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The exercise training is an effective therapy for spinal cord injury which has been applied to clinic. Traditionally, the exercise
training has been considered to improve spinal cord function only through enhancement, compensation, and replacement of the
remaining function of nerve andmuscle. Recently, accumulating evidences indicated that exercise training can improve the function
in different levels from end-effector organ such as skeletal muscle to cerebral cortex through reshaping skeletal muscle structure and
muscle fiber type, regulating physiological and metabolic function of motor neurons in the spinal cord and remodeling function of
the cerebral cortex. We compiled published data collected in different animal models and clinical studies into a succinct review of
the current state of knowledge.

1. Introduction

Spinal cord injury (SCI) refers to a series of spinal injuries
caused directly or indirectly by external factors. Depending
on the segment affected by the injury, symptoms can range
from motor and sensory dysfunction, muscle dystonia, and
appearance of pathological reflexes. Primary SCI refers to
the injury caused by the external forces acting directly
or indirectly on the spinal cord. Secondary SCI refers to
further damage caused by spinal cord compression, generated
by edema, hematoma, compressive fractures, and broken
intervertebral disc tissue. Spinal cord injury is characterized
by high morbidity, high cost, and young patient age and
it often leads to severe permanent disability. SCI not only
affects the quality of patients’ lives, but it also adds a burden
to the family and the society. The latest statistics showed
that the global incidence of spinal cord injury is about 236–
1009/million people [1]. In USA, about 250,000 people suffer
from varying degrees of SCI each year, with an annual rate
of up to 28–50/million. Currently, there is a lack of effective
clinical therapy to restore nerve function after SCI [2, 3].

Instead, exercise has become themost important quantifiable
means for functional recovery [4, 5], and its mechanism has
been studied by both clinical doctors and basic researchers.
Here, we review recent researches on the mechanisms by
which exercise training promotes functional recovery after
SCI. Exercise not only directly strengthens paralyzedmuscles
and promotes motor function recovery but is also promoting
brain remodeling, improves spinal microenvironment, and
protects damaged distal motoneuron functions, at multiple
levels and through various channels, thereby promoting
functional recovery.

2. Effect of Exercise Training on
Cerebral Cortex

In vitro studies have demonstrated that exercise can induce
changes in the local neural circuitry, suggesting that afferent
activity can activate cortical cells and promote nerve function
remodeling [6]. Research on cortical reorganization after
peripheral nerve injury also supports the idea of cerebral
cortex plasticity [7]. Synaptic contact immaturity is implied
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by the following observations: the length increase and density
decrease of dendritic spines within 7 days in adult rats with
the semisection but restoring to normal after 28 days [8].This
lays the foundation for exercise training promoting cortical
reorganization after spinal cord injury.

It was shown that exercise after SCI could improve
functional prognosis and induce cerebral cortex recombi-
nation in the somatic region. These observations have been
recorded in both animal experiments and clinical studies.
For example, rats exercises after SCI have shown a higher
spontaneous firing rate of cortical neurons and enhanced
forelimb sensory and sensorimotor stimulation (i.e., the
forelimb motion projection area has been expanded to the
lower limbs) [9]. In clinical studies, functional magnetic
resonance imaging (fMRI) in patients with cervical spinal
cord injury has shown that functional improvement after
exercise is related to the degree of activation of the motor
cortex [10]. Studies using transcranial magnetic stimulation
and electroencephalogram (EEG) recordings have further
confirmed changes in the cortical sensorimotor area [11].
Compared with healthy subjects, the sensorimotor cortex
area associated with the muscle tissue above the damaged
region is expanded in SCI patients. Positron Emission Com-
puted Tomography (PET) studies have shown that, for SCI
patients, wrist strength exercises increase the activation of
the representative area of the contralateral upper limb motor
cortex [12]. In addition, case studies have shown that, after
complete C6 spinal cord injury, hand exercise can promote
functional improvement and increase the representation of
the hand muscles in the cerebral cortex [13]. Thus, after SCI,
the functional remodeling of the cerebral cortex occurs to
promote functional recovery [14].

Moreover, exercise can affect post-SCI remodeling of the
brain function, through generation of systemic changes, such
as improving blood circulation and neuroendocrine regu-
lation and reducing spasticity [15]. Studies have confirmed
that in animals with passive exercise training after spinal
cord transection injury, the plasticity related neurotrophic
factor, adenylate cyclase type 1 (ADCY1), and brain-derived
neurotrophic factor (BNDF) increase in the somatosensory
cortex, at levels significantly higher than in animals without
training [16]. BNDF is important for neuronal growth and
differentiation, and ADCY1 is important for establishment
of long-term synaptic plasticity [17]. It was suggested that
exercise training could promote brain function remodeling
by inducing BDNF expression [18]. Graziano et al. found
that, in animals with cycling training after thoracic spinal
cord transection, tactile stimulation of the hind paw induced
a neural response remapped to the cortical regions of front
paws and forelegs under deep anesthesia [16]. Such train-
ing also improved the neurological cortical reorganization
corresponding to the lower limbs, despite the interruption
of afferent input from these limbs [16]. Active exercise can
also increase the complexity dendrites in the dentate gyrus
and the density of dendritic spines in rats [3], although the
functional significance of these changes is not really clear.
Similar studies have demonstrated that treadmill training
can promote axonal growth [19, 20] and lesion proximal
collateral sprouting and increase synaptic establishment [21].

Other similar findings in mature rat hippocampus have also
shown that long-term treadmill training can increase the
number of astrocytes and neural stem cells in the lower
granular cell layer of the dentate gyrus. Exercise stimulates
the proliferation of endogenous neural stem cells and gen-
erates neurotrophic factors, such as BNDF, which in turn
regulate neural plasticity and improve motor function [22,
23]. Some studies have found that early exercise training after
the corticospinal motor system injury can restore the contact
of corticospinal tract (CST) and the movement projection
of primary motor cortex (M1), thus increasing the number
of cholinergic intermediate neurons in the ipsilateral and
contralateral spinal cord and reducing the physical control
disorder [24].Therefore, passive exercise training of the areas
below the spinal cord injury level can promote functional
reorganization of the cortex.

Although brain function remodeling is an important
mechanism for functional recovery after SCI, excessive func-
tion remodeling can result in pathological consequences such
as illusion of limb sensation [25] and neuropathic pain [26].
Therefore, further studies and a deeper understanding of the
mechanisms of cortical remodeling are necessary in order
to adopt the best strategy after the interruption of sensory
afferent pathways [27].

3. Effect of Exercise Training on the Structure
and Function of Spinal Cord

After SCI, the distal neuron pathways undergo a wide range
of chemical, electrophysiological, and structural changes,
which result in spontaneous neurological remodeling [28].
The effects of exercise training on the structure and function
of the spinal cord post-SCI include reconstruction of the
neuronal structure; cellular proliferation and differentiation;
activation of the metabolism and expression of neuronal
substances and neurotrophic factors; and regulation of the
cellular electrophysiological function.

4. Effect on Neuronal Structure

Experimental studies demonstrate that, after spinal cord
injury, the length and density of the distal motor neuron
dendrites and the overall neuron cell size are reduced,
suggesting that SCI can cause secondary damage to injured
distal motor neurons. Studies have even shown that, after
thoracic SCI in rats, exercise training can increase the axonal
length of the soleus and tibialis anterior motor neurons,
within the lumbar spinal cord. Research using synaptophysin
immunohistochemistry has shown that treadmill training
can significantly increase the formation of the lumbar spinal
synapses [3]. Similarly, stepping training after transection
of new born rat spinal cord can cause significant pathway
changes and increase motor neuron synapse activation by
stimulating primary afferent fibers orwhitematter tracts [29].
The expression of synaptophysin and PSD-95 in the area
surrounding the ventral horn of the spinal motor neurons
is significantly higher in rats training on the treadmill than
in the untrained group [30]. Exercise training can activate
the motor neuron N-methyl-D-aspartate (NMDA) receptor
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[31], by increasing the expression of BNDF andTrkB (tyrosine
kinase gene) in spinal cord [32].NMDAreceptors further reg-
ulate neuronal survival, dendritic structure, synaptic plastic-
ity, andneuronal circuits. Active training can also increase the
expression of neurotrophic factors and nestin-GFP around
the ependymal area. This promotes ependymal cell prolifera-
tion and differentiation into neural precursor cells (NPC) and
further into oligodendrocytes and astrocytes [33], resulting in
nerve regeneration and improved functional recovery.

Oligodendrocytes play a key role in leading and efficient
signal transmission, and in maintaining and protecting a
normal neuronal function. The immature oligodendrocytes
markers, transferrin and cyclic nucleotide phosphohydrolase
(CNP), increased significantly after seven days of active train-
ing [34]. The current consensus is that exercise can induce
the neurotrophic factor BNDF, insulin-like growth factor
I (IGF-I), and vascular endothelial growth factor (VEGF),
to promote spinal oligodendrocyte regeneration [35]. Active
training can also elevate the levels of glial fibrillary acidic
protein (GFAP), regulate the astrocytes aggregation, and
promote astrocytes maturation and differentiation [36].

5. Effect on Cell Biochemistry/Metabolism

In rats with treadmill training, the nucleolar area ofmotoneu-
rons increases and becomes surrounded by basophilic gran-
ules. Also, the staining intensity of glucose-6-phosphate
dehydrogenase increases, indicating a boost in protein syn-
thesis [37]. After training, motoneurons can transport more
axonal protein, through either forward or reverse transport,
and thus improve the overall adaptability of the motor
units. For example, synaptic protein SNAP25 links synaptic
vesicles and presynaptic membrane and motor neuron axons
transport synaptic proteins SNAP25with high selectivity after
training [38]. Other proteins, such as the enzyme malate
dehydrogenase and the trophic factor calcitonin gene-related
peptide, are present in higher amounts in the motoneurons.
Post-SCI cycling training can also raise the amount of
phosphocreatine-S6 (P-S6) expressed by intermediate neu-
rons and cause dendrites branching of motor neurons [39].

6. Effect on Electrophysiological Properties of
Motor Neurons

Exercise training can alter the electrophysiological properties
of transacted spinal motoneurons, such as the hyperpolariza-
tion of restingmembrane potential and voltage threshold, the
speed increase of action potential, and the increase of after-
hyperpolarization potential amplitude of action potential.
Studies have shown that depolarization of resting membrane
potential (RMP) and spike trigger level (STL) occurs four
weeks after complete transection of the thoracic spinal cord
[40]. After training, the RMP can become hyperpolarized
[41], thus altering the inhibition of the rubrospinal tract on
stepping and promoting functional recovery [29]. Stepping
training can enhance muscle spindle afferent signals [42,
43], promote aspartate NMDA receptors functioning [44],
and increase the amplitude of the incoming signal of the
motoneuron synapsis, causing an after-hyperpolarization

in the action potential of motoneurons. In addition, the
ventrolateral spinal cord white matter (VLF) can also induce
changes in the electrophysiological activity of motoneurons.

In rats with SCI, a change in the after-hyperpolarization
potential (AHPd) affects the rhythm, intensity, and duration
of interneuron activity which affects the stepping function
[45]. Passive exercise can enhance the magnitude of exci-
tatory postsynaptic potentials (EPSP), increase the number
of motoneurons that accept incoming signal, steer AHPd
towards normal level, and restore normal stepping [46].
Ultra-microstructural analysis has shown that, after spinal
cord transection, exercise training can increase the magni-
tude of gastrocnemius motor neuron (MNs) excitatory post-
synaptic potential (EPSP) but has no significant effect on the
inhibitory postsynaptic potential (IPSP).

Spinal cord transection injury results in impaired step-
ping ability, causes reduced incoming signal from dis-
tal motoneuron synapses, enhances inhibitory effects, and
thereby inhibits 𝛼- and 𝛾-MNs activity. Studies suggest that
this may be related to the significantly more numerous inhi-
bitory F-type enlarged terminals than in the excitatory S-
type enlarged terminals. It could also be due to the structural
changes occurring in the parallel C-type andM-type enlarged
terminals of 𝛾-MNs cell bodies. Exercise training can main-
tain a normal ratio between the excitatory S-type and the
inhibitory F-type enlarged terminals of 𝛾-MNs and 𝛼-MNs
[47], as such maintaining the ratio between excitatory and
inhibitory signals to improve stepping function.

7. Effect of Exercise Training on the Structure
and Function of Skeletal Muscles

After SCI, paralyzed muscles exhibit decreased fiber diam-
eter, reduced voluntary contraction force, decreased meta-
bolism, delayed conversion of slow-twitch to fast-twitch
fibers, and a cross-sectional area comprised mainly of type I
fibers. Currently, it is believed that skeletal muscle atrophy is
characterized by lost [48, 49] or apoptotic muscle fiber nuclei
[50], suggesting that reducedmyoglobin nuclei number leads
to “nuclear apoptosis.”

The lost function characterizing muscle atrophy can be
restored by several methods, primarily by inducing IGF-1
[51], Pax7, and other molecules that promote myogenic cells
(satellite cells) activation, proliferation, and differentiation
and participating in muscle fibers (muscle cells) repair [52].
Studies have shown an increase in the soleus IGF-1 protein
levels after spinal cord injury. After treadmill training, soleus
IGF-1 shows additional increase, to activate proliferation and
differentiation of satellite cells [53], and increase in themuscle
fiber numbers. This implies that exercise training after SCI
can enhance satellite cell activity and promote muscle fiber
formation. Endurance training seems to increase terminal
branching of nerves at the neuromuscular junction [54],
although results are ambiguous [55].

Studies have shown that in cats with SCI the expression
the levels of myosin heavy chain (MHC) in the soleus
can be restored after stepping training. After one week of
weight-bearing stepping training after SCI, the wet weight
of the plantaris, medial/lateral gastrocnemius, soleus, and
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tibialis anterior muscles is significantly reduced. After three
weeks of training, twitching and tonic tension peaks in the
soleusmuscle decrease significantly and theMHC expression
in the extensor digitorum longus IIx increases. By 10 weeks,
the muscle wet weight, contractile properties, and MHC
levels returne to baseline levels, except for LG/MG atrophy
[56].

8. The Effect of Combinatorial
Strategy with Exercise

Although exercise training can improve neurological and
skeletal muscle function by modulating the multilevel struc-
tures and function of the cerebral cortex, spinal cord, and
skeletal muscle following spinal cord injury (SCI), current
evidence suggests that exercise training has limited efficacy
in improvingmotor function after SCI in rodents or cats [57–
60]. Such inadequate effects are believed to be attributed to
insufficient neurotrophic factor production induced by train-
ing. Therefore, in addition to exercise, more and more com-
binatory strategies have been investigated. Many studies have
shown that combined therapy can significantly promote the
recovery after SCI and relieve spasticity in rats compared to
single treatments alone [61]. Current strategies focus on com-
binatorial effects of hematopoietic stem cells, neurotrophic
factors, drugs, and electrical ormagnetic stimulation. Tashiro
et al. showed that neural stem cell transplantation combined
with treadmill training significantly improved spinal cord
pathway conduction and increased central pattern generator
activity, resulting in significantly improved motor function
[62]. Dental pulp stem cell transplantation not only promoted
motor function recovery but also significantly reduced lesion
cavity and glial scar formation [60]. Trophic support appears
to be the key to effective combination therapy. The secretion
of neurotrophic factors can be stimulated in the injured spinal
cord by neural stem cell transplantation or exercise training
[20, 63, 64]. Combining these two therapies can significantly
increase neurotrophic factor secretion. Direct neurotrophic
factor application combined with exercise training can also
promote functional recovery following SCI [65]. Han et al.
combinedGlial cell line-derived neurotrophic factor (GDNF)
with early rehabilitation significantly reduced pathologi-
cal changes and motor dysfunction in patients with SCI
[61]. Other neurotrophic factors such as Brain-derived neu-
rotrophic factor (BDNF) andNeurotrophin-3 (NT-3) can also
significantly increase BBB scores, indicating improved func-
tional recovery [66]. The above studies suggest that trophic
support from combinatorial treatment is an effective inter-
vention to improve motor recovery after spinal cord injury.

In addition, many studies have shown that electrical
stimulation or magnetic stimulation combined with exercise
training can influence motor function in SCI patients [67].
Petrosyan et al. showed that spinal cord electrical stimula-
tion combined with exercise training can induce sustained
enhancement of synaptic transmission, thereby improving
lumbar anatomical plasticity to promote motor function
recovery [59]. Chao et al. demonstrated that functional
electrical stimulation combinedwith treadmill training could
activate intraspinal circuits to improve gait control [68]. After

SCI, load-bearing training combined with functional electri-
cal stimulation can activate ankle flexion to prevent swing
phase drag, also reduced swing phase time and improved
limb coordination [69, 70]. Sensory stimulation of the tongue
combined with specific training significantly improved the
balance and gait of patients with incomplete SCI [71]. There
are also reports that repetitive transcranial magnetic stimu-
lation combined with plate training can significantly reduce
lower limb stiffness in patients with SCI [72]. Therefore,
the combination of electrical or magnetic stimulation and
exercise training could significantly improve motor function
and maximize functional recovery, which provides a new
perspective for clinical rehabilitation.

The effects of drug therapy combined with exercise
training have also been reported. Intraperitoneal injection
of fluoxetine combined with exercise training significantly
increased BDNF in the hippocampus which promoted nerve
regeneration and BBB score [73, 74]. The combined use of
meta-chlorophenylpiperazine (mCPP) and quipazine in SCI
not only improved BBB scores but also improved weight-
bearing walking [66].The implantation of polypyrrole/iodine
(PPy/I) can protect nerve tissue and promote functional
recovery [75]. If combined with treadmill exercise training,
this effect is more significant [2]. Alluin et al. showed that
combination therapy of chondroitinase ABC, neurotrophic
factors, and exercise training not only enhanced active motor
function recovery by enhancing neuroanatomical plasticity of
the descending tracts (corticospinal tract and 5-HT pathway)
but also significantly reduced the astrocyte proliferation
and inflammation around lesions [76]. Transplantation of
Schwann cells and olfactory ensheathing cells in the spinal
cord of cats combined with chondroitinase ABC treatment
significantly improved motor function [77]. Drug therapy
combined with exercise training is more favorable in the
treatment of SCI, suggesting that adjuvant drug treatment
may have a better prognosis in SCI patients in the clinic.

In conclusion, exercise training can induce structural and
functional changes in the cerebral cortex, spinal cord, and
skeletal muscles, thus improving neural and muscular func-
tion following spinal cord injury. Exercise appears to promote
nerve regeneration with functional restoration, to induce
corticospinal pathway connectivity [36], to maintain the
functional status of spinal cord neurons, to activate skeletal
muscle satellite cells, and to promote muscle fiber regenera-
tion. Exercise training combinedwith other treatments in SCI
is the future direction with the most promise. More research
is needed to optimize the specific training parameters, such as
intensity, duration, frequency, and so forth. Also, the effect of
exercise on SCI secondary complications (e.g., chronic pain,
bladder and gastrointestinal dysfunction, muscle mass loss,
osteoporosis, pressure ulcers, joint and muscle pain, fatigue,
sleep problems, depression, and temperature control loss) is
rarely discussed in literature and needs further exploration.
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