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A B S T R A C T

Background: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our
healthcare system. Here we sought to define the host immune response, a.k.a, the “cytokine storm” that has
been implicated in fatal COVID-19 using an AI-based approach.
Method: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signa-
ture using ACE2 as a ‘seed’ gene; ACE2 was rationalized because it encodes the receptor that facilitates the
entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to
explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic
goals, and finding therapeutic solutions.
Findings: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19,
and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signa-
tures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and
myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine
severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-
CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2�ACE2 engage-
ment or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with
fatal disease, and plasma levels of the cytokine prognosticated disease severity.
Interpretation: The ViP signatures provide a quantitative and qualitative framework for titrating the immune
response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and
vet candidate drugs.
Funding: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and
GM138385 (to DS) and AI141630 (to P.G), DK107585�05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-
AI142742 (to S.C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office
Keywords:

Artificial intelligence/machine learning
Boolean equivalent clusters
Angiotensin converting enzyme (ACE)-2
Coronavirus COVID-19
Immune response
Lung alveoli
Natural Killer (NK) cells
Interleukin 15 (IL15)
s, University of California San
132; La Jolla, CA 92093-0831,

y, University of California San

*** Corresponding authors at: Department of Cellular and Molecular Medicine, Uni-
versity of California San Diego, USA.

E-mail addresses: dsahoo@ucsd.edu (D. Sahoo), sodas@ucsd.edu (S. Das),
prghosh@ucsd.edu (P. Ghosh).

1 Equal Contribution

V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2021.103390&domain=pdf
mailto:dsahoo@ucsd.edu
mailto:sodas@ucsd.edu
mailto:prghosh@ucsd.edu
https://doi.org/10.1016/j.ebiom.2021.103390
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ebiom.2021.103390
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom


2 D. Sahoo et al. / EBioMedicine 68 (2021) 103390
(RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S
and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to
S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The
American Association of Immunologists Intersect Fellowship Program for Computational Scientists and
Immunologists.
One sentence summary: The host immune response in COVID-19.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
1. Introduction

As the rapidly unfolding COVID-19 pandemic claims its victims
around the world, it has also inspired the scientific community to
come up with solutions that have the potential to save lives. In the
works are numerous investigational drugs at various phases of clini-
cal trials, from rationalizing [1], to IRB approvals, recruitment and
execution [2,3], all directed to meet an urgent and unmet need —i.e.,
ameliorate the severity of COVID-19 and reduce mortality.

Two obstacles make that task difficult—First, the pathophysiology
of COVID-19 remains a mystery. The emerging reports generally

Panel: research in context

Evidence before this study

The SARS-CoV-2 pandemic has inspired many groups to find
innovative methodologies that can help us understand the host
immune response to the virus; unchecked proportions of such
immune response have been implicated in fatality. We
searched GEO and ArrayExpress that provided many publicly
available gene expression data that objectively measure the
host immune response in diverse conditions. However, chal-
lenges remain in identifying a set of host response events that
are common to every condition. There are no studies that pro-
vide a reproducible assessment of prognosticators of disease
severity, the host response, and therapeutic goals. Conse-
quently, therapeutic trials for COVID-19 have seen many more
‘misses’ than ‘hits’. This work used multiple (> 45,000) gene
expression datasets from GEO and ArrayExpress and analyzed
them using an unbiased computational approach that relies
upon fundamentals of gene expression patterns and mathemat-
ical precision when assessing them.

Added value of this study

This work identifies a signature that is surprisingly conserved in
all viral pandemics, including Covid-19, inspiring the nomen-
clature ViP-signature. All COVID-19 datasets were prospectively
analyzed using the signatures, underscoring the utility of these
signatures to navigate future pandemics. A subset of 20-genes
classified disease severity in respiratory pandemics. The ViP sig-
natures pinpointed the nature and source of the ‘cytokine
storm’mounted by the host. They also helped formulate precise
therapeutic goals and rationalized the repurposing of FDA-
approved drugs.

Implications of all the available evidence

The ViP signatures provide a quantitative and qualitative frame-
work for assessing the immune response in emergent new dis-
eases, such as the next viral pandemic; they serve as a powerful
unbiased tool to rapidly define the disease, interrogate mecha-
nisms, assess severity, set therapeutic goals and vet candidate
drugs.
agree that the disease has a very slow onset [4,5] and that those who
succumb typically mount a ‘cytokine storm’ [4,6], i.e., an overzealous
immune response. Despite being implicated as a cause of mortality
and morbidity in COVID-19, we know virtually nothing about what
constitutes (nature, extent) or contributes to (cell or origin) such an
overzealous response. Consequently, treatment goals in COVID-19
have been formulated largely as a ‘trial and error’-approach; this is
reflected in the mixed results of the trials that have concluded [7].
Second, there is no established pre-clinical animal or human cell/
organoid models for COVID-19; vetting the accuracy and/or the rele-
vance of such models requires first an understanding of the host
response in the disease.

We set out to define this aberrant host immune response in
COVID-19 using machine learning tools that can look beyond interin-
dividual variability to extract underlying gene expression patterns
within multidimensional complex data. The approach was used
across multiple cohorts of viral pandemics. The resultant pattern, i.e.,
signature, was subsequently exploited as a predictive model to navi-
gate COVID-19. Findings not only pinpointed the precise nature of
the cytokine storm, the culprit cell types and the organs, but also
revealed disease pathophysiology, and helped formulate specific
therapeutic goals for reducing disease severity. Key findings were
validated in preclinical models of COVID-19 in Syrian hamsters and
in the lungs and plasma of infected patients.

2. Methods

2.1. Key resource table

MATERIALS & REAGENTS

ANTIBODIES USED FOR IMMUNOCYTOCHEMISTRY
Name
Manufacturer
Catalog number
Dilution factor
IL15 (E-4)
Santa Cruz
sc-8437
1:10
IL15RA
Proteintech
16,744�1-AP
1:200
Goat anti-rabbit
Vector Laboratories, Burlingame, USA
MP-7401
1:500
Goat anti-mouse
Vector Laboratories, Burlingame, USA
MP-7402
1:500
INSTRUMENTS
Leica DMI4000B (Automated Inverted Microscope)
Leica Microsystems
DMI4000B
Power Pressure Cooker XL
Tristar Products
FisherbrandTM 150 Handheld Homogenizer
Fisher Scientific

(continued)
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15,340,168
SOFTWARE
ImageJ
https://imagej.nih.gov/ij/index.html
GraphPad Prism
https://www.graphpad.com/scientific-software/prism/
KITS, ENZYMES, CHEMICALS, AND REAGENTS
ELISA MAX Deluxe set
Biolegend
435,104
V-PLEX sandwich immunoassays
Mesoscale Discovery (MSD)
K151A9H-1
Zinc Formalin
Fisher Scientific
23�313,096
Xylene
VWR
XX0060�4
Hematoxylin
Sigma-Aldrich Inc
MHS1
Ethanol
Koptec
UN1170
Sodium Citrate
Sigma-Aldrich
W302600
DAB (10X)
Vector Laboratories, Burlingame, USA
SK-4105
Hematoxylin
Sigma-Aldrich Inc. MO, USA
MHS1
Stable Peroxidase substrate buffer (10x)
Thermo Fisher
34,062
1:10
3% Hydrogen Peroxide
Target
245�07�3628
Horse Serum
Vector Labs
30,022
Paraformaldehyde 16% Solution, EM Grade
Electron Microscopy Sciences
15,710
100% Methanol
Supelco
MX0485
Glycine
Fisher Scientific
BP381�5
Bovine Serum Albumin
Sigma-Aldrich
A9647�100G
Triton-X 100
Sigma-Aldrich
X100�500ML
Prolong Glass
Invitrogen
P36984
Nail Polish (Rapid Dry)
Electron Microscopy Sciences
72,180
Gill Modified Hematoxylin (Solution II)
Millipore Sigma
65,066�85
Goat serum
Vector Laboratories
MP-7401
Quick-RNA MicroPrep Kit
Zymo Research
R1051
Quick-RNA MiniPrep Kit
Zymo Research
R1054
Ethyl alcohol, pure
Sigma-Aldrich

(continued)
E7023
qScript cDNA SuperMix
Quanta Biosciences
95,048
OTHER
RNase Away
Thermo Fisher Scientific
14�375�35
Noyes Spring Scissors - Angled
Fine Science Tools
15,013�12

3. Reagent validation

There are no cell lines used in this work. Both antibodies (IL15 and
IL15RA) used in this work have been previously validated for use in
IHC studies. ELISA kits were validated using internal controls (stan-
dard curve).

4. Detailed methods

4.1. Data collection and annotation

Publicly available microarray and RNASeq databases were down-
loaded from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) website [8�10]. Gene
expression summarization was performed by normalizing Affymetrix
platforms by RMA (Robust Multichip Average) [11,12] and RNASeq
platforms by computing TPM (Transcripts Per Millions) [13] values
whenever normalized data were not available in GEO. We used log2
(TPM) if TPM > 1 and (TPM � 1) if TPM < 1 as the final gene expres-
sion value for analyses. A catalog of all datasets analyzed in this work
can be found in Supplementary Table 1.

4.2. Rapid autopsy procedure for tissue collection

The lung specimens from the COVID 19 positive human subjects
were collected using autopsy (study was IRB Exempt). All donations
to this trial were obtained after telephone consent followed by writ-
ten email confirmation with next of kin/power of attorney per Cali-
fornia state law (no in-person visitation could be allowed into our
COVID-19 ICU during the pandemic).

The team member followed the CDC guidelines for COVID19 and
the autopsy procedures [8,9]. Lung specimens were collected in 10%
Zinc-formalin and stored for 72 h before processing for histology.
Patient characteristic is listed in Supplementary Table 6.

Autopsy #2 was a standard autopsy performed by anatomical
pathology in the BSL3 autopsy suite. The patient expired and his fam-
ily consented for autopsy. After 48 h, lungs were removed and
immersion fixed whole in 10% formalin for 48 h and then processed
further. Lungs were only partially fixed at this time (about 50% fixed
in thicker segments) and were sectioned further into small 2�4 cm
chunks and immersed in 10% formalin for further investigation.

Autopsies #4 and #5 were collected from rapid postmortem lung
biopsies. The procedure was performed in the Jacobs Medical Center
ICU (all of the ICU rooms have a pressure-negative environment,
with air exhausted through HEPA filters [Biosafety Level 3 (BSL3)] for
isolation of SARS-CoV-2 virus). Biopsies were performed 2�4 h after
patient expiration. Ventilator was shut off to reduce aerosolization of
viral particles at least 1 h after loss of pulse and before the sample
collection. Every team member had personal protective equipment in
accordance with the University policies for procedures on patients
with COVID-19 (N95 mask + surgical mask, hairnet, full face shield,
surgical gowns, double surgical gloves, booties). Lung biopsies were
obtained after L-thoracotomy in the 5th intercostal space by our car-
diothoracic surgery team. Samples were taken from the left upper
lobe (LUL) and left lower lobe (LLL) and then sectioned further.

https://www.zymoresearch.com/collections/quick-rna-kits/products/quick-rna-miniprep-kit
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4.3. COVID-19 donors

Blood from COVID-19 donors was either obtained at a UC San
Diego Health clinic under the approved IRB protocols of the Univer-
sity of California, San Diego (UCSD; 200236X) or recruited at the La
Jolla Institute under IRB approved (LJI; VD-214). COVID-19 donors
were California residents, who were either referred to the study by a
health care provider or self-referred. Blood was collected in acid cit-
rate dextrose (ACD) tubes (UCSD) or in EDTA tubes (LJI) and stored at
room temperature prior to processing for plasma collection. Seropos-
itivity against SARS-CoV-2 was confirmed by ELISA. At the time of
enrollment, all COVID-19 donors provided written informed consent
to participate in the present and future studies. Patient characteristic
is listed in Supplementary Table 5.

4.4. Plasma isolation

Whole blood was collected in heparin coated blood bags (healthy
unexposed donors) or in ACD tubes (COVID-19 donors) and centri-
fuged for 25 min at 1850 rpm to separate the cellular fraction and
plasma. The plasma was then carefully removed from the cell pellet
and stored at �80 °C.

4.5. Animal study

Lung samples from 8-week-old Syrian hamsters were generated
from experiments conducted exactly as in a previously published
study [14]. Animal studies were approved and performed in accor-
dance with Scripps Research IACUC Protocol #20�0003 (PI: Tom Rog-
ers, PMID: 32,540,903). We chose three different groups of samples:
uninfected control, SARS-CoV-2 challenge after Den3 (antibody to
dengue virus), and SARS-CoV-2 challenge after Anti-CoV2 (CC12.2; a
potent SARS-CoV-2 neutralizing antibodies) [14].

4.6. Plasma IL15 cytokine ELISA

Plasma obtained from COVID-19 patients were used to quantify
IL15 cytokine using ELISA MAX Deluxe set (Biolegend Cat. No.
435,104) according to the manufacturer’s recommended protocol.
The concentrations of IL15 cytokine were compared using Welch’s t-
test. A p<0.05 denoted statistical significance.

4.7. Multiplex measurement of human serum cytokines

Human serum cytokines measurement was performed using cus-
tomized Meso Scale Discovery (MSD)V-PLEX sandwich immunoas-
says (Cat# K151A9H-1). Human serum samples separated from
peripheral blood of COVID-19 patients and healthy volunteers were
analyzed using customized standard multiplex plates as per the man-
ufacturer’s instructions.

4.8. Immunohistochemistry

COVID-19 samples were inactivated by storing in 10% formalin for
2 days and then transferred to zinc-formalin solution for another
3 days. The deactivated tissues were transferred to 70% ethanol and
cassettes were prepared for tissue sectioning. The slides containing
hamster and human lung tissue sections were deparaffinized in
xylene (Sigma-Aldrich Inc., MO, USA; catalog# 534,056) and rehy-
drated in graded alcohols to water. For IL15RA antigen retrieval,
slides were immersed in Tris-EDTA buffer (pH 9.0) and boiled for
10 min at 100 °C. Slides were immersed in Tris-EDTA-Tween 20
buffer (pH 9.0) and pressure cooked for 3 min, for IL15 antigen
retrieval. Endogenous peroxidase activity was blocked by incubation
with 3% H2O2 for 10 min. To block non-specific protein binding 2.5%
goat serum (Vector Laboratories, Burlingame, USA; catalog# S-1012)
was added. Tissues were then incubated with rabbit IL15RA poly-
clonal antibody (1:200 dilution; proteintech�, Rosemont, IL, USA; cat-
alog# 16,744�1-AP) for 1.5 h and mouse IL15 monoclonal antibody
(1:10 dilution; Santa Cruz Biotechnology, Inc., Dallas, TX, USA; cata-
log# sc-8437) at room temperature in a humidified chamber and
then rinsed with TBS or PBS 3x, 5 min each. Sections were incubated
with goat anti-rabbit (Vector Laboratories, Burlingame, USA; catalog#
MP-7401) and goat anti-mouse (Vector Laboratories, Burlingame,
USA; catalog# MP-7402) secondary antibodies for 30 min at room
temperature and then washed with TBS or PBS 3x, 5 min each; incu-
bated with DAB (Vector Laboratories, Burlingame, USA; catalog# SK-
4105), counterstained with hematoxylin (Sigma-Aldrich Inc., MO,
USA; catalog# MHS1), dehydrated in graded alcohols, cleared in
xylene, and cover slipped. Epithelial and stromal components of the
lung tissue were identified by staining duplicate slides in parallel
with hematoxylin and eosin (Sigma-Aldrich Inc., MO, USA; catalog#
E4009) and visualizing by Leica DM1000 LED (Leica Microsystems,
Germany).

4.9. IHC quantification

IHC images were randomly sampled at different 300 £ 300 pixel
regions of interest (ROI). The ROIs were analyzed using IHC Profiler
[15]. IHC Profiler uses a spectral deconvolution method of DAB/hema-
toxylin color spectra by using optimized optical density vectors of the
color deconvolution plugin for proper separation of the DAB color
spectra. The histogram of the DAB intensity was divided into 4 zones:
high positive (0�60), positive (61�120), low positive (121�180) and
negative (181�235). High positive, positive, and low positive percen-
tages were combined to compute the final percentage positive for
each ROI. The range of values for the percent positive is compared
among different experimental groups. IL15 staining showed too
many ROIs with low final percent positive score. We subtracted these
background noise by focusing on only ROIs with greater than 20%
positive percentages.

4.10. RNA sequencing

RNA sequencing libraries were generated using the Illumina Tru-
Seq Stranded Total RNA Library Prep Gold with TruSeq Unique Dual
Indexes (Illumina, San Diego, CA). Samples were processed following
manufacturer’s instructions, except modifying RNA shear time to five
minutes. Resulting libraries were multiplexed and sequenced with
100 basepair (bp) Paired End (PE100) to a depth of approximately
25�40 million reads per sample on an Illumina NovaSeq 6000 by the
Institute of Genomic Medicine (IGM) at the University of California
San Diego. Samples were demuxltiplexed using bcl2fastq v2.20 Con-
version Software (Illumina, San Diego, CA). RNASeq data was proc-
essed using kallisto (version 0.45.0), Mesocricetus auratus genome
(MesAur1.0) and human genome GRCh38 Ensembl version 94 anno-
tation (Homo_sapiens GRCh38.94 chr_patch_hapl_scaff.gtf). Gene-
level TPM values and gene annotations were computed using txim-
port and biomaRt R package. A custom python script was used to
organize the data and log reduced using log2(TPM) if TPM > 1 and
TPM - 1 if TPM <= 1. For the hamster study kallisto index was
prepared on Mesocricetus_auratus.MesAur1.0.ncrna.fa.
gz + Mesocricetus_auratus MesAur1.0 cdna.all.fa.gz. The raw data
and processed data are deposited in Gene Expression Omnibus under
accession no GSE157058 (Hamster) and GSE157059 (Ileum).

4.11. StepMiner analysis

StepMiner is a computational tool that identifies step-wise transi-
tions in a time-series data [16]. StepMiner performs an adaptive
regression scheme to identify the best possible step up or down
based on sum-of-square errors. The steps are placed between time

pmid:32,540,903
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points at the sharpest change between low expression and high
expression levels, which gives insight into the timing of the gene
expression-switching event. To fit a step function, the algorithm eval-
uates all possible step positions, and for each position, it computes
the average of the values on both sides of the step for the constant
segments. An adaptive regression scheme is used that chooses the
step positions that minimize the square error with the fitted data.
Finally, a regression test statistic is computed as follows:

F stat ¼
Pn

i¼1
bXi � X

� �2
= m� 1ð Þ

Pn
i¼1 Xi � bXi

� �2
= n�mð Þ

Where Xi for i ¼ 1 to n are the values, bXi for i ¼ 1 to n are fitted
values. m is the degrees of freedom used for the adaptive regression

analysis. X is the average of all the values: X ¼ 1
n �

Pn
j¼1

Xj: For a step

position at k, the fitted values bXl are computed by using 1
k �

Pn
j¼1

Xj for i

¼ 1 to k and 1
ðn�kÞ �

Pn
j¼kþ1

Xj for i ¼ kþ 1 to n.

4.12. Boolean analysis

Boolean logic is a simple mathematic relationship of two values,
i.e., high/low, 1/0, or positive/negative. The Boolean analysis of gene
expression data requires the conversion of expression levels into two
possible values. The StepMiner algorithm is reused to perform Bool-
ean analysis of gene expression data [17]. The Boolean analysis is a
statistical approach which creates binary logical inferences that
explain the relationships between phenomena. Boolean analysis is
performed to determine the relationship between the expression lev-
els of pairs of genes. The StepMiner algorithm is applied to gene
expression levels to convert them into Boolean values (high and
low). In this algorithm, first the expression values are sorted from
low to high and a rising step function is fitted to the series to identify
the threshold. Middle of the step is used as the StepMiner threshold.
This threshold is used to convert gene expression values into Boolean
values. A noise margin of 2-fold change is applied around the thresh-
old to determine intermediate values, and these values are ignored
during Boolean analysis. In a scatter plot, there are four possible
quadrants based on Boolean values: (low, low), (low, high), (high,
low), (high, high). A Boolean implication relationship is observed if
any one of the four possible quadrants or two diagonally opposite
quadrants are sparsely populated. Based on this rule, there are six
kinds of Boolean implication relationships. Two of them are symmet-
ric: equivalent (corresponding to the positively correlated genes),
opposite (corresponding to the highly negatively correlated genes).
Four of the Boolean relationships are asymmetric and each corre-
sponds to one sparse quadrant: (low => low), (high => low), (low =>
high), (high => high). BooleanNet statistics (Fig. 2a) is used to assess
the sparsity of a quadrant and the significance of the Boolean implica-
tion relationships [17,18]. Given a pair of genes A and B, four quad-
rants are identified by using the StepMiner thresholds on A and B by
ignoring the Intermediate values defined by the noise margin of 2-
fold change (+/- 0.5 around StepMiner threshold). Number of samples
in each quadrant are defined as a00, a01, a10, and a11 (Fig. 1A) which is
different from X in the previous equation of F stat. Total number of
samples where gene expression values for A and B are low is com-
puted using the following equations.

nAlow ¼ a00 þ a01ð Þ; nBlow ¼ a00 þ a10ð Þ
Total number of samples considered is computed using following

equation.

total ¼ a00 þ a01 þ a10 þ a11

Expected number of samples in each quadrant is computed by
assuming independence between A and B. For example, expected
number of samples in the bottom left quadrant e00 = bn is computed
as probability of A low ((a00 + a01)/total) multiplied by probability of
B low ((a00 + a10)/total) multiplied by total number of samples. Fol-
lowing equation is used to compute the expected number of samples.

n ¼ aij; bn ¼ nAlow=total � nBlow=totalð Þ � total
To check whether a quadrant is sparse, a statistical test for (e00 >

a00) or (bn> nÞ is performed by computing S00 and p00 using following
equations. A quadrant is considered sparse if S00 is high (bn>nÞ and
p00 is small.

Sij ¼
bn � nffiffiffiffibnp

p00 ¼ 1
2

a00
a00 þ a01ð Þ þ

a00
a00 þ a10ð Þ

� �

A suitable threshold is chosen for S00 > sThr and p00 < pThr to
check sparse quadrant. A Boolean implication relationship is identi-
fied when a sparse quadrant is discovered using following equation.

Boolean Implication = (Sij > sThr, pij < pThr)
A relationship is called Boolean equivalent if top-left and bottom-

right quadrants are sparse.

Equivalent ¼ S01 > sThr; P01 h pThr; S10 i sThr; P10 < pThrð Þ
Boolean opposite relationships have sparse top-right (a11) and

bottom-left (a00) quadrants.

Opposite ¼ S00 > sThr; P00 h pThr; S11 i sThr; P11 < pThrð Þ
Boolean equivalent and opposite are symmetric relationship because

the relationship from A to B is same as from B to A. Asymmetric relation-
ship formswhen there is only one quadrant sparse (A low => B low: top-
left; A low => B high: bottom-left; A high=> B high: bottom-right; A
high => B low: top-right). These relationships are asymmetric because
the relationship from A to B is different from B to A. For example, A low
=> B low and B low => A low are two different relationships.

A low => B high is discovered if the bottom-left (a00) quadrant is
sparse and this relationship satisfies following conditions.

A low => B high = (S00 > sThr; P00 < pThr)
Similarly, A low => B low is identified if the top-left (a01) quadrant

is sparse.
A low => B low = (S01 > sThr; P01 < pThr)
A high => B high Boolean implication is established if the bottom-

right (a10) quadrant is sparse as described below.
A high => B high = (S10 > sThr; P10 < pThr)
Boolean implication A high => B low is found if the top-right (a11)

quadrant is sparse using following equation.
A high => B low = (S11 > sThr; P11 < pThr)
For each quadrant a statistic Sij and an error rate pij is computed.

Sij > sThr and pij < pThr are the thresholds used on the BooleanNet
statistics to identify Boolean implication relationships. False discov-
ery rate is computed by randomly shuffling each gene and computing
the ratio of the number of Boolean implication relationship discov-
ered in the randomized dataset and original dataset.

Boolean analyses in the test dataset GSE47963 uses a threshold of
sThr = 5 and pThr = 0.05. Boolean analysis on the large normal lung
dataset GSE23546 uses a threshold of sThr = 6 and pThr = 0.1. These
thresholds are more stringent compared to previously used thresh-
olds sThr = 3 and pThr = 0.1 for BooleanNet [17,19,20] to focus on the
strong candidates. These thresholds are so stringent that the false dis-
covery rate was 0 which means no Boolean implication relationships
were discovered in the randomly permuted data.

4.13. BECC (Boolean equivalent correlated clusters) analysis

BECC analysis [20] is based on Boolean Equivalent relationships,
pair-wise correlation and linear regression analysis. BECC analysis



Fig. 1. Study design. (From top to bottom) Step 1: A database containing > 45,000 human, mouse and rat gene�expression data was mined to identify and validate an invariant sig-
nature for host response to viral pandemic (ViP) infection. ACE2, the portal for SARS-CoV-2 entry/uptake, was used as a ‘seed’ gene and Boolean Equivalent Correlated Clusters
(BECC) was used as the computational method to identify gene clusters that share invariant relationships with ACE2. Once defined, these gene clusters (a.k.a., ‘ViP signature’) were
subsequently validated across multiple human and murine models of pandemic viral infection. Step 2: A subset of 20 genes from the ViP signature was selected that was strongly
associated with severity of viral infection. These genes were validated in other cohorts to establish the ‘Severe’ ViP signature. Both 166- and 20-gene ViP signatures were validated
on COVID-19 datasets. Step 3: Cross-validation studies in numerous other datasets helped- (i) define the nature (ii) and source of the cytokine storm in COVID-19, (iii) gain insights
into the immunopathology of fatal disease, and (iv) set precise therapeutic goals. Step 4: Findings in step 3 were validated in hamsters and in a cohort of COVID-19 patients. A com-
prehensive catalog of the datasets analyzed in this work can be found in Supplementary Table 1.
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begins with a seed gene. We used ACE2 as a seed gene in this paper.
BECC analysis identified a set of genes Boolean Equivalent to ACE2
and Boolean Opposite to ACE2 using the BooleanNet statistic
described above.

The BECC algorithm identified 367 genes ‘Boolean Equivalent’ and
163 genes ‘Boolean Opposite’ to the ACE2 gene. Reactome pathway
analyses on both clusters showed that the 367-gene ACE2-equivalent
cluster was enriched in viral response pathways and processes,
whereas the 163-gene ACE2-opposite cluster represented house-
keeping processes, implying that ACE2 and its related genes are driv-
ers of host response in the setting of viral infections. These clusters
were subsequently filtered using differential analysis on another
dataset [GSE113211 (n = 118); Fig. 2b] that profiled heterogeneous
immunophenotypes of children with viral bronchiolitis (confirmed
positive for the virus in ~100% patients; of which 25% were infected
with Influenza/Para-Influenza and 14.8% with human CoV). We chose
GSE113211 (n = 118) dataset to filter ViP genes because this is the
only high-quality large in vivo dataset available with clinical annota-
tion on two different tissue types: nasal mucosal scrapings (NMS)
and PBMC. Transcriptomes were analyzed in nasal mucosal scrapings
(NMS) and PBMC samples taken during an acute visit (AV) and during
a subsequent visit at convalescence (CV) [21]. Of the 367 ACE2-



Fig. 2. Identification and validation of an invariant ACE2-centric signature of host response to viral infections. (a) Computational approach to identify Boolean Equivalent and Oppo-
site relationships. Number of samples in all four quadrants are used to compute two parameters (S, p). S > 5 and p < 0.05 is used to identify sparse quadrant. Equivalent relation-
ships are discovered when top-left and bottom-right quadrants are sparse (left). Opposite relationships are discovered when top-right and bottom-left quadrants are sparse (right).
(b) Schematic displaying the key computational steps and findings leading to the identification of the 166-gene host response signature using ACE2 as a ‘seed’ gene. See also
Table S2. (c) Bar and violin plots displaying sample rank order (i.e., classification) of SARS-CoV-1-infected samples and distribution of the 166 gene-based signature in the test data-
set (GSE47963, in vitro infections of human airway epithelial cells). ROC-AUC values of infected samples classifications are shown below each bar plot unless otherwise stated. (d)
Analysis of H1N1-infected samples compared to uninfected controls using the 166-gene signature like C. (e) Classification of patient samples used in datasets f-h based on their
time of collection either during ‘Acute Visit’ (AV) in the setting of an acute respiratory viral infection and ‘Convalescence Visit’ (CV) after recovery. (f) Analysis of PBMC samples
from children (GSE113211, left) and nasal mucosal scrapings (NMS, GSE113211, right). (g) Analysis of peripheral blood from adults (GSE68310). (h) Analysis of patient samples col-
lected during the swine flu pandemic (GSE21802).
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equivalent genes, 166 genes (Table S2; 1�1) retained the “Boolean
Equivalent” relationship with ACE2 and their expression was down-
regulated during the convalescence visit. Of the 163 ACE2-opposite
genes, 26 genes (Table S2; 2�1) retained “Boolean Opposite” rela-
tionships with ACE2 and their expression were upregulated during
the convalescence visit. All subsequent analyses were performed
using the 166 �gene signature that had Boolean Equivalent relation-
ship with ACE2 and that was down-regulated during a convalescent
visit after acute viral bronchiolitis.

A gene signature score is computed using the 166-genes that were
equivalent to ACE2 which is used to order the sample. To compute
the ViP signature, first the genes present in this list were normalized
according to a modified Z-score approach centered around StepMiner
threshold (formula = (expr -SThr)/3*stddev). The normalized expres-
sion values for every probeset for 166 genes were added together to
create the final ViP signature. The samples were ordered based on the
final ViP signature. To compute the severe-ViP signature, 166 genes
were first ordered using T test between the mild vs severe cases in
GSE101702 dataset, and top 20 genes (Table S2; 3�1) were selected
from this list. We chose GSE101702 dataset to select Severe ViP genes
because this is the only high-quality large dataset available with clin-
ical severity annotation.
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To test the significance of the ViP and Severe ViP genes, we sub-
sampled GSE47963 dataset to see if similar number of genes appear
after BECC analysis. We selected 250 samples from 438 total number
of samples 10,000 times randomly and performed BECC on them.
Boolean analysis on the original GSE47963 used thresholds of
sThr = 5 and pThr = 0.05. These thresholds need to be adjusted when
the number of samples are reduced. For the BECC analysis on the 250
randomly selected samples we used thresholds of sThr = 4 and
pThr = 0.06 which discovers around 367 genes on average. Analysis
of the genes discovered in the 250 subsampled datasets revealed that
on average 87% (321 out 367) emerge again and 41 new genes
appear. In this test, on average 90% (150 out of 166) ViP genes and
90% (18 out of 20) Sever ViP genes emerge again. 17 new ViP genes
and 2 new Severe ViP genes appear. These results suggests that there
are about 10% variation in the genes which is a reasonable criterion
for robustness.

To understand how the downstream results will change if a differ-
ent seed gene was used, we carry out following analyses. If we choose
seed genes from the 166 genes, more than 75% of the genes matched
more than 75% with the 166-gene signature. When using an immune
related gene as ‘seed’, e.g., LMO2 matches 92% (130/141) with the
ACE2-centric 166 genes. Similarly, other relevant immune genes such
as TRIM26, IL15RA, HLA-E, HLA-H, HLA-B, TLR2, and TLR3 as seed
genes individually matched more than 82% with the ACE2-centric
166 genes.

4.14. Single cell RNASeq data analysis

Single Cell RNASeq data from GSE145926 and GSE150728 was
downloaded from Gene Expression Omnibus (GEO) in the HDF5 Fea-
ture Barcode Matrix Format. The filtered barcode data matrix was
processed using Seurat v3 R package [22]. B cells (CD19, MS4A1,
CD79A), T cells (CD3D, CD3E, CD3G), CD4 T cells (CCR7, CD4, IL7R,
FOXP3, IL2RA), CD8 T cells (CD8A, CD8B), Natural killer cells (KLRF1),
Macs Monos DCs (TYROBP, FCER1G), Epithelial (SFTPA1, SFTPB, AGER,
AQP4, SFTPC, SCGB3A2, KRT5, CYP2F1, CCDC153, TPPP3) cells were
identified using relevant gene markers using SCINA algorithm [23].
Pseudo bulk datasets were prepared by adding counts from the dif-
ferent cell subtypes and normalized using log(CPM+1).

4.15. AI guided discovery of invariant host response

BECC requires the depth of Boolean equivalent relationship as a
parameter. For example, if ACE2 is Equivalent to X and X is Equivalent
to Y but ACE2 is not necessarily equivalent to Y, depth of X is 1 and Y
is 2. The depth controls how much the list of genes that are Boolean
equivalent to ACE2 is expanded. This list of genes is converted to a
gene expression score based on average of the normalized gene
expression values as mentioned before. The strength of classification
of uninfected and infected samples using this score is computed by
the ROC-AUC measurement. We performed a regression to identify
the best depth that predicts uninfected vs infected samples in the
cohort GSE47963 (n = 438). We tested how the gene expression score
distinguish uninfected and infected samples as they are annotated in
many other independent datasets. Our confidence on the host
response being invariant depend on having this test pass in all prop-
erly annotated cohorts without exceptions.

4.16. Survival outcome in COVID-19

Hospital-free days analysis (45 days followup) of COVID-19
patients (GSE157103) limited to less than 70 years old using sViP sig-
nature (low and high group) is analyzed using Kaplan-Meier and
Cox-proportional hazard approach. The threshold to separate high
and low group was computed using StepMiner determined
threshold + a noise margin. The noise margin for sViP signature was
computed by computing the total dynamic range (max � min)
divided by 65 to bring it to comparable levels of two-fold change
noise margin seen in gene expression datasets. For the IL15 transcript
analysis samples were limited to only males with less than 70 years
old. IL15 transcripts were divided into high, intermediate and low
levels by using StepMiner threshold +/- noise margin 1 which is two-
fold change in log scale. Low levels of IL15 were associated with
unusually adverse outcome. High and intermediate levels were com-
pared to demonstrate the significance of IL15 in the context of our
manuscript.
4.17. Statistical analyses

Boolean analysis and other statistical approaches are covered in
detail above. Briefly, the StepMiner algorithm [16], BooleanNet statis-
tics [17], and BECC (Boolean Equivalent Correlated Clusters) [20] are
used to perform Boolean analyses. Gene signature is used to classify
sample categories and the performance of the multi-class classifica-
tion is measured by ROC-AUC (Receiver Operating Characteristics
Area Under The Curve) values. A color-coded bar plot is combined
with a density plot to visualize the gene signature-based classifica-
tion. Bubble plots of ROC-AUC values (radius of circles are based on
the ROC-AUC) demonstrating the direction of gene regulation (Up,
red; Down, blue) for the classification based on the 20 gene severe ViP
signature and 166 gene ViP signature is visualized side by side. All
statistical tests were performed using R version 3.2.3 (2015�12�10).
Standard t-tests were performed using python scipy.stats.ttest_ind
package (version 0.19.0) with Welch’s Two Sample t-test (unpaired,
unequal variance (equal_var=False), and unequal sample size) param-
eters. Multiple hypothesis correction were performed by adjusting p
values with statsmodels.stats.multitest.multipletests (fdr_bh: Benja-
mini/Hochberg principles). The results were independently validated
with R statistical software (R version 3.6.1; 2019�07�05). Pathway
analysis of gene lists were carried out via the Reactome database and
algorithm [24]. Reactome identifies signaling and metabolic mole-
cules and organizes their relations into biological pathways and pro-
cesses. Kaplan-Meier analysis is performed using lifelines python
package version 0.14.6. Violin, Swarm and Bubble plots are created
using python seaborn package version 0.10.1.

Sample size estimation: Effect size (the magnitude of the difference
between groups divided by the standard deviation) for IL15 measure-
ment is estimated as 1/0.7 from GSE157103. In order to have an 80%
power (1-b = 0.8) to detect a statistically significant difference
(a = 0.05) between high and low groups of patients, we need around
8 patients in each group.

Ethics statement: Animal studies were approved and performed in
accordance with Scripps Research IACUC Protocol #20�0003 (PI:
Tom Rogers, PMID: 32,540,903) [14]. Blood from COVID-19 donors
was either obtained at a UC San Diego Health clinic under the
approved IRB protocols of the University of California, San Diego
(UCSD; 200236X) or recruited at the La Jolla Institute under IRB
approved (LJI; VD-214). COVID-19 donors were California residents
who were either referred to the study by a health care provider or
self-referred. The lung specimens from the COVID 19 positive human
subjects were collected using autopsy (study was IRB Exempt). All
donations to this trial were obtained after telephone consent fol-
lowed by written email confirmation with next of kin/power of attor-
ney per California state law (no in-person visitation could be allowed
into our COVID-19 ICU during the pandemic). The team member fol-
lowed the CDC guidelines for COVID19 and the autopsy procedures
[25,26].

Role of funding source: Funders of the study had no role in study
design, data collection, data analyses, interpretation, or writing of
report.
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5. Results and discussion

5.1. An ACE2-centric study design

To identify and validate an invariant (universal) gene signature of
host response in COVID-19, we mined more than 45,000 publicly
available datasets of viral pandemics across three species (human,
mouse and rats) (Step 1; Fig. 1). Three relatively widely accepted
facts shaped our approach using Angiotensin-converting enzyme 2
(ACE2) as ‘seed’ gene in our computational studies: (i) ACE2 is the
most well-known portal for SARS-CoV-2 entry into the host cell
[27,28]; its expression in cell lines correlates with the expression of
innate immune genes [29] and susceptibility to SARS-CoV spike pro-
tein-driven entry [30,31], and its depletion in mice abrogates SARS-
CoV infection [32]; (ii) ACE2 is a potent negative regulator of the
renin�angiotensin aldosterone system (RAAS) [33]; without such
restraint, the RAAS contributes to exuberant inflammation in the set-
ting of infections [34]; and finally, (iii) although the mechanism
through which ACE2 suppresses inflammatory response remains
poorly understood, accumulating evidence indicates that infections
perturb ACE2 activity, allowing for uncontrolled inflammation
[35�43].

As Step 2 (Fig. 1), we validated the signature in several human and
mouse datasets of viral pandemics, and a subset of genes was identi-
fied and validated as indicators of disease severity. The signatures
were then validated in SARS-CoV-2-infected cells and tissues and to
explore the nature, extent and cell of origin of host response in mild
and fatal COVID-19.

As Step 3 (Fig. 1), the gene signatures were prospectively used to
navigate the uncharted territory of COVID-19 and pinpoint immuno-
pathologic mechanisms, which revealed the nature (IL15), source
(airway epithelium), intensity (quantitative measure) and conse-
quence (NK cell senescence) of the cytokine storm and helped objec-
tively formulate precise therapeutic goals to reduce the severity of
COVID-19.

As Step 4 (Fig. 1), the gene signature and the mechanism of action
(IL15/IL15RA) were validated in lung tissues from SARS-CoV-2 chal-
lenged golden hamster using RNASeq and IHC. In addition, precise
therapeutic goal was validated in the SARS-CoV-2-challenged golden
hamster model. The mechanism of action (IL15/IL15RA) was also vali-
dated by ELISA in plasma and IHC in lung tissues from UCSD COVID-
19 cohort participants.

5.2. A shared host response signature in respiratory viral pandemics

Because publicly available transcriptomic datasets from SARS-
CoV-2-infected samples are still relatively few, any conclusion drawn
from so few samples using any computational methodology is likely
to lack robustness. We chose to use an informatics approach, i.e.,
Boolean Equivalent Correlated Clusters (BECC) [20], which can iden-
tify fundamental invariant (universal) gene expression relationships
underlying any biological domain; in this case, we selected the bio-
logical domain of 'respiratory viral pandemics’. BECC enables compari-
son of the normalized expression of two genes across all datasets by
searching for two sparsely populated, diagonally opposite quadrants
out of four possible quadrants (high-low and low-high), employing
the BooleanNet algorithm [17]. There are six potential gene relation-
ships assessed by BooleanNet: two symmetric (Equivalent and Oppo-
site; Fig. 2a) and four asymmetric [17]. Two genes are considered
“Boolean Equivalent” if they are positively correlated with only high-
high and low-low gene expression values. Two genes are considered
“Boolean Opposite” if they are negatively correlated with only high-
low and low-high gene expression values. Asymmetric Boolean
implications result when there is only one sparsely populated quad-
rant. The BECC algorithm focuses exclusively on “Boolean Equivalent”
relationships to identify potentially functionally related gene sets.
Once identified, these invariant relationships have been shown to
spur new fundamental discoveries [44,45], with translational poten-
tial [46], and most importantly, offer insights that aid the navigation
of uncharted territories where nothing may be known [47,48].

We used GSE47963 [human airway epithelial (HAE) cultures with
H1N1 and SARS-CoV infections; n = 438] as a ‘test’ dataset, which was
comprised of human airway epithelial cell samples (HAE) infected in
vitro with the causative agents of the 2009 ‘swine flu’ (influenza A-
H1N1; a triple recombination of human, avian, and swine influenza
viruses [49-51]) and the 2002 Severe acute respiratory syndrome
(SARS-CoV-1) [52] outbreaks (Fig. 2b). These datasets were chosen
now, and other datasets were prioritized later in the study, e.g.,
H5N1 (the causative agent of the avian flu in 2006�06 [53] and
MERS-CoV (the causative agent of Middle East respiratory syndrome
in 2012 [54]) based upon the fact that they all contributed to out-
breaks that are characterized by acute respiratory syndromes with
high case-fatality rates [27].

ACE2 is used as a ‘seed’ to identify other genes that have ‘Boolean
Equivalent’ and ‘Boolean Opposite’ relationships with ACE2. These
genes were subsequently filtered using differential analysis on
another dataset [GSE113211 (n = 118); Fig. 2b] that profiled hetero-
geneous immunophenotypes of children with viral bronchiolitis
(confirmed positive for the virus in ~100% patients; of which 25%
were infected with Influenza/Para-Influenza and 14.8% with human
CoV). Transcriptomes were analyzed in nasal mucosal scrapings
(NMS) and PBMC samples taken during an acute visit (AV) and during
a subsequent visit at convalescence (CV) [21]. 166 genes (Table S2;
1�1) retained the “Boolean Equivalent” relationship with ACE2 and
their expression was downregulated during the convalescence visit.
26 genes (Table S2; 2�1) retained “Boolean Opposite” relationships
with ACE2 and their expression was upregulated during the convales-
cence visit. All subsequent analyses were performed using the 166
�gene signature that had Boolean Equivalent relationship with ACE2
and that was down-regulated during a convalescent visit after acute
viral bronchiolitis.

First, the 166-gene signature was evaluated in the test dataset� it
was used to rank order the samples and test for phenotype classifica-
tion using a receiver operating characteristic curve [ROC curve; the
area under this curve (AUC) represents degree or measure of separa-
bility] and displayed such classification using violin plots (Fig. 2c,d).
The signature classified the uninfected vs. infected samples with rea-
sonable accuracy in the setting of SARS-CoV-1 infection (ROC-
AUC = 0.81, Fig. 2c). It also classified perfectly in the setting of H1N1
infection (ROC-AUC = 1.00, Fig. 2d). Good classification was observed
between samples from the acute visit (AV) and convalescence visit
(CV) in children (test dataset; GSE113211; Fig. 2e,f, left), as well as
two independent adult cohorts (validation datasets that were gener-
ated in two prospective studies [55,56]; Fig. 2g,h). All the patients in
these cohorts were infected with respiratory viruses; in one cohort,
~45% were documented infections with pandemic Influenza strains
H1N1 and H3N2 (GSE68310), whereas 100% of the patients in the
other were victims of the H1N1 pandemic of 2009 (GSE21802).
Regardless of the heterogeneity of these validation cohorts, the clas-
sification score using the 166-gene signature remained strong in
both datasets (ROC-AUC = 0.83 - 0.96). Findings indicate that the viral
pandemic signature was conserved among numerous respiratory
viral pandemics, and for that reason, we christened it the ‘Viral Pan-
demic’ (ViP) Signature.

5.3. The ViP signature defines the ‘Cytokine storm’ in viral pandemics

Reactome analyses on the 166 genes showed that the signature
was largely enriched for genes within the immune system pathways,
e.g., interferon and cytokine signaling, cellular processes that are crit-
ical for an innate immune response such as the ER-phagosome path-
way and antigen processing and presentation, and finally the



Fig. 3. Validation of the ViP signatures in global pandemic viral infections. (a) Heatmap of the 166-gene signature on test dataset (GSE47963, in vitro infections of human airway epi-
thelial cells). Genes that are involved in cytokine signaling in immune system are highlighted in the left. (b) ReacFoam analysis on the 166-gene signature that visualizes genome-
wide pathway analysis based on Voronoi tessellation. (c) Reactome pathway analysis of the 166 genes in the Vip signature. (d) ViP signature-based classification of CoV-infected
samples (CoV) from uninfected controls (U) in diverse human and mouse datasets. (e) Time course of CoV infection shows that the ViP host-response signature is slowly induced in
very late (48�72 h) in Calu-3 cells infected with SARS-CoV-1. (f) The accuracy (Y axis; ROC AUC) of the signature to classify viral infections differs between RNA viruses and DNA
viruses (X axis) in in vitro system (top). However, they are indistinguishable in in vivo system (bottom). See also Table S3 and Fig S1. (g) ViP signature-based classification of human
and murine samples with fungal or bacterial infections in either in vitro or in vivo settings. (h) The signature captures host response to CoV infection in human primary lung alveolar
epithelial cells (AE) and dendritic cells (DC) better than in Fibroblasts (FI) and Endothelial (ME) cells. The accuracy of classification (ROC-AUC) strongly correlates with ACE2 expres-
sion in these cells. (i) Classification of macrophage polarization states ‘reactive’ (M1 polarized), unstimulated M0 and tolerant M2-like samples using the 166-gene ViP signature
across diverse datasets.
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adaptive immune system (Fig. 3a�c). In other words, the signature
reflected a typical host immune response that is expected during any
viral infection. This is not surprising because an overzealous host
immune response, i.e., a ‘cytokine storm’ is shared among all
respiratory viral pandemics (Influenza, avian and swine flu) [57]
and severe COVID-19 patients who succumb to the disease [6].
However, there were 3 surprising factors: (i) This signature and
reactome profile emerged using ACE2 as a ‘seed’ gene, which is
not the receptor for influenza strains to enter into host cells. (ii)
It is also noteworthy that despite filtration through two unrelated
datasets (Fig. 2b), one in vitro and another in vivo, and the
reduction in the number of genes in the ACE2-equivalent cluster
during such iterative refinement, the pathways/processes repre-
sented in the 166-gene cluster (Table S2; 1�2) remained virtually
unchanged. (iii) The only cytokine/receptor pair that emerged in
this 166-gene cluster was interleukin-15 (IL15/IL15RA; Fig. 3a, c),
indicating that transcripts of this cytokine are invariably equiva-
lent with ACE2 expression across all datasets analyzed. Findings
are in keeping with the well-established role of IL15 in both the
pathogenesis [58] and the severity [59] of virus-induced lung
injury. They are also consistent with the fact that IL15-/- mice are
protected from lethal influenza [60].
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Next, we tested this 166-gene signature in datasets of samples
infected with viruses that have either caused pandemics in the past
(SARS-CoV-1, MERS, Ebola, Zika, etc.) or continue to do so at present
(Influenza A/B, HIV, HCV, etc.). The signature perfectly classified unin-
fected and infected samples (ROC-AUC = 1.00; Fig. 3d) in four
humans (GSE56677, GSE45042, GSE17400, GSE30589) and two
mouse SARS-CoV1 and MERS-CoV datasets (GSE19137, GSE52920). It
also performed reasonably well in two other human and one mouse
datasets (ROC-AUC ranging between 0.76�0.97; GSE37827,
GSE33267, GSE50000; Fig. 3d). Analysis of a time course of infection
with SARS-CoV-1 (GSE33267; Fig. 3e) revealed that classification of
infected samples improved over time, beginning at 48 h and reaching
perfection (ROC AUC = 1.00) at 60�72 h, which is consistent with epi-
demiologic findings in prior acute respiratory viral pandemics (SARS
and MERS) have average incubation periods ranging ~2�7 days,
which can sometimes last up to ~10�14 d. Among datasets with
curated samples representing other viral outbreaks and/or pandem-
ics that are neither respiratory nor acute, we found that classification
scores for RNA viruses were significantly better compared to DNA
viruses in in vitro systems (Fig. 3f top, Fig. S1a), especially for those
that share clathrin-dependent endocytic methods to breach host cells
(Table S3). However, the classification scores were indistinguishable
between RNA and DNA viruses in in vivo studies (Fig. 3f bottom,
Fig. S1a-b). These results indicate that the 166-gene signature is
shared among all viral infections, and not specific to respiratory viral
pathogens.

Notably, the 166-gene host response signature was not specific for
viral infections per se; it also performed well in classifying samples
with bacterial infections, both in vitro and in vivo, and fungal infec-
tions in vivo (Fig. 3g). These findings were not surprising because the
prominent overrepresentation of interferon signaling that is captured
within the signature (Fig. 3c) is widely accepted as a shared funda-
mental aspect of host defense response during any infection [61].
Despite such apparent promiscuity, what is noteworthy is that the
ViP signatures were relatively specific for infections/inflammation
(Fig. S3). The signature also implicated the epithelial and myeloid
cells, but not ECs and fibroblasts contribute to host immune response
because the classification scores were better for airway epithelial
cells (AE) and dendritic cells (DC) compared to fibroblasts (FI) and
microvascular endothelial cells (ME) (ROC-AUC: 0.66, 0.82 vs 0.43,
0.37; Fig. 3h; left). These scores correlated well with ACE2 expression
in these different cell types (p < 0.001; Fig. 3h; right), raising the pos-
sibility that viral entry through the engagement of ACE2 and the
induction of ACE2-equivalent host genes may be intertwined. That
myeloid cells are major contributors to this signature was confirmed
in five independent datasets; the 166-gene signature distinguished
‘reactive’ (M1-polarized) macrophages in them all (Fig. 3i).

Together, these findings indicate that the ACE2-equivalent 166-
gene signature is of broader relevance than just coronaviruses; the
signature captures core fundamentals of host innate immune
responses seen not just in respiratory viral pandemics, but viral, bac-
terial and even fungal infections. The airway epithelial cells and cells
of myeloid lineages (DCs and macrophages) appear to be major con-
tributors to the ViP signature.

5.4. A 20-gene subset within the ViP signature detects disease severity

To determine what constitutes ‘severe/fatal’ disease, we rank-
ordered the 166 genes within the ViP signature for their ability to
classify Influenza A/B-infected adult patients by clinical severity
[62,63] (n = 154; Fig. 4a). Severe disease was defined as intubation
and mechanical ventilation due to poor oxygenation and/or death. A
set of top 20 genes (Fig. 4a; Table S2, 3�1; Table S4) was sufficient to
classify healthy controls from infected patients (ROC-AUC = 1.00) as
well as distinguish mild from severe disease with reasonable accu-
racy (ROC-AUC = 0.95) in the test cohort (Fig. 4b). Reactome pathway
analyses revealed that compared to the ViP signature, the ‘severity’-
related 20-gene cluster enriches a completely different set of cellular
processes, i.e., DNA damage (especially induction of genes that are
critical for base excision repair; BER), stress-induced senescence,
neutrophil degranulation and changes in cell cycle (Figs. 4c, S2). We
validated this signature side-by-side with the 166-gene ViP signature
in three human datasets that included samples from mild vs. severe
disease during the avian (H7N9), IAV (H3N1 and others) and the
swine (H1N1) flu viral pandemics (Fig. 4d, left). Both the 166-gene
ViP signature and the 20-gene severity signature performed similarly
when it came to classifying control vs. mild disease, but the latter
performed significantly better in classifying mild vs. severe disease
and did so consistently in both validation datasets (ROC-AUC ranging
from 0.8 to 0.9; Fig. 4d, left).

The severity signature performed well also in a large murine lung
dataset in which mice were intranasally infected with non-lethal (NL,
control), sub-lethal (SL, mild) and lethal (L, severe) doses of two dif-
ferent strains of H1N1 virus A; the Texas/36/91 (Tx91), which is non-
lethal in C57Bl/6 mice and causes transient morbidity and compared
against those infected with sublethal and lethal doses of the highly
pathogenic Puerto Rico/8/34 (PR8), which causes ARDS and death in
less than a week [64]. Harvested lungs were sorted into five different
prospectively isolated cell subpopulations and analyzed by microar-
ray (Fig. 4d, right): alveolar macrophages, lymphocytes (BC, TC, NK),
Ly6Chi mononuclear myeloid cells, neutrophils, CD45neg pulmonary
epithelial cells. The 166-gene ViP signature distinguished the control
vs. mild samples perfectly in all five cell types (ROC-AUC = 1.00;
Fig. 4d, right). The classification accuracy of the 20-gene severity sig-
nature, however, was most prominent in neutrophils (ROC-
AUC = 1.00), followed by monocytes and macrophages (ROC-
AUC = 0.9), and then epithelial cells (ROC-AUC = 0.8), but failed in
lymphocytes. These findings suggest that the cells of the innate
immune system are the primary contributors of disease severity.

We conclude that the 166-gene ViP signature that was initially
built using in vitro infection datasets also detects the host immune
response (‘cytokine storm’) in the complex in vivo systems; in the in
vivo context, the response may be triggered by direct viral damage to
the lung epithelium but is likely to be propagated by feed-forward
dysregulated immune response, both innate and adaptive. Surpris-
ingly, this 166-gene ViP signature was not associated with disease
severity; instead, severity-associated 20 genes that regulate stress
and senescence-associated repression of protein expression and DNA
damage (Fig. 4c). DAVID GO analyses on the 20-gene signature indi-
cated that 3 biological processes, e.g., transcriptional repression, apo-
ptosis, and intermediates within the type I IFN (IFNg signaling)
pathway (Fig. 4e) indicative of cellular distress, senescence/aging
and death are the determinants of severity/fatality.

5.5. The ViP signatures are induced in the lung epithelial and immune
cells in COVID-19

We next tested the ability of the ViP signatures to distinguish
between SARS-CoV-2-infected samples and uninfected controls in 3
independent datasets, 2 of which were datasets generated from cells
infected in vitro (Fig. 5a�c) and one that was generated from lung
samples from a fatal case of COVID-19 (Fig. 5d). The signature per-
fectly classified infected from uninfected samples in them all (ROC-
AUC 1.00; Fig. 5a, b, d); of the 166 genes, both IL15 and IL15RA were
notably elevated in infected samples (Fig. 5a). The 20-gene signature
performed reasonably well in distinguishing infected from unin-
fected A549 cells (ROC-AUC = 0.87; Fig. 5e), and the healthy from the
COVID-19 lung sample (ROC-AUC = 1.00; Fig. 5g), but not in airway
cells (bronchial; ROC-AUC = 0.57; Fig. 5f). In fact, the 166-gene and
20-gene signatures perfectly classified infected vs. uninfected sam-
ples in all in vitro cellular models of CoV-2 infection, regardless of the
tissue/organ (Fig. 5h; left, middle). The signatures performed nearly



Fig. 4. Identification of a ‘severe ViP’ signature. (a) Heatmap of the 166 genes on a dataset (GSE101702) annotated with varying severity of infection (healthy controls, 52; mild, 63;
severe, 44). Genes are ranked based on their strength of association with severity (T-test between mild and severe). Genes that are involved in cytokine signaling in the immune sys-
tem are highlighted on the left. Heatmap of top 20 selected genes (‘severe ViP’ signature) is shown on the right. (b) Bar and violin plots display sample rank order (i.e., classification)
of patient samples and distribution of the 20-gene ‘severe ViP’ signature in the test dataset (GSE101702). ROC-AUC values of mild and severe cases are shown below the bar plot. (c)
Reactome pathway analysis of 20 genes. (d) Bubble plots of ROC-AUC values (radius of circles are based on the ROC-AUC) demonstrating the direction of gene regulation (Up, red;
Down, blue) for the classification based on the 20-gene severe ViP signature (top) and 166-gene ViP signature (bottom) in the test dataset (GSE101702), three more human datasets
(H7N9, GSE114466; H1N1, GSE21802; IAV/H3N1 and others, GSE61821) and one mouse dataset (H1N1 Inf A, GSE42641). For each gene signature, ROC-AUC of controls vs Mild and
Mild vs Severe are shown in top and bottom rows, respectively. In the mouse dataset (GSE42641) host response to lethal (L) and sublethal (SL) infection with H1N1 virus were
assessed in five different lung cell types: Alv Mac, Lymphocytes, Monocytes, Neutrophil, Epithelial cells. Number of controls, mild and severe cases are shown at the top. (e) Sum-
mary of the 20-gene severe ViP signature and pathway analysis by DAVID GO (https://david.ncifcrf.gov/).

12 D. Sahoo et al. / EBioMedicine 68 (2021) 103390
perfectly (ROC-AUC = 0.90 - 1.00; Fig. 5h, right) across all lung cell
types from COVID-19 infected patients analyzed by single-cell
sequencing.

We next tested the ability of these signatures to distinguish mild
vs. fatal COVID-19 in single-cell sequencing datasets from patient-
derived lung samples (Fig. 5i). The 166-gene signature was able to
distinguish control vs. mild infection most effectively in macro-
phages, airway epithelium, CD4+ T cells and NK cells (Fig. 5i, lower
panel, lower row) and mild vs. severe disease in the epithelium and in
NK cells (Fig. 5i, lower panel, upper row). The 20-gene signature not
only performed well in classifying control vs. mild infection in the
same 4 cell types as above but also in B cells and CD8+ T cells (Fig. 5i,
upper panel, lower row). However, the 20-gene severity signature
continued to perform most optimally in the epithelium (ROC-
AUC = 1.00) and in NK cells (Fig. 5i, upper panel, upper row). The sig-
natures were also rapidly induced in monkeys challenged with SARS-
CoV-2, and gradually suppressed during convalescence after 17 days
(Fig. 5j).

Because the ViP signature is comprised of IFN-signaling pathways
and presumably IFN-stimulated genes (ISGs), we asked if the ViP/
severe-ViP signatures offer any additional advantage beyond ISGs.
Using Interferome v2.01 (http://www.interferome.org) we first con-
firmed that 155/166 genes in ViP signature and 18/20 genes in
severe-ViP signatures were genes that are likely to be regulated by
IFN signaling (Fig. 5k). Surprisingly, despite such high degree of path-
way overlap with ISGs, the severe-ViP signature (sViP) was able to
prognosticate outcome (hospital-free days) in a cohort of patients
with COVID-19 (Fig. 5l; left). When compared head-to-head in an
univariate analysis using Cox proportional hazards regression model,
the prognostic effect of the severe-ViP signature emerged as superior
to two different sets of previously published ISGs [65,66] in their abil-
ity to prognosticate hospital-free days (Fig. 5l; top right). Three

http://www.interferome.org
https://david.ncifcrf.gov/


Fig. 5. The ViP signatures define and measure the host immune response in COVID-19. (a) Heatmap of 166 genes in COVID-19 (GSE147507) dataset ranked by genes up-regulated in
COVID-19 infected samples. Genes that are involved in cytokine signaling in the immune system are highlighted on the left. (b�g) Bar and violin plots displaying sample rank order
(i.e., classification) and distribution of gene signature scores of COVID-19 (GSE147507) infected (CoV) and uninfected controls (C) in A549 (13 C, 6 CoV; b, e), normal human bron-
chial epithelial cells (NHBE, 7 C, 3 CoV; c, f), and patient lung autopsies (2 Normal, 1 CoV; d, g) based on 166-gene (b�d) and 20-gene ViP signatures (e�g). (h) Bubble plots of ROC-
AUC values (radius of circles are based on the ROC-AUC) demonstrating the direction of gene regulation (Up, red; Down, blue) for the classification based on the 20 gene-severe ViP
signature (top) and 166 gene ViP signature (bottom) in multiple independent datasets. (i) Bubble plots like panel H showing ROC-AUC of controls vs Mild and Mild vs Severe that
are shown in the top and bottom rows, respectively, for each gene signature in the COVID-19 single-cell datasets (GSE145926). Dataset is analyzed as a ‘pseudo-bulk’ of all cells or
after selecting individual cell types using marker genes specifically expressed in these cell types. (j) ViP and severe ViP (sViP) signature-based classification of blood samples
(GSE155363) before and up to 17 days after COVID-19 infections in 8 monkeys using ROC-AUC measurements. (k) Interferon stimulated genes (ISGs) are annotated in the ViP and
sViP gene lists using Interferome v2.01 web application and displayed as Venn diagrams showing the number of genes regulated by one or more IFN types (Type I, II or III). (l) Hospi-
tal-free days analysis (45 days followup) of COVID-19 patients (GSE157103) limited to less than 70 years old using sViP signature (low and high group) is displayed as Kaplan-Meier
estimates (left) of cumulative probability of discharge and its relationship with days in hospital. Cox-proportional hazard univariate analysis (right; top) of sViP (high vs low) is com-
pared to ViP signature, Interferon Stimulated Gene-signatures (ISG166 and ISG265), age, gender, ICU admission (icu) and mechanical ventilation (mv). Multivariate Cox-proportional
hazard analysis (right; bottom) compares the variables that are significant in univariate settings, i.e., sViP, ICU admission (icu) and mechanical ventilation (mv).
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factors emerged as determinants of longer hospital stays: (i) the ICU
admission status, (ii) need for mechanical ventilation and (iii) induc-
tion of the severe-ViP signature. A multivariate analysis using Cox
proportional hazards regression model suggested that these three
factors may be independent covariates of poor outcome (Fig. 5l; bot-
tom right).

Together, these findings show that the 166-gene ViP signature
seen in other respiratory viral pandemics is conserved also in COVID-
19. The cytokine storm (166-genes, which included IL15/IL15RA;
Table S2) was induced in multiple cell types; however, the 20-gene
ViP signature of disease severity and fatality was most prominently
induced in two cell types: (i) the airway epithelial cells, known pro-
ducers of IL15 after viral infections [67,68] and (ii) the NK cells which
are known targets of physiologic as well as overzealous IL15 response
[69,70]. Findings also show that despite the ISG-like makeup of the
ViP signatures, there are key components within the signature that is
able to detect disease severity.

5.6. Viral infection and IL15 induce, and Flu vaccine attenuates the ViP
signatures in NK cells

NK cells are known to lyse influenza virus-infected cells by direct
cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC);
enhancing such NK cell function has been shown to control influenza
virus infections [71]. Clearance of other viruses (HIV-1, other retrovi-
ruses, etc.) and cancer immunotherapies also leverage such NK cell-
dependent ADCC [72,73]. Because IL15, the only cytokine within the
ViP signature, is critical for NK cell activation and exhaustion [69,70],
we analyzed datasets from NK cells exposed to virus-infected epithe-
lial cells. More specifically, a transcriptomic dataset (GSE115203)
[74] generated from co-culture studies of human PBMCs (3 donors)
with influenza (H1N1 Puerto Rico/08/1934)-infected airway epithe-
lial cells (A549) was analyzed (Fig. 6a; top). PBMCs (from co-culture),
or NK cells FACS-sorted from the PBMC were then analyzed by RNA
Seq, and the study had confirmed NK cell ADCC responses were dura-
bly induced in this assay via type I IFN release from PBMCs. We found
that both the 166- and 20-gene ViP signatures were induced in
PBMCs and in NK cells sorted from the PBMCs (Fig. 6a; bottom left),
indicating that NK cells in these co-culture models were sufficient to
capture the observed host immune response in patients with COVID-
19.

To test the role of IL15 in the induction of ViP signatures, we lever-
aged three datasets—one that used recombinant IL15 (PBMCs;
GSE77601), another that used anti-IL1Rb mAb (mouse skin biopsies;
GSE45551) [75], and a third study using the prototypic H3K27 deme-
thylase inhibitor, GSK-J4; the latter was shown to inhibit NK cell
effector cytokines in response to IL15 without impacting its cytotoxic
killing activities (human, NK cells; GSE89484) [76]. Both ViP signa-
tures were stimulated by IL15 but attenuated in the two other data-
sets where IL15’s actions were blocked pharmacologically (Fig. 6a;
right). These findings indicate that IL15 could be necessary and suffi-
cient to induce the ViP signatures.

Because two independent studies [77,78] (one of them [78] being
a preprint) recently showed that those vaccinated against influenza
have lower odds of requiring intensive care, invasive ventilation and/
or dying, we analyzed two transcriptomic datasets (GSE64655 [79]
and GSE133478 [80]) in which PBMCs from subjects vaccinated with
seasonal trivalent or quadrivalent influenza vaccine (TIV/QIV) were
collected and analyzed for NK cell activation. The first study showed
that the NK cells continued to demonstrate progressive attenuation
of both the 166- and 20-gene signatures rapidly within 7 days
(Fig. 6b, left). The second study, in which the NK cell-enriched and
depleted fractions collected pre- and post (30 d)-vaccination were
tested for their response to re-stimulation with IL15 (low dose,
0.75 ng/ml, 18 h); such stimulation is known to enhance NK cell
activity [81�83] and promote viral clearance [84�86]. Both ViP
signatures were attenuated post-vaccination in NK cell-enriched frac-
tions, but not in depleted fractions (Fig. 6b, right). Because such post-
vaccination attenuation happened in the setting of experimentally
confirmed [80] enhancement of overall NK cell response, we con-
clude that attenuation of ViP signatures among recipients of TIV could
continue to offer protection during re-challenge. Because such pro-
tection is seen in NK-cell enriched, but not depleted fractions, we
conclude that the protection is mediated primarily via the preserva-
tion of functional NK cells.

5.7. An IL15-storm originating in the lung alveoli determines the
severity of COVID-19

We next analyzed the ViP signatures in transcriptomic datasets
generated from multiple organs at autopsy. Both the 166- and 20-
gene ViP signatures were predominantly enhanced in one organ, the
lungs (Fig. 6c,d); and IL15/IL15RA were also elevated in the lungs
(Fig. 6d). These findings indicate that the 20- and 166-gene signa-
tures go together and suggest a plausible cause and effect relation-
ship. For instance, severity-related cellular events (such as epithelial
and NK cell senescence) occur in the milieu of the organ that mounts
the highest IL15-predominant cytokine response, i.e., lungs. We also
found that IL15 and its receptor IL15RA were significantly increased
in severe COVID-19 lungs (Fig. 6e). These findings predict that an
overzealous IL15-predominant cytokine response is the most consis-
tent finding in the most severe cases of COVID-19 and that the lung
epithelium is the likely source of such a storm.

These predictions were validated in a cohort of symptomatic
COVID-19 patients who presented to the UC San Diego Medical Cen-
ter with varying disease severity, ranging from mild to fatal (see
Table S5). Plasma ELISA studies revealed that IL15 levels were signifi-
cantly elevated during the acute compared to the convalescent visit
(Fig. 6f), and in whom the clinical presentation was moderate-to-
severe compared to those with mild disease (Fig. 6g). A sub-group
analysis confirmed that while gender or age did not have a significant
impact on plasma IL15 levels independently, the aged male (> 40 y)
cohort had a significantly higher IL15 level than the young males
(Fig. 6h; left). No such pattern was noted among females. These find-
ings are consistent with the fact that the gender gap in COVID-19-
related deaths widens markedly with age [87]. Lungs collected during
autopsies from patients who succumbed to COVID-19 (see Table S6)
further confirmed that lung epithelial cells, especially the alveolar
type II pneumocytes and alveolar immune cell infiltrates express
high levels of IL15 and its receptor, IL15RA (Fig. 7a, b).

Finally, in a cohort of patients with COVID-19, high levels of IL15
transcript carried a poor prognosis (lower probability of discharge
from the hospital; Fig. 7c). An univariate analysis using Cox propor-
tional hazards regression model showed that the prognostic effect of
high-IL15 was superior to ISGs [65,66] (Fig. 7d; left), as we observed
previously for ViP signatures (Fig. 5L). A multivariate analysis using
Cox proportional hazards regression model suggested that need for
mechanical ventilation and IL15 induction may be independent cova-
riates of poor outcome (Fig. 7d; right). That the serum IL15 levels
track disease severity was validated in a cohort of patients presenting
to our institution with a diagnosis of COVID-19; critical/fatal disease
was associated with significant elevation of the cytokine (Fig. 7e).

Taken together, these findings support the following model of the
immunopathogenesis of COVID-19 (Fig. 7f): Airway epithelial cells
and cells of the myeloid lineage and other immune cells are the pri-
mary source of the 166-gene cytokine storm, of which, IL15 is a com-
ponent. It is possible, that the primary target of IL15, i.e., NK cells,
when exposed to this storm for a prolonged period undergo damage,
stress-induced senescence and apoptosis. Our model is consistent
with prior studies showing that the airway epithelial cells (especially
bronchial) constitutively express the IL15 and IL15RA/B genes and
that viral infections and IFNg can induce the synthesis and secretion



Fig. 6. ViP signatures reveal an interplay between IL15-storm and NK cell dysfunction in fatal COVID-19. (a) Bubble plots of ROC-AUC values (radius of circles are based on the ROC-
AUC) demonstrating the direction of gene regulation (Up, red; Down, blue) for the classification based on the 20 gene severe ViP signature (top) and 166 gene ViP signature (bottom)
in following datasets. RNASeq data (GSE115203) from PBMCs and sorted NK cells from PBMCs incubated with uninfected A549 cells for 12 hrs compared to infected A549 cells.
PBMCs treated with IL15 compared to IL2 (GSE77601). RNASeq analysis of NK cells (GSE89484) treated with GSK-J4 compared to DMSO. Skin tissue in mice (GSE45551) is treated
with anti-IL15RB antibody compared to PBS. (b) RNASeq data of NK cells isolated from two donors prior to vaccination compared (left) to days 1, 3, and 7 post-TIV vaccination like
panel A. RNASeq data of NK enriched and NK depleted PBMCs from healthy donors compared to 30 day post-vaccination like panel A. (c, d) Heatmap of 20-gene (panel c) and 166-
gene (panel d) ViP signatures in tissues collected during rapid autopsies on patients who succumbed to COVID-19. Genes are ranked according to the strength of differential expres-
sion (T-test) in lung tissue between normal and infected tissue. (e) Box plots of IL15 and IL15RA in samples from varying severity of COVID-19. (f-h) Violin plots show levels of
plasma IL15 in COVID-19 patients stratified by disease acquity (F), by clinical severity (G) and by gender and age (H). Welch’s two sample unpaired t-test is performed to compute
the p values. See also Table S5 for patient metadata.
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of IL15 [68], and that prolonged and excessive stimulation with
IL15 is known to induce NK cell exhaustion [69,70]. These find-
ings are consistent with the emerging reports that NK cells are
significantly exhausted and reduced in cases of severe COVID-19
infection [88,89] and that such reduction was seen as early as
3�6 days after the onset of symptoms [90]. We conclude that
fatal COVID-19 is characterized by a paradoxical immune
response, i.e., suppression of epithelial and NK cell functions
(immunosuppression) in the setting of a cytokine storm (over-
zealous immune response).



Fig. 7. Lung alveolar cells contribute to the IL15 storm in fatal COVID-19. (a) Normal lung tissue obtained during surgical resection (left) or lung tissue obtained during autopsy stud-
ies on COVID-19 patients (right) were stained for IL15 and IL15RA. Representative images are shown. Mag = 10X. (b) Violin plots display the intensity of staining for IL15RA (top) and
IL15 (bottom), as determined by IHC profiler. (c) Hospital-free days analysis (45 days followup) of COVID-19 patients (GSE157103) limited to males less than 70 years old using the
abundance of IL15 transcripts (intermediate and high groups) is displayed as Kaplan-Meier estimates (left) of cumulative probability of discharge and its relationship with days in
hospital. (d) Cox-proportional hazard univariate analysis (right; top) of sViP (high vs low) is compared to ViP signature, Interferon Stimulated Gene-signatures (ISG1,
PMID:15619625; ISG2, PMID:21478870), age, gender, ICU admission (icu) and mechanical ventilation (mv). Multivariate Cox-proportional hazard analysis (right; bottom) compares
the variables that are significant in univariate settings, i.e., sViP, ICU admission (icu) and mechanical ventilation (mv). (e) Top: Schematic displays the workflow for patient blood col-
lection and assessment of IL15 levels by mesoscale. Bottom: Bar (top) and violin (bottom) plots for the levels of IL15 cytokine (score = Z score of the log reduced mesoscale concentra-
tion data). ROC AUC numbers indicate the strength of classification between patients with critical/fatal disease course vs. those with non-critical infection. (f) Summary of IL15
signaling and the hypothetical role of NK cells in the severity of COVID-19 infections.
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5.8. The ViP signatures formulate therapeutic goals, track treatment
efficacy

Previously we showed that the attenuation of the ViP signature
was ‘associated’ with the acquisition of natural convalescence in sev-
eral respiratory viral pandemics (Fig. 2f�h); we now asked if they
could serve as a readout of therapeutic efficacy. We analyzed inter-
ventional studies in the setting of other viral infections that shared
the ViP signature, i.e., HCV, HIV, Zika and Ebola (Fig. 3h; Fig. S1; Table
S3). The 166-gene ViP signature classified HCV-infected liver biopsies
treated or not with directly acting anti-viral agents (DAAs)
(Fig. 8a�c) and HIV-infected samples treated or not with anti-retro-
viral therapeutics (ART; ROC-AUC = 1.00; Fig. 8d) with sufficient
accuracy. In the case of Ebola, the ViP signature was somewhat effec-
tive in classifying crisis (i.e., acute) from convalescent PBMC samples
(ROC AUC 0.64; Fig. S4a, top), and previously described anti-Ebola
therapeutic strategies (Topoisomerase depletion with siRNA [91]
inhibited the signature in Ebola-infected alveolar epithelial cells
(siTop; ROC AUC 1.00; Fig. S4a, bottom) [91]. Finally, the ViP signa-
ture was accentuated in Zika infected human cortical neural

pmid:15619625
pmid:21478870


Fig. 8. Validation of ViP signature-guided therapeutic goals. (a-c) The 166-gene ViP signature-was used to classify liver biopsies from HCV-infected patients treated or not with
directly acting anti-viral agents. ROC-AUC values are shown below each bar plot unless otherwise stated. (d) 166-gene ViP signature-based classification of blood samples from HIV-
infected patients treated with anti-retroviral therapy (ART). (e) The compound EIDD-2801 (MK-4482; 500 mg/kg) or vehicle (Veh) was administered at indicated doses to Golden
Syrian hamsters 4 h prior to intranasal infection with SARS-CoV-2. Hamsters were sacrificed on day 5 and lungs we analyzed by RNA sequencing. (f) Bar (top) and violin (bottom)
plots using the ViP (left) or sViP (right) signature-based classification of lung samples from hamsters in E and uninfected controls. (g) Schematic showing the experimental design
for validating the ViP signatures as useful tools to assess therapeutic efficacy. Uninf, uninfected; Den3 and Anti-CoV-2 indicate SARS-CoV-2 challenged groups that received either a
control mAb or the clone CC12.2 of anti-CoV-2 IgG, respectively. (h) Bar (top) and violin (bottom) plots display the 166- and 20-gene ViP signatures in the uninfected and the SARS-
CoV-2 challenged groups, treated with control or anti-CoV-2 IgG. (i-k) Lungs harvested from the 3 groups of hamsters were analyzed by H&E and IHC. Representative images are
shown in I. Mag = 10X. Bar graphs in J display the abundance of cellularity and infiltrates in the lungs of the 3 groups, as determined by ImageJ. Violin plots in K display the intensity
of staining for IL15RA (top) and IL15 (bottom), as determined by IHC profiler.
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progenitor cells (Fig. S4b) and was effectively attenuated when these
infected samples were treated with two investigational drugs that
were found to be effective in inhibiting Zika infection. These findings
imply that attenuation of the 166-gene ViP signature is a desirable
therapeutic goal.

We next sought to determine if the SARS-CoV-2 virus can induce
the ViP signatures, and whether the signatures can track therapeutic
response. We tested two therapeutic approaches. The first approach
was the use of N-hydroxycytidine, the parent of the prodrug MK-
4482 (Molnupiravir, EIDD-2801) which has not only proven as a
potent and selective oral antiviral nucleoside analogue in mice,
guinea pigs, ferrets and human airway epithelium organoids
[92�96], but also showing promise in Phase IIa trials in the treatment
of COVID-19 patients (NCT04405570). We analyzed by RNA seq the
lungs from SARS-CoV-2-challenged golden Syrian hamsters who
were pre-treated either with this drug or vehicle control (see study
protocol in Fig. 8e). Both 166- and 20-gene ViP signatures were
induced in the vehicle-treated arm, and effectively suppressed in the
drug-treated arm to levels close to uninfected controls (GSE168095;
Fig. 8f). The second approach was the use of SARS-CoV-2-neutraliz-
ing antibodies whose design was inspired by monoclonal antibodies
(mAbs) isolated from convalescent donors [14]. A specific isotype of
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this antibody, which binds to the receptor-binding domain (RBD-A)
of SARS-CoV-2 spike protein in a fashion that precludes binding to
host ACE2, was demonstrated as effective in preventing infection and
weight loss symptoms, in cell-based and in vivo hamster models of
infection, respectively. We observed that SARS-CoV-2-challenged
hamsters that were pre-treated with anti-CoV-2 antibody, but not
the control Den3 antibody (see Fig. 8g for study protocol) had 3 key
findings: (i) they suppressed both the 166- and 20-ViP signatures
that were otherwise induced in the infected lungs (GSE157058;
Fig. 8h); (ii) their lungs were protected from overwhelming immune
cell infiltration and obliteration of alveolar space (Fig. 8i, j); (iii)
expression of IL15 and IL15 receptor was significantly reduced com-
pared to what was observed in the infected lungs (Fig. 8i, k).

These results validate the ACE-centric computational approach for
identifying the ViP signatures, i.e., when ACE2�virus engagement was
disrupted using antibodies, or reduced using directly acting anti-
virals that prevent viral replication using Molnupiravir, the signa-
tures were suppressed. The findings also indicate that the reversal of
the signature and the IL15 storm could be used as a readout of thera-
peutic efficacy.

6. Conclusion

The major and unexpected finding in this work is that all viral
pandemics (regardless of their acuity, causative virus, case fatality
rates and clinical presentation) share a common fundamental host
immune response. Summarized below are our three major findings.

First, we defined an invariant 166-gene host response �the so-
called “cytokine storm”� that is surprisingly conserved among all
viral pandemics. Such conservation was unexpected because the use
of ACE2 as a ‘seed’ gene was rationalized because SARS-CoV-2 enters
the host cell by engaging the host ACE2 receptor via its receptor-
binding domain (RBD). Host receptor recognition for cell entry is,
however, not specified by the CoV genus classification. MERS-CoV is a
member of the beta(B)-CoV genus but does not recognize the ACE2
receptor [97], and yet, were found to induce the ViP signatures. By
contrast, the alpha(A)-CoV HCoV-NL63 does recognize the ACE2
receptor [30,98]. Similarly, the IAV, HIV or Ebola viruses also do not
recognize the ACE2 receptor, and yet, induce the ViP signatures. This
suggests that while ACE2 may be the entry site for SARS-CoV-2 and a
few other CoVs, it is a prominently upregulated gene during host
response to other viral infections. As a key regulator of the renin-
angiotensin system (RAS), ACE2 expression is increased in the setting
of multiple stressors, including non-CoV-2 infections. For example,
IAV, H7N9 and rhinoviruses amplify the expression of ACE2 in the
distal lung [99�101]. ACE2 activity is also induced in bacterial lung
infections [35]. In fact, ACE2 protects against acute lung injury in sev-
eral animal models of ARDS [102]. In fact, when we carried out addi-
tional analyses to understand how the downstream results will
change if a different seed gene was used, we found that the signature
was robust to such changes. For example, if we choose seed genes
from the 166 genes, more than 75% of the genes matched more than
75% with the 166-gene signature. When using an immune-related
gene as ‘seed’, e.g., LMO2 matched 92% (130/141) with the ACE2-cen-
tric 166 genes. Similarly, other relevant immune genes such as
TRIM26, IL15RA, HLA-E, HLA-H, HLA-B, TLR2, and TLR3 as seed genes
individually matched more than 82% with the ACE2-centric 166
genes. This suggests that a majority of the downstream genes would
remain regardless of which reasonably relevant immune gene is used
as a ‘seed’ gene. Thus, retrospectively, ACE2 is not as specific a ‘seed’
gene for SARS-CoV-2 as was assumed; neither is it specific for other
microbes. It is not so surprising that the ACE2-equivalent ViP signa-
ture is more generalizable as a signature that is induced in respiratory
infections”.

Second, we define the precise nature of the cytokine storm and
pinpoint the IL15 cytokine and its receptor, IL15RA as invariant
components. We demonstrate that systemic levels of IL15 track dis-
ease severity among patients and that the levels are notably elevated
in the aged male (the predisposed age group in COVID-19, as per
reports worldwide). Using a combination of single-cell RNA Seq and
human lung histology, we also pinpoint the lung epithelial and mye-
loid cells as the key contributors to the ViP signature, and more spe-
cifically, IL15/IL15RA. These findings were recently validated in
another concurrent publication [103]� multivariate analyses of solu-
ble biomarkers identified that increased IL-15 is independently asso-
ciated with mortality and that the levels of the cytokine were
consistently high throughout the hospitalization in patients who
died versus those who recovered.

Third, we found that a subset of 20-gene ‘severe’ ViP signature,
indicative of stress-induced senescence, transcriptional repression,
DNA damage and apoptosis is also shared among various viral pan-
demics. In patients with COVID-19, this signature was seen in lung
epithelial and NK cells, which is intriguing because airway epithelial
cells is a prominent source and the NK cells are a major target of IL15.
Thus, the ViP signatures begin to paint a picture of ‘paradoxical
immunosuppression’ at the heart of fatal COVID-19, in which, the
observed NK cell exhaustion/depletion in severe COVID-19 [88�90]
[104] could be a consequence of an overzealous IL15 storm, leading
to their senescense and apoptosis.

As for limitations of our study, our choice of computational
approach, i.e., BECC, for the initial analysis step in the pipeline entails
Boolean analysis instead of linear algebra. While some argue that this
approach (i.e. binarization, discretization) improves robustness,
others raise valid criticisms that key information may be lost. We
argue that all methodologies have strengths and weaknesses; in this
case traditional analyses leads to overfitting of data, which lacks
reproducibility when applied to other datasets, a Boolean formula fil-
ters out the noise in a large-scale diverse data setting, thereby mak-
ing it more generalizable. However, such generalizability comes at a
cost of losing some critical information. Typically, distinguishing the
critical information that is lost from the noise is difficult.

In closing, given that the emerging pandemic is still largely a
mystery to us in terms of how it picks its victims, the ViP signa-
ture we define here provides a computational framework for nav-
igation in otherwise uncharted territory. While it is expected that
the signature will be more effective and accurate when it is itera-
tively filtered using emerging COVID-19 datasets, we provide evi-
dence for its usefulness now in formulating therapeutic strategies
and rapidly screening for therapeutics. Because the ViP signature
of host response is seen also in other viral pandemics tested,
findings may also be relevant also in navigating management
strategies in those pandemics.
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