edge relies on the direct
interaction between F-actin and the C-terminus of PANX1
previously described (25, 27). ATP released via PANX1 leads to
the subsequent activation of P2Y2 and A3 receptors, which are also
localized at the leading edge generating an autocrine feedback loop
required to maintain the polarization of the cell and to amplify the
gradient sensing (42, 54). Interestingly, PANX1 channels also
contribute to the inhibitory signals at the rear of the cell (43).
The continuous degradation of ATP by ectonucleotidases produces
adenosine, which activates adenosine A2a receptors at the cell rear,
leading to intracellular cAMP/PKA signaling, and inhibiting
excitatory signals from the leading edge (43). Since adenosine
activates both A3 and A2a, PANX1 indirectly contributes to
excitatory and inhibitory signals required for cell migration, as
FIGURE 1 | Regulation of immune cell migration by PANX1 channels. Redistribution of surface PANX1channels have been described during migration of immune
cells. (A) In neutrophils after FMLP gradient sensing, opening of PANX1 channels polarize towards the leading edge (right side of the cell) allowing ATP release,
subsequently activating local purinergic P2Y2 and -upon ATP degradation- adenosine A3 receptors. Then, at the rear of the migrating cell, activation of the adenosine
A2a receptors by adenosine (Ado) promotes inhibitory cascades mediated by cAMP/PKA, leading to an orchestrated cytoskeleton rearrangement required for
migration. (B) In T cells activation of CXCR4 receptor with SDF-1 triggers controlled burst of ATP after PANX1 channels opening, which is accompanied by
mitochondria and P2X4 translocation to the leading edge where Ca2+ influx occurs. (C) In DCs, ATP-induced fast migration requires an autocrine feedback
loop between PANX1 channels and P2X7 receptor, which triggers Ca2+ influx and subsequent activation of CaMKII, which maintains PANX1 channels opened.
December 2021 | Volume 12 | Article 750480
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shown in Figure 1. So far, polarization of positive and negative
signals regulated by PANX1 has only been reported on neutrophils,
although is tempting to assume it as a general mechanism for
immune cell migration.

Moreover, neutrophils present additional pathways to release
ATP, such as CXs and tweety family member 3 (TTYH3) maxi
anion channels (2, 42), but it seems that different channels and
purinergic receptors are recruited depending on the stimuli of
the immune response. For example, in a mouse model CX43
hemichannels contribute to LPS-induced neutrophil recruitment
in the lungs (44). Similarly, CX43 hemichannels provide a path
for ATP release that promotes neutrophil swarming during laser
wound tissue damage in zebrafish (46). However, when CX43-
mediated ATP release is coupled to activation of P2X1 receptors,
this reduces the migration of human neutrophils and HL-60
neutrophil-like in an under agarose assay, and then acts as a stop
signal (45).

Overall, PANX1 contributes to neutrophil cell migration by
establishing a polarity axis, which is supported by re-localization
of the actin cytoskeleton, and the purinergic signaling-related
proteins involved in the migratory response. However, the
putative role of PANX2 and PANX3, and in pathological
conditions remains largely unexplored.

2.2 T Cells
T cell migration is a key step during the adaptive immune
response, and its pattern varies with the activation state and
the microenvironmental context. Before antigen exposure, and
during antigen-presenting cells (APC) search in the lymph
nodes, T cells have a diffusive and random migration
(Brownian type), whereas less diffusive chemotactic
movements (Lévy type) is exhibited by recently activated T cell
to migrate into secondary lymphoid organs for priming; or
highly directional migration (ballistic) induced by haptotaxis
cues and chemotaxis gradient caused by cognate APC at the
peripheral tissues (8). Adaptive immune response progression
requires purinergic signaling to modulate T cell functions (28).
For example, P2X7 receptor modulates the balance between the
number of differentiated Th17 and Treg lymphocytes (62).
Accordingly, PANX1 and purinergic receptors are essential for
T cell activation and cell death (63–65). In both cases, ATP is
released through PANX1 channels activating purinergic
receptors, triggering intracellular cascades, and inducing the
corresponding T cell response.

Acute chemokine stromal-derived factor 1a (SDF-1a, also
known as CXCL12) stimulation induces PANX1 channel
opening, cell polarization, and migration of CD4+ immature T
cells (29, 48), as shown in Figure 1. Particularly SDF-1a
recognition leads to a well-controlled PANX1 channel opening
by a G protein-coupled receptor mechanism, leading to a rapid
burst of ATP release, and subsequent focal adhesion kinase
(FAK) phosphorylation (29). In this context, SDF-1a promotes
translocation of P2X4 and mitochondria to the leading edge,
increasing Ca2+ influx and pseudopod protrusion needed for cell
polarization and migration (48). Polarized at the back of the cells,
P2Y11 receptors are also activated, triggering inhibitory signaling
via cAMP/PKA activation (Figure 1), and preventingmitochondria
Frontiers in Immunology | www.frontiersin.org 5
activity at the cell rear (66). Thus, polarized migratory T cells might
present mitochondria at both leading edge (48), and/or at the cell
rear (67), suggesting that specific chemical (i.e. chemokine
treatments) and physical (i.e. adhesion of the surface) cues of the
microenvironment differentially shape intracellular organelle
location and migratory function. In fact, supporting the role of
PANX-mediated signaling in T cell polarity, protein-protein
interaction of PANX1 and collapsin response mediator protein
2 (CRMP2), indirectly controls microtubule stability (31).
Interestingly, CRMP2 polarization towards the cell rear is
required for T cell chemotaxis (68).

In freshly isolated naïve T cells subsets, CD4+ and CD8+ cells,
PANX1 is abundantly present at the plasma membrane, whereas
PANX2 abundance is much lower (65). Therefore, it is
conceivable that upon stimulation the abundance of PANX2,
and/or PANX3, could increase under specific conditions.
Accordingly, in vivo data in murine model of experimental
autoimmune encephalomyelitis disease suggests that stimulated
T cells require functional PANX channels to transmigrate into
the spinal cord (29, 50). PANX contribution during cell
migration of specific T cell subsets remains largely unknown,
but there is evidence that regulatory T cells required PANX1 to
downregulate the response of effector T cells in vivo in a model of
allergic airway inflammation (47). The latter data is very
provocative, because it suggests that when PANX1 acts as a
cell communication effector protein, it contributes to limit
immune cell recruitment (47). Alternatively, PANX1 could
promote T cell infiltration when is acting as a migration
effector protein, likely by sustaining local signaling, which
subsequently permits the polarization of the actin cytoskeleton
or microtubule stability. Whether this migratory versus cell
communication role of PANX1 is affected by the expression of
other PANXs, or whether this is a mechanism present in other
cell types is yet to be explored.

2.3 Dendritic Cells
Immature dendritic cells (DCs) normally reside in peripheral
tissues where they scan the microenvironment in search of
danger signals (69, 70). After antigen uptake, DCs migrate to
secondary lymphoid organs, to initiate adaptive immune
responses (69, 70). Resident DCs constantly internalize
extracellular material, by phagocytosis or micropinocytosis, but
upon danger signal detection these processes are downregulated
and the migratory strategy changes from slow/random to fast/
persistent (6, 30). Purinergic signaling is key for DCs response, as
several P2X and P2Y receptors are expressed. In particular, P2X7

receptor together with PANX1, are required to sustain fast
migratory phases (30, 32, 71). Transient exposure to high
extracellular ATP concentrations activates P2X7 receptor,
opening PANX1 channels to release ATP establishing an
autocrine loop (32). This autocrine loop triggers Ca2+ influx
via P2X7, calmodulin kinase II (CaMKII) activation and F-actin
cytoskeleton to the cell rear (Figure 1), and is necessary to
sustain DC fast migration (32). Interestingly, CaMKII directly
controls the opening of PANX1 channels providing a direct link
between purinergic and Ca2+ signaling that might be responsible
for maintaining DCs migration (72). PANX1 appears to be
December 2021 | Volume 12 | Article 750480
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equally distributed in migrating DCs, suggesting that this protein
does not need to polarized to control DC speed. Since CaMKII
regulates actin dynamics (73), its activity directly impacts on
acto-myosin contractility, which is required for DC migration
(30, 74). Thus, PANX1 contributes to DC migration by
sustaining Ca2+ signaling via P2X7, which activates CaMKII
maintaining actin polarization at the cell rear and
subsequent contractility.

Activating signals trigger a maturation program in which
several phenotypic changes, including the decrease of
macropinocytosis, are required for the fast migration of DCs
(6, 69). Interestingly, in other cells (i.e. neuroblastoma) ATP
induces the internalization of PANX1 into macropinosomes
(75), but it is not known whether the exact mechanism takes
place during DC maturation and migration. Upon maturation,
DCs increase the expression of cell surface molecules related to
antigen presentation and directional migration, such as CCR7
chemokine receptor (6, 69). Directional migration in DCs largely
depends on CCL19/CCL21 activation of CCR7 with the
concomitant activation of CX43 channels (34). In the same
line, migratory DCs increase the expression of CX43 and CX45
during homing to lymph nodes (35). Conversely, PANX1
channels were dispensable for this response as shown by the
lack of effect observed with PANX blockers (34).

These data suggest that PANX1 channels might contribute to
the early stages of DC migration upon danger signal detection,
and that later stages including CCR7-dependent chemotaxis
relies in the activity of CXs. This putative functional
distinction between CXs and PANXs during DC migration
might rely in different protein turnover at the plasma
membrane, and/or the non-channel signaling function, as is
shown for CX43 (76).

2.4 Monocytes and Macrophages
Although monocytes and macrophage originate from a common
myeloid precursor and share several markers, they differ in their
location, as monocytes are generally found in the bloodstream,
while macrophages are tissue-resident cells. However, circulating
monocytes differentiate into monocyte-derived macrophages
(MMs) or monocyte-derived DCs (Mo-DCs) upon sensing of
danger signals at the injury site (77). During CCL2-induced
chemotaxis, monocytes release ATP, thus generating an
autocrine loop with subsequent activation of P2Y6 receptors
that is required for efficient migration (41), similar to other cells
(see section Dendritic Cells, DCs). However, the molecular
mechanism for ATP release was not elucidated. Monocytes,
and macrophages, express both CXs and PANXs, but only CXs
role has been shown during extravasation and migration.
Particularly, CXs contribute by forming gap junction channels
between monocytes and the endothelium (2, 40, 78). However,
the functional role of PANXs expressed in monocytes (22),
remains unaddressed.

Resident macrophages are named according to the different
tissues in which they reside, although in general these cells share
their primary functions: cellular detritus clearance, phagocytosis
of pathogen particles, and in a lesser extent, antigen presentation
(79). Resident brain macrophages, named microglia, quickly
Frontiers in Immunology | www.frontiersin.org 6
reacting to danger signals to prevent neuronal damage (80).
ATP released during tissue damage acts as a chemoattractant of
microglia in vivo, which extend their processes towards the
injury site, a response that might require PANX1 channel
activation (37). However, this need to be confirmed as only
general blockers were used. Similarly, retinal microglia process
extension induced by a-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor activation is prevented with
Probenecid, a general PANX channel blocker (38). In addition,
trovafloxacin another proposed PANX1 blocker (81), reduces
microglia recruitment after traumatic brain injury (39). In a
similar model PANX1 is required to induced the recruitment of
microglia and other myeloid cells, and the lack of PANX1
improved the posttraumatic recovery of the mice (82). In
addition, C5a-induced transmigration of microglia depends on
PANX1-dependent ATP release, likely via an autocrine loop
(39), such as the one shown in DCs (see section Dendritic Cells,
DCs). However, this response might be specific different
macrophage subsets, as PANX1 channels have only a mild
contribution to C5a-induced chemotaxis in peritoneal
macrophages, which was dependent on P2Y2 and P2Y12

receptors (36). Conversely, CX43 contributes to LPS-induced
migration of peritoneal macrophages (83), suggesting that
different channels might be required under other conditions.

Depending on the chemical cues of the microenvironment
(i.e. cytokines), macrophages polarize to M1 or M2
macrophages, which exhibited different migratory properties
(84). Interestingly, macrophage M1 polarization reduces
PANX1 expression, whereas M2 polarization induces its
upregulation (85). However, whether PANX channels play a
role during the migration of these cells is still unknown.
3 ROLE OF TISSUE PANXs ON
LEUKOCYTE RECRUITMENT

Immune cell migration is not only induced by activation of
PANX expressed in the migrating cell, but also can be indirectly
promoted by PANX channels activated in the tissue. Initial
observations by Chekeni et al, revealed that PANX1 channels
were required for the release of “find me” signals (i.e., ATP and
UTP) during T cell apoptosis, which triggered monocyte
recruitment (86).

In liver, recruitment of monocytes is a hallmark of hepatic
inflammation, involving apoptosis of hepatocytes induced by
saturated free fatty acids (lipoapoptosis). Exposure to
lipoapoptotic supernants elicits monocyte recruitment in an
ATP-dependent chemokine-independent manner (87). PANX1
channels release ATP during lipoaptosis leading to c-Jun NH2-
terminal kinase (JNK) activation in liver cells, revealing that
hepatocytic PANX1 is key regulator of immune recruitment
during nonalcoholic steatohepatitis (NASH) progression. In
the same line, during obesity progression there is also
accumulation of unsaturated fatty acids, which induce skeletal
muscle inflammation and recruitment of immune cells. Thus,
in vitro experiments with a muscle cell line that form myotubes
show that treatment with palmitate induces ATP release from
December 2021 | Volume 12 | Article 750480
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myotubes, which triggers monocyte recruitment (88).
Interestingly, the release of ATP from the myotubes was
independent of PANX1, but dependent on PANX3 channels
(88). Consequently, myotubes that lack of PANX3 are unable to
release ATP upon palmitate treatment, and do not trigger
monocyte migration (88). A similar mechanism could occur
during wound healing in a dorsal skin mouse model (89).
PANX3 KO mice presented a delayed healing and inflammation
resolution at the injury site. Indeed, the number of CD4+ T cells,
neutrophils and macrophages was reduced in PANX3 KO mice,
suggesting that tissue PANX3 was required for immune cell
recruitment (89).

In the central nervous system the choroid plexus, located in
the brain ventricle, is a key immune barrier between the
cerebrospinal fluid and the blood. Epiplexus cells, resident
innate immune cells of the choroid plexus, share markers and
function with macrophages, DCs and other phagocytic cells (90).
Under resting conditions epiplexus cells are sessile, but upon
detection of extracellular ATP these cells increase their motility
(91). This response depends on the ATP release via PANX1
channels from the epithelium of the choroid plexus, although
epiplexus do not express PANX1 (91). Whether if during chronic
inflammation or infection PANX expression is induced
remains unknown.

Moreover, adipocyte-derived ATP release during adrenergic
stimulation triggers macrophages recruitment (92). In addition,
PANX1 opening is required for insulin-stimulated glucose
uptake in adipocytes (93). Since insulin activates PANX1
channels causing the release of ATP, which in turn results in a
signaling cascade indirectly allowing the transport of glucose into
adipocytes, PANX1 might play a role in sustaining the
inflammation observed during insulin resistance.
4 ROLE OF PANXs ON MIGRATION
OF NON-IMMUNE CELLS

Unlike most immune cells that alter and deform little/transiently
the extracellular matrix, mesenchymal cells require proteolytic
enzymes to modify the microenvironment to undergo migration
(5). Moreover, mesenchymal migratory cells use their actin
cytoskeleton, form focal adhesion, and align with the
extracellular matrix, with which and form focal adhesion (5,
10). However, despite these differences with amoeboid cell
migration, mesenchymal cell migration also depends on acto-
myosin contractility to move, although the motility of these cells
is significantly slower (10). Another key protein for migration is
the extracellular-signal-regulated protein kinase (ERK), a
mitogen-activated protein kinase (MAPK), is a serine/
threonine kinase, which modulates migration through
phosphorylation of myosin light chain kinase (MLCK), calpain
protease, paxillin, and focal adhesion kinase (FAK) (94). ERK
activation can be triggered by cell matrix proteins (fibronectin,
vitronectin, and collagen), growth factors (VEGF, FGF, EGF,
insulin) and also indirectly by mechanical stress (94, 95). Indeed,
mechanical stretch activates ERK through EGF receptor
Frontiers in Immunology | www.frontiersin.org 7
activation, triggering cell contraction (95). PANX1 channel
opening is also affected by mechanical stress, although some
evidence suggests that this occurs in an indirect fashion (96).
However, regardless of the pathways activated PANX channel
activity is affected by mechanotransduction and therefore these
channels might contribute during cell migration and
deformation of extracellular matrix, as it occurs during
mesenchymal migration.

During the past years, increasing interest have grown on
study PANX1 role during mesenchymal migration, particularly
in the context of cancer progression (Table 2). For this
reason, we decided to include in the following section, the
latest publications associating PANX1 with non-immune
cell migration.

4.1 Fibroblasts and Keratinocytes, Role of
PANXs During Skin Cell Migration
The skin forms an active barrier and provides the first layer of
defense by preventing the entry of foreign agents. This organ is a
complex multilayer organization of cells with different but
complementary functions, such as keratinocytes, melanocytes,
fibroblasts, and immune cells (106, 107). During tissue damage
skin resident cells communicate by using contact-dependent and
independent mechanisms to quickly heal the wound (108).
Consequently, ATP release and associated purinergic signaling
play a key role during skin inflammation and wound healing
(108). In particular, PANX1 is expressed in keratinocytes and
fibroblasts from human and mice skin, as discussed below (98,
105, 109–111).

PANX1 levels decrease during adulthood, but increase after
tissue damage (98). PANX1 is required for skin wound healing,
as shown in a murine model of skin punch biopsies with a lack of
PANX1 reduced tissue repair, but simultaneously increased
fibrosis (98). Surprisingly, in vitro experiments revealed that
the lack of PANX1 in keratinocytes increases their migratory
potential. In contrast isolated skin fibroblasts from PANX1
knockout mice were more proliferative but showed decreased
contractile properties in comparison to control conditions (98),
suggesting that PANX1 expression is cell type specific, and that
tissue interaction controls the overall migratory response in a
cell-type specific and tissue specific manner. In the same line,
PANX1 negatively regulates human dermal fibroblast migration
when kept in monocultures. Indeed, fibroblasts lacking PANX1
or those treated with PANX1 channel blockers increase their
speed of collective migration in wound healing assays, a similar
but smaller response occurs when cells lack PANX3 (105). The
decrease in cell migration during wound healing in fibroblasts is
linked to decreased ATP release and activation of purinergic
receptors. Consequently, P2X7 receptors blockade increases the
speed of migration in human dermal fibroblasts (105). However,
this last data should be considered carefully depending on the
working model to be compared with, as the authors also report
no effect over migration with P2X7 blockade in murine dermal
fibroblasts (105). Additionally, in vivo experiments in a mice
model reveal that PANX3 was required for proper wound
healing (89). This suggests that different models of study might
December 2021 | Volume 12 | Article 750480
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require different purinergic receptors. In any case, PANX1- and
PANX3-dependent ATP release was consistently associated with
a decrease in the collective and single migration of dermal
fibroblasts, a response that relies in reorganization of the actin
cytoskeleton (105).

These data reveal that PANX1 channels contribute to cell
migration as a positive or negative regulators depending on the
cell type and components of the microenvironment, including
the available adenine nucleotides (Figure 3). However, the
analysis of specific downstream signaling, and how the
chemical cues of the microenvironment affect the role of
PANX1 during migration remains largely unexplored.

4.2 PANXs Role During Astrocytic
Migration Under Inflammation
Astrocytes are themorenumerous glial cell in the brain,where these
cells protect and feed the neurons (112). Astrocytes are crucial for
tissue repairing during brain injury, and avoid spreading of
neuronal damage by glial scar formation (112). During
inflammation reactive astrocytes exhibit functional and
morphological changes, as well as an increase in the expression of
DAMPs receptors (112). Neuronal interaction with astrocytes
controls cell migration via direct interaction of membrane
proteins, such asThy-1 (CD90) (113, 114). Thy-1 is a membrane
glycophosphatidylinositol (GPI) anchored protein that binds to
aVb3-containing integrin and syndecan-4 to stimulate FAK and
actin reorganization (i.e. stress fibers formation), leading to
morphological changes and migration in DITNC1 cell line. This
astrocyte like cell line express high levels of aVb3 Integrin and
Frontiers in Immunology | www.frontiersin.org 8
Syndecan-4, which resemble those observed in reactive astrocytes
after tissue damage (115, 116). In DITNC1 cells Thy-1 stimulation
triggers activation of intracellular signaling (PI3K and PLCg)
leading to Ca2+ release from intracellular stores opening CX43
and PANX1 channels. The ATP released via these channels
activates P2X7 receptors and subsequent Ca2+ influx (117, 118),
revealing that Thy-1 induction of DITNC1 cell migration depends
on PANX1 channels.

Under resting conditions primary astrocytes express very low
levels of aVb3 Integrin and Syndecan-4, but their expression is
induced during neuroinflammation (97). TNF is a cytokine
associated with neuroinflammation and accordingly triggers
expression of aVb3 Integrin and Syndecan-4 in astrocytes,
accompanied by PANX1, CX43, P2X7 receptors allowing the
establishment of molecular toolkit required for Thy-1 signaling
(97). Indeed, TNF-stimulated astrocytes respond to Thy-1,
which leads to astrocyte cell migration by triggering PANX1
and CX43 ATP release and subsequent P2X7 receptor activation
(Figure 2) (97), supporting the data obtained in DITNC1 cells.

In another pro-inflammatory context, reactive astrocytes
derived from Amyotrophic Lateral Sclerosis (ALS) model
hSOD1G93A transgenic mice present an increased abundance
of several migration-related molecules, including avb3 Integrin,
syndecan-4 proteoglycan, P2X7 receptor, PANX1, and CX43
(97). Thy-1 recognition induced both adhesion and migration
of hSOD1G93A astrocytes (97). Intriguingly, TNF stimulation,
and in ALS models triggers Thy-1 associated signaling
expression, which pre-set a migratory phenotype in astrocytes,
to which it is possible to speculate that, in general, pro-
TABLE 2 | Summary of PANX1 contribution to non-immune cell migration.

Cell type PANX1 effect on
migration

Channel blockers//receptor
inhibitors

P2R Migratory
stimuli

Migration techniques Ref.

Astrocyte DITNC1 cell line Increase BBG, Apyrase n.e. Thy-1 2D wound healing (97)
Cortical astrocytes (m) Increase n.e. n.e. Thy-1 2D wound healing (97)
Dermal fibroblasts No effect PANX1 KO n.e. Wound In vivo wound healing (98)
I-10 Leydig tumor cell line Increase Cbx, Pbc, PANX1 siRNA, U0126 n.e. None 2D wound healing, transmigration in

transwells
(99)

MDA-LM2 and CN-LM1A breast
cancer cells (h)

Increase 10PANX1, Cbx, Panx1 siRNA n.e. None Counting of in vivo metastatic foci (100)

BICR-M1Rk breast cancer cells
(rt)

Increase Cytochalasin B n.e. None 2D random migration (25)

hTCEpi corneal epithelial cells (h) Increase 10PANX1, BBG, NF157, Suramin,
Apyrase, PPADS

P2X,
P2Y

Electric field 2D galvanotaxis (101)

N2a cells, neuroblastoma (m) Increase PANX1 siRNA n.e. Wound 2D wound healing (26)
Rh18 eRMS, Rh30 aRMS cell
line

Overexp. decrease
migration

PANX1 loss of function mutants,
AHNAK siRNA

n.e. Wound 2D wound healing, 3D spheroid growth,
in vivo tumor growth

(102,
103)

C6 glioma cells (rt) Overexp. decrease
migration

n.e. n.e. None Transmigration in transwells, 3D spheroid
growth

(104)

Keratinocytes from neonatal skin
(m)

decrease PANX1 KO n.e. Wound In vivo wound healing (98)

HDF (h), MDF (m) decrease Pbc, 10PANX1,
PANX1 siRNA, A-740003,

P2X7 Wound 2D wound healing (105)

PANX3 effect on
migration

HDF (h) decrease PANX3 siRNA P2X7 Wound 2D wound healing (105)
Increase n.e. Wound In vivo wound healing (89)

HaCaT keratinocyte (h) Increase PANX3 siRNA n.e. TFG-ß1 Transmigration in transwells (89)
December 2021 | Volume 12 | Article
aRMS, Alveolar rhabdomyosarcoma; BBG, Brilliant blue G; eRMS, embryonal rhabdomyosarcoma; h, human; HDFs, human dermal fibroblasts; m, mouse; MDFs, murine dermal
fibroblasts; Overexp, Overexpression; rt, rat.
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inflammatory conditions will induce a similar response
preparing reactive astrocytes to migrate if needed, but whether
PANX channels play a role during astrocyte migration in all pro-
inflammatory conditions will require further studies.

4.3 Cancer Cells, Differential Contribution
of PANXs to Tumor Progression
Tumor progression involves a series of sequential steps, which
lead to tumor growth and metastasis. Cancer cell migration is the
key step that allows invasion and colonization of new tissues. The
stimulation of this response occurs during the epithelial to
mesenchymal transition (EMT) (119, 120). Interestingly,
dichotomic contribution of PANX1 on cancer cell migration
has been reported (summarized in Table 2). Particularly, PANX1
can acts as a negative regulator for C6 cells motility, which are
derived from rat glia. Indeed, overexpression of PANX1 reduces
C6 glioma cell migration in different levels of complexity models
Frontiers in Immunology | www.frontiersin.org 9
of study (i.e. 2D, 3D spheroids, and in vivo) (104). In the same
line a similar response is observed in rhabdomyosarcoma cells, in
which inducible expression of PANX1 prevents cell migration
(102). However, in this model PANX1 seems to play a role
independent of its channel function, because it requires PANX1
physical interaction with AHNAK, a large scaffold protein (102,
103). Thus, at least in this rhabdomyosarcoma model it seems
that PANX1 contribution might be related either to cytoskeleton
re-organization and signaling, as shown for CX43 C-terminus
(76). Interestingly, PANX1 expression induces gene and protein
level upregulation of CX43, which has a tumor suppressive role
in rhabdomyosarcoma (121). Altogether, these data supports the
notion that PANX1 is a negative regulator tumor suppressor
factor in cancer cells. However, in other cancer cell lines, PANX1
acts as a pro-migration factor as we discuss below (Figure 3).

Pioneer studies that revealed PANX1 interaction with the
actin cytoskeleton, suggested its pro-migratory phenotype in
FIGURE 2 | Role of PANX1 channels in mesenchymal cell migration. Intracellular regulation of PANX1 channels during migration of mesenchymal non-immune cells
is described as a positive or negative regulation, here we summarize the positive regulation. (1) Increased cell migration is correlated with PANX1 overexpression via
activation of ERK1/2 pathway, which could also play a major role during collective cell migration (not included in this figure). (2) Thy1/CD90, a surface protein
expressed in normal cells, but overexpressed in certain pathologies, interacts with aVb3-containing integrin and Syndecan 4, which promotes cell migration. The
downstream signaling involves focal adhesion kinase (FAK) activation, PI3K, PLCg and IP3 production, leading to Ca2+ release from intracellular stores, and opening
of both CX43 and PANX1 channels. The latter promotes extracellular ATP release and subsequent P2X7 activation, Ca

2+ influx and PKCa activation leading to Rac1
activation and RhoA inhibition. (3) Mechanical deformation during transepithelial migration lead to PANX1 channel activation, releasing ATP and activation of P2X7
receptors, leading to cell death by caspase 3/7 activation. Alternatively, PANX1 mutations that change its function lead to P2Y activation, preventing caspase
activation and cell death.
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breast cancer (25). Indeed, PANX1 promotes motility,
transmigration, and in vivo invasion in melanoma, breast and
testicular cancer cells: B16-BL6, B16-F10; CN34, CN-LM1A,
MDA-MB-231 MDA-MB-468, MDA-LM2, and I-10 cells,
respectively (99, 100, 122, 123). In some cases, such as
testicular cancer PANX1 activity was required for ERK1/2
activity, E-cadherin and metalloproteinase 9 (MMP-9)
revealing that these channels contribute with different aspects
of cell migration (99).

Like normal fibroblasts (see section above), MDA-MB-231 cells
are sensitive toThy-1 that increases cellmigration by releasingATP
via PANX1 channels with subsequent activation of P2X7 receptors
in a positive feedback loop (123). Consequently, a mutation that
increases the permeability of PANX1 channels leading to an
exacerbated ATP release, also promotes cell motility, but not
trans-endothelial migration (100), suggesting that PANX1
contributes to specific steps during tumor progression.

Which are the signals that lead to a positive or negative
modulation of PANX1 on migration? As reviewed in this section,
we hypothesize that it might depend on the cell type (Table 2),
but the exact molecular mechanisms and signaling pathways that
determine the outcome of the response remain unknown
(Figure 3). The involvement of the other membrane channels
that share functional and structural similarities with PANXs,
such as the Leucine-rich repeat-containing 8 (LRRC8) proteins
(124), is largely unexplored. Indeed, LRRC8A acts as a positive
regulator of cancer cell migration (125), but how the activity of
these channels affect the opening of PANXs, and how LRRC8
protein expression changes during cancer progression is not
yet shown.
Frontiers in Immunology | www.frontiersin.org 10
4.4 PANXs and Cell Migration During
Aging, Senescence, and Neurodegeneration
Cellular changes progressively alter immune function during
chronic inflammation and natural ageing, increasing
susceptibility to infections and tumors (126). Associated with a
chronic low-grade inflammatory state, is well accepted that cell
motilitydecreasesover time,whichon immunecellsmightbedue to
accumulation of DNA damage after nuclear breakage (127).
However, studies of cell migration in aging models are still
scattered. Impaired phagocytosis and migration of DCs have been
reported in aged humans (128). Not only cell decline (129), but also
naiveCD8+ andCD4+T cell fromoldmice present lowermigration
and microtubules gene expression (130). Migration of aged
marginal zone B cells at the spleen has also been reported to be
impaired, consequently affecting immunoglobulin production
(131). Human monocytes form elder volunteers showed altered
gene profile of cellular motility (132), while bone marrow
mesenchymal stem cells from aged human donors also present
lower proliferation and migration abilities (133).

In the central nervous system, with smaller branches and slower
motility process, microglia from aged mice exhibit reduced
protrusion activity and cell migration after acute injury (134).
During chronic neuroinflammation, aged mice of an Alzheimer’s
disease model present increased mast cell infiltration in the brain
parenchyma(51).Conversely, agedneutrophilsmigrate faster to the
injury (135, 136), despite having impaired phagocytic and
degranulation activity (137, 138). Similarly, myoblast have
augmented migratory features (speed and directionality) during
wound healing (139). Aging is likely to exert a cell-specific effect,
and therefore it is hard to anticipate whether PANX1, and other
FIGURE 3 | Proposed model for PANX1 channel regulation of cell migration. PANX1 channels act as positive or negative regulators of cell migration, despite the fact
that some pathways and proteins are shared by those opposite responses. We propose that different outcomes are likely to occur due difference in Ca2+ and/or
purinergic signaling (i.e. agonists, concentrations, etc). In particular, for Ca2+ signaling, the local (microdomain, nanodomain) regulation of it might activate different
signaling cascades leading to increase or decrease of cell migration. In addition, the decoding of Ca2+ signals by Ca2+-sensitive enzymes (i.e. CaMKII) could directly
modify the opening of PANX1, leading to changes in cytoskeleton dynamics directly or indirectly (i.e. cytoskeleton -Cytosk.- regulators) will result in signaling
cascades that promote or inhibit cell migration. Therefore, the main contribution of PANX1 channels would be to amplify the initial response, and this would be
downstream of the intrinsic cell-type specific Ca2+ response that ultimately determines the migratory outcome.
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PANXs, will contribute as a positive or a negative regulator as this
will depend on the spatiotemporal regulation and accumulation of
different ligands in the microenvironment.

5 CONCLUDING REMARKS

In the present review, we summarize the contribution of PANX
channels during cell migration, emphasizing PANX1, that has been
more widely studied. We have focused on immune cells as the
integration of cell communication and cell migration is key for
their function, despite mainly migrating as single cells. An
interesting aspect of PANX-dependent purinergic signaling is the
possibility that single migrating cells would have an impact on their
neighbors. Using a mathematical model, Agliari et al. explored the
hypothesis that ATP release and autocrine signaling during immune
cell migration might impact neighboring cells while migrating as a
groupof single cells (140). The statistical inference approach revealed
that migrating DCs have no instantaneous cell communication via
release of small soluble molecules, such as ATP (140). However, the
model only predicts immediate interactions and the release of
adenine nucleotides or other small molecules will act with a delay
considering thediffusion timeandotherparameters.The latter shows
the need for the simultaneous study of cell communication and cell
migration in a coordinatedmanner by using computationalmethods
and theoretical frameworks, as it has been done for chemotaxis, or
collective cell migration (141–143).

Another key aspect to link PANX1 and cellmigration is the direct
association between PANX channels and cytoskeletal components
(actin, MyoII, microtubules), which are master regulators of cell
migration. There is evidence of direct and indirect modulation of
PANX channels by the cytoskeleton, which modifies membrane
dynamics (144). In addition, PANX1 channels are somehow
mechanosensitive, although in a lesser extent in comparison to
other channels such as Piezo1 and Piezo2 (145). Still PANX1 could
quickly react to changes in the membrane tension (96, 100, 146),
providing a fast feedback mechanism in which the opening of the
channel can be controlled by the mechanical cues of the
microenvironment that surrounds the migrating cell. This could be
sustained in timeby theactivationof enzymes thatdirectlymodify the
opening of the channel, such as Ca2+-sensitive CaMKII (72), or by a
positive feedback with P2 receptors (147, 148) (Figures 2, 3). In
addition, some evidence suggests a non-channel contribution of
PANX1 during migration of rhabdomyosarcoma (102, 103), which
has been observed in other channels that can act as signaling proteins
such as CX43 (76), or as enzymes and therefore receive the name of
‘chanzymes’, such as TRPM7 (149).

PANX channels interplay with purinergic signaling and
indirectly with Ca2+ signaling is well established (2, 30), but its
direct contribution with Ca2+ influx seems to be cell specific (32,
51, 65, 150). Then, local Ca2+ signaling regulation could lead to
different migratory outcome (Figure 3). Moreover, whether
other ions, such as K+, could be relevant for the migratory is
not yet demonstrated, although PANX1 channels directly
contribute to migration induced by changes in the electric
field, process named galvanotaxis (101). On the other hand,
whether the opening of PANX channels contribute to ion flux
and membrane voltage of the migrating cell is yet unexplored.
Frontiers in Immunology | www.frontiersin.org 11
It is tempting to speculate about the necessity of PANX
polarization during migration of leukocytes, but this should be
carefully verified for each cell and stimuli. In neutrophils there is
PANX1 polarization during migration (43, 86), but the same is
not clear in T cells (29), and polarization seems to be not
required for fast DC migration (32) (Figure 2). Therefore, the
use of recently developed techniques, such as super resolution,
optogenetics, and the development of new tools for live cell
imaging monitoring of PANXs, will greatly improve our
understanding of their role during cell migration.

Lastly, most of the studies have focused on PANX1, which
seems to be a leading player during cell migration, but it is unclear
the role of the other PANXs. Do PANXs have redundant
functions? Are these cell-type specific? For example glioma cell
migration is unaffected when changing the expression of PANX2,
although cell growth was directly impacted (151). These data
suggests that PANX2 and PANX3 might have other roles
unrelated to cell migration and might be associated to cell
growth and volume as recently reviewed (152). In the case of
PANX3, which seems to act as a negative regulator of collective cell
migration, it will be interesting to explore whether also prevent
single cell migration. Finally, the role of PANXs has not yet been
elucidated during chronic inflammation (i.e. obesity) or during
aging (23, 152), conditions that change the responsiveness of
immune cells (153). We propose that both conditions, chronic
inflammation and aging, might induce the expression of different
PANX isoforms in immune cells, leading to an increased
migratory potential. However, how different PANXs isoforms
orchestrate single and collective cell migration is still an
unexplored field.
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