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Abstract: Corrosion has been a great concern in the oil and natural gas industry costing billions
of dollars annually in the U.S. The ability to monitor corrosion online before structural integrity is
compromised can have a significant impact on preventing catastrophic events resulting from corrosion.
This article critically reviews conventional corrosion sensors and emerging sensor technologies in terms
of sensing principles, sensor designs, advantages, and limitations. Conventional corrosion sensors
encompass corrosion coupons, electrical resistance probes, electrochemical sensors, ultrasonic testing
sensors, magnetic flux leakage sensors, electromagnetic sensors, and in-line inspection tools. Emerging
sensor technologies highlight optical fiber sensors (point, quasi-distributed, distributed) and passive
wireless sensors such as passive radio-frequency identification sensors and surface acoustic wave
sensors. Emerging sensors show great potential in continuous real-time in-situ monitoring of oil and
natural gas infrastructure. Distributed chemical sensing is emphasized based on recent studies as
a promising method to detect early corrosion onset and monitor corrosive environments for corrosion
mitigation management. Additionally, challenges are discussed including durability and stability
in extreme and harsh conditions such as high temperature high pressure in subsurface wellbores.

Keywords: corrosion sensors; oil and gas industry; optical fiber sensors; distributed chemical sensing;
passive RFID sensors; surface acoustic wave sensors; structural health monitoring

1. Introduction

1.1. Corrosion Problems in Oil and Natural Gas Industry

Corrosion has been a great concern in the oil and natural gas (O&G) industry because it adversely
affects infrastructure in exploration, production, processing, and transport with significant economic
costs and safety considerations [1–3]. For domestic O&G exploration and production in the U.S.,
direct corrosion costs were determined to be about $1.4 billion annually, according to a study released
in 2002, with $589 million attributed to surface piping and facility costs, $463 million to downhole
tubing expenses, and $320 million to capital expenditures related to corrosion [4]. There are more
than 528,000 km (328,000 miles) of natural gas transmission and gathering pipelines, and 119,000 km
(74,000 miles) of crude oil transmission and gathering pipelines. The estimated corrosion-related cost
is about $5.8 billion annually to monitor, replace, and maintain these assets [4]. According to the
Pipeline and Hazardous Materials Safety Administration (PHMSA) database, corrosion has caused
~25% of the natural gas transmission and gathering pipeline incidents over the last 30 years, and 61%
out of corrosion caused incidents were due to internal corrosion [5,6]. It has been challenging to
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monitor internal corrosion effectively as the inside of pipeline is not readily accessible during regular
maintenance and inspection. Moreover, corrosion can occur at some random locations inside and
outside pipelines over thousands of miles. Therefore, it is of crucial importance to locate corrosion
events along the long-distance infrastructure for effective real-time corrosion monitoring.

Corrosion is an electrochemical process involving oxidation of metallic materials, causing mass
loss and structural deterioration. An electrochemical system is essentially composed of an anode,
a cathode, and an electrolyte. The anode is the corroding site on the steel, Reaction 1, and the cathode is
where the reduction reaction occurs. The electrolyte is usually an aqueous solution with dissolved salts
(e.g., NaCl) and corrosive species, and it connects the anode and cathode through ionic conductivity so
that the electron transfer can be balanced between the two electrodes. In the anaerobic subsurface
wellbores, ubiquitous acidic gases CO2 and H2S can dissolve into the electrolyte, reduce the pH and
promote cathodic reactions through Reactions 2–4, accelerating corrosion process [7–12]. Although
most downhole hydrocarbon reservoirs have virtually no dissolved oxygen in the fluids, the presence
of dissolved O2 in drilling fluid can be a major concern for corrosion of drill pipelines and well casing
as O2 is a strong oxidant even at ppb or ppm levels, Reaction 5 [2,13–15].

Anode: Fe→ Fe2+ + 2 e− (1)

Cathode: 2 CO2(aq) + 2 H2O(l) + 2 e−→ H2(g) + 2 HCO3
−(aq) (2)

2 H2S(aq) + 2 e−→ H2(g) + 2 HS−(aq) (3)

2 H+(aq) + 2 e−→ H2(g) (4)

0.5 O2(aq) + H2O(l) + 2 e−→ 2 OH−(aq) (5)

Besides mass loss due to electrochemical reactions, corrosion combined with mechanical effects can
cause undesirable cracking and resulted catastrophic failures during oil and gas exploration, drilling,
production, processing, and transport due to hydrogen induced cracking (HIC), sulfide stress cracking
(SSC), stress corrosion cracking (SCC), and corrosion fatigue (CF) [16]. In this scenario, localized
corrosion and pitting caused by H2S or Cl− are particularly detrimental as a structural weak point is
forming and can lead to cracking even when the external force is still within the rated mechanical stress.
Microbes such as sulfate-reducing bacteria can also promote corrosion through producing H2S [15,17].

As a thermodynamically favorable process, corrosion is difficult to prevent, but can be kinetically
controlled through corrosion mitigation and protection. Real-time in-situ monitoring of corrosion
and associated parameters facilitates structural health evaluation and effective mitigation strategies,
improving infrastructure security and reducing cost caused by catastrophic failures.

1.2. Functions and Categories of Corrosion Sensors

Implementing the best available corrosion prevention and control practices could save 25–30% of
annual corrosion costs in the U.S. [4]. Effective corrosion monitoring bolsters the corrosion management
systems and informs the decision-making entities. Monitoring corrosion rates enables service life
evaluation and guides maintenance management. Carbon steel is commonly used in the O&G industry.
For example, it is used for transmission pipes, drill pipes, and casing tubing [18], because of its
mechanical properties and economic cost. However, it is prone to corrosion in service environments.
Real-time corrosion monitoring and proper mitigation/maintenance are critical to maintaining the
corrosion rate within an acceptable range to ensure that the infrastructures (e.g., pipes) meet the
designed service life. In-situ and online monitoring of the early onset of corrosion also allows
corrosion-related structural health monitoring (SHM) by recognizing early signs of structural risks,
such as localized corrosion and micro-cracking, before structural failures and catastrophic events
resulting from corrosion can occur. Furthermore, in-situ monitoring of corrosive environments
facilitates corrosion mitigation strategies by identifying corrosion causes such as water, pH, Cl−, CO2
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and H2S. Besides monitoring corrosion rates, locating the corrosion spots or localized corrosion is
also of significant value for further inspection and effective mitigation, especially for thousands of
miles of transmission pipelines. Additionally, for the O&G industry applications, high durability and
stability are required for corrosion sensors in extreme service conditions such as high temperature
high pressure (HTHP) during drilling and production up to 200+ ◦C and 100 MPa [18].

Numerous corrosion sensor technologies have been developed based on different sensing principles
for different types of corrosion. They can be generally categorized into two types: direct and indirect
corrosion sensors [19]. As shown in Figure 1, the direct corrosion sensors monitor corrosion process/rates
directly due to various corrosion causes and corrosive environments. The indirect corrosion sensors
monitor corrosion through corrosion causes (e.g., low pH, water, CO2) or consequences (e.g., wall
thickness changes, leak vibration, strain change). Comprehensive understanding of corrosion processes
from causes to consequences inspires corrosion sensor development strategies by identifying parameters
or phenomena of interest as sensing targets.
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Figure 1. Two categories of corrosion sensors (direct and indirect) to monitor corrosion process from
causes to consequences.

In this article, we briefly review and summarize conventional corrosion sensors which are well
known, commonly used, and commercially available to provide the baseline and common practices
in corrosion monitoring for the O&G industry. The main focus is emerging corrosion sensors including
most recent technologies which are still in research and development (R&D) and technical transfer
stages or only commercially available within the last two decades.

2. Conventional Corrosion Sensors

Conventional and commonly used corrosion sensors and SHM techniques in the O&G industry
are discussed in this section. A review or summary on corrosion monitoring techniques in general or
other areas is also available in References [19–22].

2.1. Corrosion Coupon

Corrosion coupon weight loss measurement is the most well-established and longest-used method
in industry to measure corrosion rates. Weight loss measurement is still held as the gold standard to
evaluate corrosion rates before a variety of corrosion monitoring technologies. The working principle
is that a corrosion coupon, made of a material of interest with designed weight and shape, is installed
and exposed to the corrosive environment for a duration of time and then retrieved for after-corrosion
weight measurement and inspection on the corroded coupon [23]. The corrosion coupon method is
commonly used because of its simple working principle, easy operation, and versatility in material
and shape (Figure 2). However, installation, removal, and after-corrosion lab analysis of the coupons
require an extended time period. The corrosion coupons only provide an average corrosion rate
during a certain period without real-time information, and they are point sensors with limited sensing
coverage for O&G infrastructures.
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Figure 2. Corrosion coupons installed in the pipelines. The coupons are shown with a 90◦ axial rotation
from the normal angle [24] (Courtesy of Rohrback Cosasco Systems).

2.2. Electrical Resistance Probe

An electrical resistance (ER) probe is a commonly used approach for online corrosion rate
monitoring with the capability of automatic and remote data logging in some advanced versions.
It can be viewed as the “electrical” corrosion coupon that can be monitored in real-time via electrical
resistance. Mass loss in the exposed metallic materials leads to an increase in electrical resistance.
The exposed sensing element can be customized in material and shape for each specific application.
ER probes work for both conductive media (e.g., water or oil systems with high water cuts) and
non-conductive environments (e.g., oil, gas, and atmosphere). Some commercial ER probes are shown
in Figure 3a [25]. A limitation of common ER probes is that they allow only the measurement of
uniform corrosion, but Li et al. reported a multiple-line design of steel thin film ER probe which was
sensitive to localized corrosion (Figure 3b) [26]. However, ER probes are still point sensors only capable
of monitoring certain locations. An increase in sensing locations means an increase in total cost. Similar
to corrosion coupons, installation locations need to be specifically picked to maximize the effectiveness
of ER probes. Selecting locations is usually based on experience and some uncommon locations can be
easily omitted even with significant corrosion. The electrical-based measurement enables electronic
data collection and logging, but it also makes the ER probes prone to common electronic problems,
which require regular maintenance and replacement. Importantly, electrical-based sensors must follow
the intrinsic electrical safety requirements in the presence of flammable oil and natural gas.

Sensors 2019, 19, x 4 of 31 

 

 

Figure 2. Corrosion coupons installed in the pipelines. The coupons are shown with a 90o axial 
rotation from the normal angle [24] (Courtesy of Rohrback Cosasco Systems). 

2.2. Electrical Resistance Probe 

An electrical resistance (ER) probe is a commonly used approach for online corrosion rate 
monitoring with the capability of automatic and remote data logging in some advanced versions. It 
can be viewed as the “electrical” corrosion coupon that can be monitored in real-time via electrical 
resistance. Mass loss in the exposed metallic materials leads to an increase in electrical resistance. The 
exposed sensing element can be customized in material and shape for each specific application. ER 
probes work for both conductive media (e.g., water or oil systems with high water cuts) and non-
conductive environments (e.g., oil, gas, and atmosphere). Some commercial ER probes are shown in 
Figure 3a [25]. A limitation of common ER probes is that they allow only the measurement of uniform 
corrosion, but Li et al. reported a multiple-line design of steel thin film ER probe which was sensitive 
to localized corrosion (Figure 3b) [26]. However, ER probes are still point sensors only capable of 
monitoring certain locations. An increase in sensing locations means an increase in total cost. Similar 
to corrosion coupons, installation locations need to be specifically picked to maximize the 
effectiveness of ER probes. Selecting locations is usually based on experience and some uncommon 
locations can be easily omitted even with significant corrosion. The electrical-based measurement 
enables electronic data collection and logging, but it also makes the ER probes prone to common 
electronic problems, which require regular maintenance and replacement. Importantly, electrical-
based sensors must follow the intrinsic electrical safety requirements in the presence of flammable 
oil and natural gas. 

  

(a) (b) 

Figure 3. (a) Commercial electrical resistance (ER) sensing elements with different shapes [25] 
(Courtesy of Metal Samples Company); and (b) ER sensor with a multiple-line pattern of steel thin 
film which is sensitive to localized corrosion (Reprinted from Reference [26] with permission from 
Elsevier). 

Figure 3. (a) Commercial electrical resistance (ER) sensing elements with different shapes [25] (Courtesy
of Metal Samples Company); and (b) ER sensor with a multiple-line pattern of steel thin film which is
sensitive to localized corrosion (Reprinted from Reference [26] with permission from Elsevier).



Sensors 2019, 19, 3964 5 of 32

2.3. Electrochemical Sensors

Electrochemical sensors leverage the intrinsic electrochemical characteristics of corrosion and
utilize electrochemical techniques such as galvanic current measurement, linear polarization resistance
(LPR), electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN) [22,27–29].
Advantages of electrochemical sensors include direct quantification of electrochemical corrosion rates
and the capability of in-situ corrosion mechanism investigation with a variety of electrochemical
techniques. LPR-based corrosion sensing is the most commercialized method among the electrochemical
sensors because of relatively simple operation and data interpretation. For most of the commercial LPR
probes (Figure 4a) [30], the electrodes (2 or 3) are often made of the same material instead of strictly
following a classic electrochemical three-electrode system. The drawback of electrochemical sensors is
that externally imposed potential or current may lead to an accelerated corrosion rate compared to the
true value, so proper settings of electrochemical parameters (e.g., overpotential, scan rate, and Tafel
slopes) and the electrode system design need to be carefully chosen. Additionally, the electrochemical
sensors usually require an ion-conductive electrolyte, e.g., aqueous solutions, and they are not readily
suitable for non-conductive environments without special modifications.

One commercially available electrochemical corrosion sensor to detect localized corrosion is based
on the galvanic current in a coupled multi-electrode array [31,32], and the performance condition can
reach 300 ◦C and 34.5 MPa (5000 psi) with proper packaging (Figure 4b) [33]. Also, water content and
corrosion rates in simulated natural gas have been measured simultaneously using an ion-conducting
membrane-based advanced electrochemical sensor (AES) (Figure 4c) [34,35]. Electrochemical sensors
can also be designed to monitor pH and redox potentials in the environments.
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(Courtesy of Rohrback Cosasco Systems); (b) Coupled multi-electrode array corrosion sensors [33]
(Courtesy of Corr Instruments, LLC); (c) Ion-conducting membrane-based advanced electrochemical
sensor (AES) for simultaneous humidity and corrosion rate monitoring (Reprinted from Reference [35]
with the permission of AIP Publishing).

2.4. Ultrasonic Testing Sensor

Ultrasonic testing (UT) wall thickness measurement is one of the most popular nondestructive
methods to monitor corrosion and structural health of pipes. A piezoelectric transducer generates high
frequency (MHz) acoustic waves controlled through electric pulses, and these ultrasonic waves are
emitted perpendicular to the pipe wall. The waves are bounced back by the external surface, inner
surface, and geometric irregularities, which are received by the transducer. The tool measures the
time interval between the arrivals of reflected echoes from inner and outer surfaces to calculate the
wall thickness [36–38]. As shown in Figure 5 [39], the wall thickness information combined with the
stand-off signal can differentiate the internal and external mass loss/flaw along the pipe. UT corrosion
sensors have portable and fixed forms [29], and can also be integrated with in-line inspection devices.
The UT method is capable of inspections with only one side accessible. The geometry resolution is
related to the ultrasonic frequencies and often not sensitive enough to small features such as pitting
corrosion or thin deposits. The acoustic-based sensors can be affected by dense highly attenuating
muds and casing scales [3].
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Figure 5. Schematic of the ultrasonic testing (UT) wall thickness measurements with capablities to
discriminate internal and external mass loss [39] (Courtesy of NDT Global LLC).

2.5. Magnetic Flux Leakage Method

The magnetic flux leakage (MFL) method is a widely used nondestructive technology to detect
anomalies in pipelines. The sensing principle is based on the magnetic properties of steels. When the
ferromagnetic material is magnetized close to saturation under the applied magnetic field, the magnetic
flux lines will mostly pass through the inside of the material when there are no defects, whereas the
defect or corrosion sites will result in bending and leakage of magnetic flux lines [40]. The magnetic
field is usually generated by an electromagnet, and a Hall-effect sensor is used to detect the magnetic
flux leakage (Figure 6) [41]. The MFL method is good for large area inspection but it is limited for the
material surface and near surface detection. Improvements are needed to determine the defect shapes
and distinguish between internal and external defects [41].
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2.6. Multi-Frequency Electromagnetic Sensors

Electromagnetic (EM)-based sensing provides another commonly used non-destructive corrosion
monitoring technique. This method is based on the Faraday’s law of induction with many variations
available. One example is the multi-frequency EM inspection sensor to detect corrosion and pipeline
integrity. The sensor consists of a transmitter coil and a receiver coil. The transmitter coil is excited
by an alternating current, and the generated alternating magnetic field induces eddy currents in the
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surrounding conductive pipes (Figure 7a). The primary EM field from the transmitter combined with
a secondary field from eddy currents in the pipes induce a voltage in the separate receiver coil with
a phase shift from the primary EM field [3,42,43]. The phase shift and magnitude change are related
to the material electrical conductivity, magnetic permeability, and the presence of defects (Figure 7b).
The pipe metal thickness can be computed from the low-frequency EM scan, and the high-frequency
EM scans can discriminate the inner wall features due to the skin effect (Figure 7c).
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Figure 7. (a) Schematic of induced eddy currents (red arrows) in an uncorroded casing steel pipe
with a solenoidal transmitter (Tx) and a receiver (Rx) within the pipe. The blue arrows represent
the magnetic field lines around Tx. (b) Schematic of induced eddy currents flowing around a defect.
(c) Schematic drawing of a multi-frequency electromagnetic (EM) tool for pipeline corrosion inspection:
low-frequency transmitter (blue component labeled Tx) and receivers (other blue components) are used
to measure average pipe metal thickness; one group of high-frequency transmitter (red component
labeled Tx) and receivers (other red components) is used to measure high resolution images of total metal
thickness and internal defects; and the other group of high-frequency transmitter (yellow component
labeled Tx) and receivers (other yellow components) is used to measure the casing inner diameter [42].

2.7. Pipeline Inspection Gauge

The commercially available pipeline inspection gauges (PIG) or in-line inspection tools (ILI)
integrate a selection of sensors and cleaning tools. PIGs can be carried through the pipes by the flow
of liquid or gas using the differential pressure while the pipelines are still operating, and they can
travel and perform cleaning and inspections over a long distance. The equipped sensors such as UT
sensors (Figure 8), MFL sensors, capacitive sensors, and EM sensors can collect data on corrosion,
cracking, gouges, and anomalous weld seams [36]. For the inspection purpose, PIG is typically run
every 5–7 years set by regulatory requirements or company policies [44,45]. The high cost associated
with the PIG service is one main reason for low frequency of use. Despite comprehensive inspection,
PIG cannot provide continuous monitoring of pipeline structural health. Therefore, cost-effective
continuous corrosion sensors are in demand for the O&G infrastructures.

All the sensors in this review are compared in Table 1 including the emerging technologies of
optical fiber sensors and passive wireless sensors to be described in the following sections.
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Magnetic flux
leakage sensor Real-time Point sensor, PIG Nondestructive Limited for surface

detection

Electromagnetic
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Pipeline
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3. Emerging Corrosion Sensing Technologies

3.1. Optical Fiber Sensors

Optical fiber sensors (OFS) have emerged in recent years because of advantages such as
nondestructive monitoring, in-situ distributive measurements, long reach, small size, flexibility,
geometric versatility, light weight, inherent immunity to electromagnetic interference (EMI),
compatibility to optical fiber data communication systems, and improved safety in the presence
of flammables compared to electrical-based sensors [46–48]. The availability of cost-effective optical
fibers and rapid advancement in OFS have stimulated the adoption of OFS in the O&G industry.
Reviews on OFS for environmental, chemical, and H2 sensing are already available [47,49,50]. Here,
we focus on OFS for corrosion and structural health monitoring in the O&G relevant applications.

According to the spatial distribution of measurements, OFS can be classified as point,
quasi-distributed, and distributed. Point sensors monitor corrosion at discrete points, which are
assessed by separate channels, i.e., each sensor only detects one point. A quasi-distributed sensor can
monitor corrosion at multiple discrete points situated in a single optical channel. Distributed sensing
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can monitor the parameters continuously along the whole optical fiber with a specific spatial resolution
by interrogating the continuously backscattered light [48].

3.1.1. Point OFS for Corrosion

Point corrosion OFS can be considered as the optical version of corrosion coupons. The point
OFS usually have a sensing layer coated at one end or one section of optical fibers such as metallic
films. The sensing principle of metallic film-coated OFS is based on interactions between photons and
electronic structure of the metal in form of light reflection and absorption at the metallic films. As shown
in Figure 9, when the metallic film (Fe or Fe–C alloy film) corrodes at the fiber end, the reflected light
decreases, which can be detected at the other end of the optical fiber [51,52]. Alternatively, a Fe–C film
is coated on a section of the fiber core, and the light transmission along the optical fiber increases as Fe
is dissolved/corroded [53]. The corrosion-induced optical response can transmit through the optical
fiber for a long distance, but point sensors only provide information at selected locations.
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Figure 9. Point optical fiber sensor for corrosion monitoring based on reflected light from the Fe thin
film coating [52].

The long-period grating (LPG) provides another design of point sensor allowing light interaction
with surrounding medium through the cladding modes. LPG has a typical periodicity (Λ) from
100 µm to 1000 µm, which is longer than that of the fiber Bragg grating (FBG), and couples light from
a guided mode in the core into forward propagating cladding modes at certain wavelengths, resulting
in dips in the transmission spectrum (Figure 10). These resonant wavelengths (λR) can be expressed as
in Equation (6) in terms of the periodicity and the difference between effective refractive indices of the
fiber core and cladding modes [54].

λR = (neff,co − neff,cl,m) Λ (6)

where neff,co and neff,cl,m are the effective refractive indices of the core and cladding modes, respectively.
The resonant wavelengths are sensitive to changes in temperature, strain, or effective refractive indices
of the cladding modes [55,56]. The cladding modes enable external environmental monitoring such as
chemical or corrosion sensing. Compared with FBG, LPG shows almost an order of magnitude higher
spectral shifts and is easier to fabricate due to the longer periodicity [55]. A multiplex of LPGs has been
envisaged with different Λ and/or effective indices along the same fiber for quasi-distributed sensing;
however, the multiple resonance peaks and large bandwidth of LPGs limit the multiplexing capabilities.
Therefore, LPG sensors are mostly considered as point sensors. Based on the LPG sensitivity to the
cladding mode refractive indices, a LPG fiber with a micro-layer of nano-iron and silica particles coated
on the cladding has been demonstrated to monitor corrosion as the layer thickness and the sizes of
iron particles get smaller in corrosive environments [57,58]. The LPG sensor with an electroplated
Fe–C coating has been studied to monitor corrosion-induced mass loss [59,60]. LPG sensors can
also monitor environmental parameters related to corrosion such as pH [61–64], humidity [65–68],
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CO2 [69–71], H2S [72,73], Cl− and salinity [74–77]. More details on LPG based sensors can be found
in References [56,78].Sensors 2019, 19, x 10 of 31 
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3.1.2. Quasi-Distributed OFS for Corrosion

Fiber Bragg grating-based sensors can be point or quasi-distributed sensors. As shown in Figure 11a,
periodic gratings (periodicity Λ) along the core of an optical fiber lead to reflection of a certain
wavelength (Bragg wavelength, λB) and transmission of other wavelengths, following Equation (7) [47].
The environmental changes such as temperature and strain changes will cause shifting in the Bragg
wavelength for each FBG sensor. Based on this principle, FBG-based sensors are capable of monitoring
changes in parameters (e.g., temperature and strain) associated with corrosion in pipelines and
wellbores. Several FBGs can be written along the same fiber with different Λ and/or effective indices
(neff), leading to several different Bragg wavelengths that can be spatially resolved along the optical fiber
based on the reflected or transmitted spectrum (Figure 11b), enabling quasi-distributed sensing [48,81].

λB = 2 neff Λ (7)

FBG-based pressure sensors can be used to locate the pipeline leak based on the negative
pressure wave (NPW) method. The onset of pipeline leak induces a pressure drop which propagates
in both directions from the leak location, and the induced NPW will reach the FBG pressure sensors
mounted on the pipe with time recorded through which the leak location can be computed [82,83].
The FBG-based strain sensors have been used to monitor the hoop strain (circumferential strain) of
pipelines as an indicator of inner pressure fluctuation and the wall thickness reduction of pipelines
(Figure 12a) [84–86]. It has also been reported that the FBG-based strain sensors were bonded directly
on the surface of steel pipelines or inserted in the epoxy composite layers to measure the strain of
repaired pipes [87]. Moreover, the FBG-based sensors have been installed onto the risers in field tests
to demonstrate monitoring of the riser stress for subsea drilling and operations (Figure 12b) [88–90].
When coated with pH responsive hydrogel or hygroscopic polymers, FBG structures can also be used
as pH or water sensors due to the mechanical expansion of the hydrogel or polymers [91–93].
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Figure 12. (a) Photo of FBG hoop strain sensors wrapping around a pipe (Reprinted from Reference [84]
with permission from Elsevier); (b) Field demonstration of FBG-based sensors to monitor the riser
stress for subsea drilling and operations [88].

3.1.3. Distributed OFS for Physical Sensing

Distributed monitoring is a significant capability of OFS technology and is particularly suitable
for long-distance infrastructures in the O&G industry such as thousands of miles of transmission
pipelines. Compared to point sensors, distributed OFS enable continuous real-time monitoring over
the whole structure with reduced cost per unit of length. Distributed OFS are based on the light
backscattering at discontinuities along the optical fiber. There are three kinds of scattering: Rayleigh,
Brillouin, and Raman scattering [47]. As shown in Figure 13, Rayleigh scattering is an elastic scattering
caused by local fluctuations of the refractive index and is sensitive to surrounding changes such as
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temperature, strain/bending, and vibration. Brillouin scattering is an inelastic scattering caused by
interaction with acoustic waves from lattice vibration and is sensitive to local temperature, strains,
and deformation of the optical fiber. Raman scattering is another inelastic scattering caused by energy
exchanges with molecular vibrations of the fiber. The anti-Stokes Raman scattering responds to the
temperature changes whereas the Stokes Raman scattering is insensitive; therefore, the ratio of Stokes
to anti-Stokes Raman scattering can be used to measure temperature [47,94]. The optical signals can
be interrogated using Optical Time-Domain Reflectometry (OTDR) or Optical Frequency-Domain
Reflectometry (OFDR) to realize spatially distributed monitoring. A detailed comparison on distributed
interrogation techniques in terms of principle, resolution, limitation, and sensitivity can be found
in Reference [95], including Brillouin OTDR, Raman OTDR, Rayleigh OFDR, etc.

Sensors 2019, 19, x 12 of 31 

 

strains, and deformation of the optical fiber. Raman scattering is another inelastic scattering caused 
by energy exchanges with molecular vibrations of the fiber. The anti-Stokes Raman scattering 
responds to the temperature changes whereas the Stokes Raman scattering is insensitive; therefore, 
the ratio of Stokes to anti-Stokes Raman scattering can be used to measure temperature [47,94]. The 
optical signals can be interrogated using Optical Time-Domain Reflectometry (OTDR) or Optical 
Frequency-Domain Reflectometry (OFDR) to realize spatially distributed monitoring. A detailed 
comparison on distributed interrogation techniques in terms of principle, resolution, limitation, and 
sensitivity can be found in Reference [95], including Brillouin OTDR, Raman OTDR, Rayleigh OFDR, 
etc.  

 
Figure 13. Three kinds of backscattered optical signals and their responses to temperature changes. 
(Reprinted by permission from Springer Nature: A review on optical fiber sensors for environmental 
monitoring, H. Joe, et al, 2018 [47]). 

Distributed temperature, strain, and acoustic sensing (DTS, DSS, and DAS) have been developed 
and matured over the last three decades [96], and they have been adopted for corrosion and structural 
health monitoring through investigations and field tests for the O&G industry. Besides monitoring 
temperature, strain, and vibration for well logging during O&G exploration [94], distributed OFS 
have been leveraged to monitor physical parameters related to corrosion, failure, and leak detection. 
DTS used for leak detection is based on the thermal signatures of the flowing products inside the 
pipelines. Heating transportation is one way to reduce the viscosity to efficiently flow highly viscous 
crude oil in the pipes, and the leak of heated oil results in a temperature change outside the pipelines, 
which can be detected through DTS [97]. Due to the Joule-Thomson effect, the leak of high pressure 
gas decreases the temperature and the leak of liquids increases the temperature, which allows DTS 
to detect pipeline leaks [94]. OFDR-based DSS has been studied to monitor wall thickness variation 
induced by internal corrosion based on the hoop strain monitoring using optical fibers around the 
pipes [86,98]. DAS, using coherent Rayleigh backscattering, has been investigated for detection of the 
leak-induced pipeline vibrations, either negative pressure waves or broadband leak-induced acoustic 
noises, using optical fibers helically wound around the pipes (Figure 14) [99,100]. Importantly, for 
long-distance monitoring, the sensing range of phase-sensitive OTDR has been demonstrated to be 
possible for extension to 131.5 km to monitor intrusion in pipelines [101]. 

 

Figure 13. Three kinds of backscattered optical signals and their responses to temperature changes.
(Reprinted by permission from Springer Nature: A review on optical fiber sensors for environmental
monitoring, H. Joe, et al, 2018 [47]).

Distributed temperature, strain, and acoustic sensing (DTS, DSS, and DAS) have been developed and
matured over the last three decades [96], and they have been adopted for corrosion and structural health
monitoring through investigations and field tests for the O&G industry. Besides monitoring temperature,
strain, and vibration for well logging during O&G exploration [94], distributed OFS have been leveraged to
monitor physical parameters related to corrosion, failure, and leak detection. DTS used for leak detection is
based on the thermal signatures of the flowing products inside the pipelines. Heating transportation is one
way to reduce the viscosity to efficiently flow highly viscous crude oil in the pipes, and the leak of heated
oil results in a temperature change outside the pipelines, which can be detected through DTS [97]. Due to
the Joule-Thomson effect, the leak of high pressure gas decreases the temperature and the leak of liquids
increases the temperature, which allows DTS to detect pipeline leaks [94]. OFDR-based DSS has been studied
to monitor wall thickness variation induced by internal corrosion based on the hoop strain monitoring using
optical fibers around the pipes [86,98]. DAS, using coherent Rayleigh backscattering, has been investigated for
detection of the leak-induced pipeline vibrations, either negative pressure waves or broadband leak-induced
acoustic noises, using optical fibers helically wound around the pipes (Figure 14) [99,100]. Importantly,
for long-distance monitoring, the sensing range of phase-sensitive OTDR has been demonstrated to be
possible for extension to 131.5 km to monitor intrusion in pipelines [101].

Sensors 2019, 19, x 12 of 31 

 

strains, and deformation of the optical fiber. Raman scattering is another inelastic scattering caused 
by energy exchanges with molecular vibrations of the fiber. The anti-Stokes Raman scattering 
responds to the temperature changes whereas the Stokes Raman scattering is insensitive; therefore, 
the ratio of Stokes to anti-Stokes Raman scattering can be used to measure temperature [47,94]. The 
optical signals can be interrogated using Optical Time-Domain Reflectometry (OTDR) or Optical 
Frequency-Domain Reflectometry (OFDR) to realize spatially distributed monitoring. A detailed 
comparison on distributed interrogation techniques in terms of principle, resolution, limitation, and 
sensitivity can be found in Reference [95], including Brillouin OTDR, Raman OTDR, Rayleigh OFDR, 
etc.  

 
Figure 13. Three kinds of backscattered optical signals and their responses to temperature changes. 
(Reprinted by permission from Springer Nature: A review on optical fiber sensors for environmental 
monitoring, H. Joe, et al, 2018 [47]). 

Distributed temperature, strain, and acoustic sensing (DTS, DSS, and DAS) have been developed 
and matured over the last three decades [96], and they have been adopted for corrosion and structural 
health monitoring through investigations and field tests for the O&G industry. Besides monitoring 
temperature, strain, and vibration for well logging during O&G exploration [94], distributed OFS 
have been leveraged to monitor physical parameters related to corrosion, failure, and leak detection. 
DTS used for leak detection is based on the thermal signatures of the flowing products inside the 
pipelines. Heating transportation is one way to reduce the viscosity to efficiently flow highly viscous 
crude oil in the pipes, and the leak of heated oil results in a temperature change outside the pipelines, 
which can be detected through DTS [97]. Due to the Joule-Thomson effect, the leak of high pressure 
gas decreases the temperature and the leak of liquids increases the temperature, which allows DTS 
to detect pipeline leaks [94]. OFDR-based DSS has been studied to monitor wall thickness variation 
induced by internal corrosion based on the hoop strain monitoring using optical fibers around the 
pipes [86,98]. DAS, using coherent Rayleigh backscattering, has been investigated for detection of the 
leak-induced pipeline vibrations, either negative pressure waves or broadband leak-induced acoustic 
noises, using optical fibers helically wound around the pipes (Figure 14) [99,100]. Importantly, for 
long-distance monitoring, the sensing range of phase-sensitive OTDR has been demonstrated to be 
possible for extension to 131.5 km to monitor intrusion in pipelines [101]. 

 
Figure 14. Schematic illustration of the employed fiber helically wrapping around the pipe to monitor
leak-induced vibrations based on distributed acoustic sensing (DAS) [99].



Sensors 2019, 19, 3964 13 of 32

3.1.4. Distributed OFS for Chemical Sensing

Most of the sensors mentioned above are placed outside of the pipelines and measure corrosion
indirectly through consequences of corrosion (e.g., temperature, strain, acoustic waves, leak vibration)
after corrosion has occurred and the structural integrity is deteriorated; however, it is more ideal to
monitor internal corrosion with sensors inside the pipelines and detect early corrosion onset before
significant mass loss and structural integrity is compromised.

Distributed chemical sensing (DCS) shows promising potential to monitor corrosive environments
(Figure 1) before or upon early corrosion onset to facilitate corrosion mitigation, although DCS is
less mature compared to DTS, DSS, and DAS. Optical fiber-based chemical sensors are enabled by
functional chemical sensing coatings mostly on the fiber core or cladding, such as metallic films [53,102],
oxides [103–109], polymers [49,110–112], nanomaterials [113–115], and metal-organic frameworks
(MOFs) [116,117]. Figure 15 illustrates one example of the evanescent field-based chemical sensor [118].
The optical fibers can be etched, tapered, spliced, or side-polished to allow the light interactions with
chemical sensing layers on the core or cladding and with the surrounding media [47,50,119].

Microstructured optical fibers provide a new type of fiber structure for OFS with great potential
for DCS since the inception in the 1990s [120–122]. These fibers are featured with air holes running
parallel to the longitudinal axis along the entire fiber length. If the air holes are periodically arranged
in the cladding matrix, they are also known as photonic crystal fibers (PCF) [120,123]. Hollow-core
PCF and index-guided PCF sensors have been demonstrated to detect gases such as methane, H2S,
CO2, and acetylene with high sensitivity (ppm level) through direct interaction of light with gases
in the holes [124–128]. A suspended-core fiber sensor has been developed for Cl− detection with
a Cl− sensitive fluorescent material filled in the holes [129]. PCF LPG sensors have also been studied
for Cl− and humidity monitoring [130,131]. A birefringent PCF sensor has been designed to detect
corrosion product-induced expansion for corrosion onset monitoring in reinforced concrete [132].
More sensing applications can be found in References [133–135]. Although microstructured fibers offer
high sensitivity and flexible fiber designs, mass production and commercialization are still limited,
which require cost-effective long-distance fabrication of these fibers.
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in the cladding of optical fiber [118].

A recent concept for corrosion detection involves the use of proxy materials integrated with the
distributed OFS platform to monitor corrosion directly as a distributed optical “corrosion coupon” and
provide insights into the corrosive conditions [5,6]. The corrosion-proxy distributed OFS is envisioned
to be installed along the inner wall of pipelines to monitor internal corrosion. Metallic film-coated
optical fibers have been demonstrated for distributed monitoring of corrosion when interrogated using
OFDR. As shown in Figure 16, mass loss of metallic coating is monitored based on (a) intensity change
or (b) strain change along the optical fiber [102,136]. The light intensity increases in the corroded
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region because the light absorption of metallic film decreases as the film becomes thinner. The increase
in strain is caused by release of compressive internal stress induced by electroless deposition of Ni film.
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Figure 16. Metallic thin film coated optical fiber sensors (OFS) for distributed corrosion sensing
interrogated using Optical Frequency-Domain Reflectometry (OFDR): (a) Rayleigh backscattered light
increases as corrosion of Fe proceeds due to light absorption of metallic film; (b) Microstrain on the
fiber increases with mass loss of coated Ni film due to release of compressive internal stress induced
by Ni deposition [102]. Note: 1—single-mode fiber core; 2—cladding; 3—polymer jacket; 4—coated
metallic film; 5—multi-mode fiber core.

Environmental factors such as pH, water content, electrolyte conductivity, and acidic gas
CO2 or H2S are critical for corrosion. Distributed sensing of these chemical parameters can
determine the environmental corrosivity and therefore indirectly monitor corrosion. Although
DCS has only been demonstrated in a few studies [102,137–139], the chemical sensing materials
investigated for a broader range of fiber optics applications could be potentially utilized for the
development of DCS to monitor corrosive environmental factors. There is a variety of pH sensing
materials for integration with OFS, including localized surface plasmon resonance (LSPR) Au or
Ag nanoparticles (NP) incorporated composites (Figure 17a) [107,140,141], organic dyes [142–147],
fluorescent molecules [148–152], polymers [153–156], pH-sensitive hydrogel [157–160], etc. For the
silica matrix coating, the surface charge density of silica matrix was found to correlate with the solution
pH regardless of incorporated materials in the matrix layer (Figure 17b) [107,161]. Optical fiber pH
sensors and pH sensitive materials are reviewed in more detail in References [160,162,163].

Water and salinity can also be monitored by OFS. Water condensation and presence have been
detected by a fully distributed water sensor based on the hygroscopic property of the intrinsic
polymer jacket of a commercial single-mode (SM) fiber, and the swelling-induced strain changes are
spatially interrogated using OFDR (Figure 18a) [138,164]. The coatings of graphene oxide film and
polymers (e.g., polyimide) have also been studied for water or humidity monitoring [137,165,166].
A multi-parameter OFS has been developed to detect the water/solution presence, ionic strength,
and temperature simultaneously without any coating through analyzing phase shifts in all the modes
(Figure 18b), and a sensor network can be designed for internal corrosion monitoring of natural gas
transmission pipelines [119]. OFS for Cl− and salinity monitoring are mostly based on the refractive
index changes detected using tapered optical fiber, U-shaped fiber, SPR coating, or fluorescence
sensitive material for chloride [129,167–169].

For acidic gas monitoring, gas sensitive coatings or gas absorption layers are often used in OFS.
CO2-absorbing MOFs have been studied for CO2 monitoring and demonstrated quick and reversible
responses [117,170,171]. Because dissolved CO2 can reduce the solution pH, CO2 sensors also employ
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pH indicators (colorimetric or fluorescent dyes) within various sensing layers such as silica gel coating,
polymer matrix with quantum dots, and sol–gel matrix with silica nanoparticles [172–177]. H2S
monitoring often utilizes reactive sensing materials such as Ag [178,179], Cu [180,181], ZnO [182,183],
CuO doped SnO2 [184], CdO [185], and fluorescent or luminescent indicators [186–188]. More H2S
sensitive materials can be found in References [189,190].

Table 2 lists some examples of OFS chemical sensing layers for corrosivity monitoring.
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resonance (LSPR) Au-nanoparticles incorporated SiO2 layer at different pH; and (b) pH sensing results
from silica-matrix coatings embedded with a variety of optically active materials. (Reproduced from
Reference [107] with permission from The Royal Society of Chemistry).
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Figure 18. (a) Demonstration of distributed water detection in air based on the swelling-induced strain
changes interrogated with an optical backscatter reflectometer (OBR). The first water drop was added
at 1 min and the second water drop was added at 30 min [138]; (b) Phase shift-based optical fiber sensor
(OFS) without any additional coating for simultaneous multi-parameter monitoring including ionic
strength as a corrosivity indicator [119].

Table 2. Chemical sensing parameters and examples of optical fiber sensing layers for corrosion monitoring.

Parameter Sensing layer Test Condition Performance and Comments

Corrosion

Fe [136] 30 ◦C, 1 atm, CO2
saturated 3.5 wt.% NaCl

Distributed sensing, nm-scale
mass loss sensitivity

FeC [53] 0.18–1.8 mol/L H2SO4
10s of uW increase in light
transmission in <10 min

Al [191] 0.05 mol/L NaOH uW increase in light
transmission in 5 min
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Table 2. Cont.

Parameter Sensing layer Test Condition Performance and Comments

pH

Au-NP in SiO2 matrix [107] Room temperature (RT)
and 80 ◦C, 1 atm pH 2–12, quick response

Organic dyes in SiO2 matrix
[143,146] RT, 1 atm * pH 3–12

Polyaniline [154] RT, 1 atm * pH 2–12,
>1 month stability in air

fluorescent
Poly(p-pyridiniumphenylene

ethynylene)s [192]
RT, 1atm pH 1–10

pH-sensitive hydrogel [158] RT, 1atm Wavelength 1.94 nm/pH,
pH 3–10

Water

Polyimide [137] 30 – 50 ◦C, 1atm 38.5 ± 1.9 microstrain/%Relative
Humidity (RH)

Graphene oxide film [165] 27–67 ◦C, 1atm

Wavelength 0.145–0.915
nm/%RH for 32–97.6% RH;
Intensity 0.427 dB/%RH for

58.2–92.5% RH

Salinity or Cl− SPR based Al/TiO2 [193] RT, 1atm * Accuracy of 0.1%� salinity

Fluorescent Lucigenin [129] RT, 1atm * Detection limit of 0.02 mol/L Cl−

CO2

Zeolitic imidazolate framework-8
(ZIF-8) MOF [170] RT, 1atm 10s of seconds response,

Reversible, Linear calibration

Dyes (e.g., methyl red)
in SiO2 gel [172] 15–60 ◦C, 1atm 2–3 seconds response

Fluorescent dye HPTS
(1-Hydroxypyrene-3,6,8-trisulfonic

acid trisodium salt) [174,176]
5–35 ◦C, 1atm Sol–gel matrix doped with silica

particles improved sensitivity

H2S

Ag layer [178] 30 ◦C, 1 atm
90% transmittance drop in 15

minutes in 0.1 mol/L
H2S solution

CdO in porous SiO2 [185] 450 ◦C, 1atm
25–30 minutes response time for

1–100 ppm H2S, Irreversible
but regenerable

SPR based Ag/NiO doped
indium tin oxide (ITO) [194] RT, 1atm *

100 ppb–100 ppm H2S,
Sensitivity decreased with

H2S concentration

* Assumed at RT and 1atm when lack of clarification on test conditions.

3.1.5. Challenges of OFS Application in the O&G Industry

HTHP in the O&G wellbores impose a big challenge on downhole monitoring with harsh conditions
due to CO2, H2S, and mechanical stress. The downhole temperature is commonly 150–200 ◦C, and it
can reach as high as 300 ◦C in some cases [94]. Although OFS possess advantages for downhole sensing
(e.g., thermally and chemically stable, small size, light weight, long reach, and no electronics required
downhole), silica fibers can suffer from long-term instability and hydrogen darkening due to hydrogen
ingress when exposed to hydrogen/water especially at high temperature, thereby dramatically reducing
their rated operational temperatures for long-term deployment. The formation of the Si–H bond and
adsorption of OH− ions cause the extrinsic attenuation along the fiber [195]. A hermetic carbon layer
can be added between the cladding and the polymer jacket to protect silica fibers against hydrogen
induced attenuation, but this specialty fiber is only rated up to 200 ◦C [196]. Therefore, protective
coatings or proper OFS designs are paramount for HTHP sensing. Alternative fibers such as sapphire
fibers can be suitable for extreme high temperature sensing (up to 1800 ◦C) if the cost and cladding
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challenges can be overcome and fibers can be produced at sufficient lengths to be relevant for the O&G
applications [197].

Distributed interrogation with high resolution over long distances is another challenge for
the long-distance O&G infrastructures such as hundreds of thousands of miles of gathering and
transmission pipelines. Meanwhile, low-cost interrogation system and effective deployment of optical
fiber sensors in the O&G infrastructures are also critical to make OFS more competitive than existing
corrosion monitoring technologies. Phase-sensitive OTDR and Brillouin optical time-domain analysis
(BOTDA) are promising interrogation approaches for monitoring >100 km distance [100,101,198–200].
There is often a trade-off between the interrogation distance and the spatial resolution. For distributed
physical sensing, cross-sensitivity between multiple parameters requires discrimination from one
another, e.g., T and strain effects [201–204]. For distributed chemical sensing, most chemical sensing
layers require “leakage” of light from the fiber core, resulting in increased loss of light power and
therefore limiting the interrogation distance.

3.2. Passsive Wireless Sensors

Passive wireless sensors constitute another emerging technology for structural health monitoring,
which do not require active source of energy or active electronics at the sensing location and can
wirelessly transfer energy and signals. Elimination of local batteries, active electronics, and electrical
wiring is critical to improve sensor stability and durability at HTHP and harsh environments and to
make sensors more compatible with moving parts. The wireless feature also makes it possible for
monitoring in inaccessible areas. Due to the small size and low cost, passive wireless sensors can be
deployed ubiquitously in the system of interest. Passive wireless sensors for corrosion and SHM are
mostly based on the passive radio-frequency identification (RFID) and the surface acoustic wave (SAW)
techniques [205–208].

3.2.1. Passive Radio-Frequency Identification Sensors

Passive RFID sensors form a large group of passive wireless sensors for corrosion and SHM,
especially the chipless RFID sensors, and they have advantages of low cost, light weight, small size,
and wireless remote sensing [206,207]. RFID technology usually consists of three components: a small
tag unit (or transponder), a reader (or transceiver), and antennas. Figure 19 shows one example of
a passive RFID antenna sensor system [209]. Passive RFID tags receive RF signals from the reader and
respond with identity and sensing signals through the antennas [210]. Different from chip-based RFID
tags, chipless RFID tags do not have an onboard silicon chip on the circuitry. Chipless RFID sensors
categorically have three types: time-domain reflectometry (TDR)-based; frequency modulation-based,
and phase-encoded chipless RFID sensors [211]. SAW devices can also be designed to be RFID
tags [205,212,213].
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RFID sensors can directly monitor corrosion when incorporated with corrosion sensitive proxy
materials in the sensor configuration. With a corrosion sensitive link or connector (e.g., metal or
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steel of interest) between the circuit and antennas on a RFID sensor, the circuit will not be properly
energized through antennas to respond back due to corrosion of the link, which indicates occurrence
of corrosion [214]. In another design, the EM shielding effect of metallic materials between the reader
and the RFID tag is exploited where the plastic-packaged RFID tags are coated/covered with metallic
materials or metal-filled conductive paint. When exposed to corrosive environments, degradation of
the coating dampens its EM shielding effect and improves communication between the reader and
the tag [215,216].

Moreover, corrosion and structural health can be indirectly monitored with RFID sensors. An LC
resonator on a passive tag with an interdigitated capacitor has been studied to monitor the coating
lift-off from pipelines and water ingress [217]. Defects and cracking progression have been detected
using low frequency or (ultra) high frequency RFID antenna-based sensors [207,209,218,219]. Corrosion
potential, chloride ion concentration, and pH have been measured using chip-based RFID sensors
with integrated sensing electrodes [220–223]. Chemical sensing functionality can be achieved with
suitable films on the RFID tags to monitor, for example, CO2, H2S, humidity and pH [224–226].
Sun et al. have demonstrated an innovative RFID corrosion sensor based on Events as Power Source
(EPS) where the corrosion process is monitored as an event while powering the wireless sensor [227].
The micro-energy produced by the electrochemical reactions during corrosion is harvested through
a supercapacitor-based chip to power the sensor.

3.2.2. Surface Acoustic Wave Sensors

SAW sensors are of particular interest as passive wireless sensors because of their small size,
cost efficiency, ease of fabrication, compatibility with wireless telemetry, and adaptability to many
applications (Figure 20). SAW devices consist of interdigitated transducers (IDTs) fabricated on
a piezoelectric substrate. IDTs are periodic metallic electrodes (fingers) in the form of two combs
intercrossing from opposite sides, and they can convert the RF signal to SAWs on piezoelectric surfaces
and vice versa. There are variants of SAWs such as Rayleigh, shear horizontal SAW (SH-SAW),
Love, Stoneley, Lamb, and Leaky waves that can be excited on piezoelectric substrates. When the
emitting IDT is excited by an external RF signal, SAWs are launched on the piezoelectric substrate
and propagate on the substrate surface and perpendicular to the IDT aperture. When the SAWs
reach a second IDT, the waves can be converted to output RF signals (Figure 20a) or some waves get
reflected back to the emitting IDT for output RF signals. Alternately, when the SAWs reach grating
reflectors, they get reflected back to the emitting IDT for RF signal processing (Figure 20b) [228,229].
SAW-based sensing is accomplished by measuring changes in the phase velocity and/or amplitude of
the waves caused by property changes in the propagation path such as temperature, mass, electrical,
and mechanical changes; therefore, SAW sensors can be employed for monitoring many physical
parameters (e.g., temperature [213,230–232], pressure [233,234], and strain [235,236]) as well as chemical
species in the gaseous and aqueous phases. Detailed reviews on fundamentals of sensing mechanisms
and applications can be found in References [228,229,237].

SAW chemical sensors are usually coated with target-specific chemical-sensitive materials such as
polymers, MOFs, metals, and metal oxides (Figure 20). For sensing in the gaseous phase, Rayleigh
waves are most commonly utilized with gas absorbing or reactive layers coated on the SAW devices
as functional sensing layers [229]. Real-time monitoring of the O&G relevant gases such as CO2 and
CH4 using SAW sensors coated with MOF materials has been demonstrated in wired and wireless
operations (Figure 21) [116,238]. CO2 sensitive polymers or nanomaterials (e.g., graphene) have also
been studied for CO2 SAW sensors [239–241]. H2S can also be monitored by SAW sensors coated with
H2S sensitive films such as CuO, SnO2, Cu, and WO3 [242–246].

Application of SAW sensors in an aqueous medium for detection of corrosion onset or monitoring
corrosion stimulants (Table 2) requires consideration of devices with specific wave modes such as
SH-SAW [247,248], because not all SAW modes (e.g., the Rayleigh mode) can survive in the aqueous
phase. The devices with appropriate SAW modes, when functionalized with specific sensing layers



Sensors 2019, 19, 3964 19 of 32

(e.g., Al, ZnO coating), can be adopted to monitor corrosion and chemical parameters that can cause
corrosion, thereby leveraging them for the O&G applications [249–252]. Alternatively, a device with any
SAW mode might be used to monitor corrosion when designed to avoid direct contact of propagating
acoustic waves with liquids through proper packaging [253]. Additionally, challenges exist with
wireless telemetry in the aqueous phase due to strong absorption of typical RF electromagnetic radiation
by aqueous solutions.Sensors 2019, 19, x 19 of 31 
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4. Summary and Outlook

The ability to monitor corrosion online before structural integrity is compromised can have
a significant impact on preventing catastrophic events resulting from corrosion. Corrosion sensors for
structural health monitoring in the O&G industry have been reviewed including conventional corrosion
sensors and emerging sensor technologies in terms of sensor designs, advantages, and limitations.
Corrosion sensors can be generally categorized into two types: direct and indirect corrosion
sensors. Conventional corrosion sensors encompass corrosion coupons, electrical resistance probes,
electrochemical sensors, ultrasonic testing sensors, magnetic flux leakage sensors, electromagnetic
sensors, and pipeline inspection gauges. The emerging sensor technologies highlight optical fiber
sensors and passive wireless sensors such as RFID and SAW sensors.
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Optical fiber sensors have the advantages of nondestructive monitoring, in-situ distributive
measurements, long reach, small size, light weight, flexibility, inherent immunity to EMI, compatibility
to optical fiber data communication systems, and improved safety in the presence of flammable
gas/oil compared to electrical-based sensors. According to spatial distribution of the measurements,
OFS can be classified as point, quasi-distributed, and distributed with different sensing principles
and interrogation methods. Distributed monitoring enabled by the OFS technology is particularly
suitable for long-distance infrastructures in the O&G industry such as transmission pipelines. DTS,
DSS, and DAS have been developed and matured over the last three decades for physical parameter
monitoring. As a less mature technology, DCS shows promising potential to detect early corrosion
onset and monitor corrosive environments such as direct mass loss, pH, water, salinity, and acidic gases
before or upon early corrosion onset and therefore facilitate corrosion mitigation. It is crucial to have
effective deployment of optical fiber sensors in the O&G infrastructures with low-cost, long-distance,
and high spatial resolution interrogation.

Passive wireless sensors have advantages of small size, cost efficiency, elimination of active
power, ease of fabrication, compatibility with wireless telemetry, and adaptability to many applications.
Elimination of local batteries, active electronics, and electrical wiring is critical to improve sensor
stability and durability at HTHP and harsh environments and to make sensors more compatible with
moving parts. Passive RFID sensors have been explored for corrosion and structural health monitoring
with versatile designs. SAW sensors have been employed for monitoring many physical parameters
(e.g., temperature, pressure, and strain) as well as chemical species in the gaseous and aqueous phases.
Due to the small size and low cost, passive wireless sensors can be deployed ubiquitously in the system
of interest. Main challenges exist with wireless telemetry in highly attenuating media such as aqueous
or muddy conditions.

Both emerging technologies are promising for continuous real-time in-situ corrosion monitoring
and SHM of the O&G infrastructure. Additional R&D are required to develop and design chemical
sensing materials with high sensitivity, selectivity and stability to integrate with the sensing platforms,
especially for HTHP and harsh environments in the subsurface wells or other extreme conditions.
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