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A B S T R A C T   

Rosacea is a common skin disease that predominantly affects individuals aged between 30 and 50 
years. While the exact cause of the disease remains unclear, various factors have been shown to 
trigger or exacerbate its symptoms. N6-methyladenosine (m6A) modification is one of the most 
abundant epigenetic methylation modification in messenger RNA (mRNA) and non-coding RNA 
(ncRNA), plays a crucial role in RNA splicing, export, stability, and translation. In this study, we 
aimed to characterize m6A genes in rosacea, identify molecular subtypes based on m6A gene 
expression, characterize the immune features among subtypes, explore key molecules based on 
co-expression analysis, and identify potential targets and drugs. To achieve our objectives, we 
first compared the expression pattern and immune regulation of m6A genes between healthy and 
diseased groups. Then, we performed clustering to stratify disease samples into different subtypes 
and analyzed immune regulation and functional enrichment among the subtypes. Then, we 
conducted differential analysis between subtypes and applied weighted gene co-expression 
network analysis (WGCNA) in three subtypes. We found hub differential expression analysis 
(DEG) genes and their potential drug based on the WGCNA results and the drug-gene interaction 
database (DGIdb). Finally, in vivo and in vitro studies showed significant differences in m6A 
methyltransferase METTL3 levels in rosacea mice and control mice, as well as in the skin of ro-
sacea patients and healthy people, while reducing METTL3 significantly inhibited the inflam-
matory response of human fibroblasts (HDFs) stimulated by LL37, suggesting that METTL3 may 
be associated with changes in overall m6A levels in rosacea. Taken together, our findings provide 
valuable insights into therapeutic targets and drug predictions for rosacea.   

1. Introduction 

Rosacea is a skin disease that causes redness, flushing, and inflammatory papules on the central face [1–3]. It primarily affects 
individuals with fair skin of Northern European descent and is estimated to impact up to 10 % of adults globally [4–8]. The physical 
discomfort and emotional distress caused by rosacea can be significant, as it can lead to disfigurement and mental unhealth [9,10]. 

The pathogeny of rosacea remains unclear, although several factors have been implicated, including genetics, immune dysregu-
lation, neurovascular dysregulation, and environmental triggers such as sunlight, heat, and spicy foods [11–14]. Despite known 
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associations, the molecular mechanisms underlying rosacea are poorly understood, and there is currently no cure for the disease. 
Current treatment for rosacea are limited and main purpose on managing symptoms rather than addressing underlying biological 
mechanisms [15–17]. Topical and oral antibiotics, topical retinoids, and other anti-inflammatory agents are commonly used to treat 
rosacea, but their effectiveness varies depending on the subtype and severity of the disease [18–20]. Personalized treatment options 
that account for the heterogeneity of the disease and address its underlying molecular mechanisms are urgently needed. 

In recent years, advances in genomics and transcriptomics have allowed for the identification of molecular subtypes of various 
diseases, including cancer, autoimmune disorders, and neurological disorders [21–23]. These molecular subtypes have been shown to 
have distinct biological mechanisms and clinical features, which have important implications for diagnosis, prognosis, and treatment 
[24–26]. Therefore, the study aims to characterize the m6A genes in rosacea [27–31]. These genes play essential roles in RNA splicing, 
export, stability, and translation. Additionally, the study aims to recognize molecular subtypes of m6A genes and characterize immune 
features among subtypes [32–34]. Using co-expression analysis, the study seeks to identify key molecules and potential drugs for 
treating rosacea [35–37]. 

In this study, we will explore the identification and characterization of molecular subtypes of rosacea through m6A gene expression, 
with the aim of providing underlying biological mechanisms of rosacea disease and developexing personalized treatment options for 
rosacea patients. 

2. Materials and methods 

2.1. Data preprocessing 

To obtain data for the research, the R package GEO query was utilized to download the GSE65914 dataset of the GEO database on 
the GPL570 platform as the training set (https://www.ncbi.nlm.nih.gov/geo/) [38]. The training set involved 29 samples, consisting of 
10 healthy samples and 19 disease samples. During GEO data processing, empty probes were removed, probes were transformed to 
gene symbols by the probe correspondence of the platform, probes meet with multiple genes were removed, and express levels were 
averaged for probes corresponding to the same gene symbol. The m6A gene was obtained from GSE15459 dataset and Table S2, which 
included a total of 21 genes [39]. 

2.2. m6A gene landscape 

The R package R circos was utilized to depict the position of m6A genes on chromosomes. Using the string plugin in sytoscape 
software illustrated the protein-protein interaction network (PPI) of m6A genes. The correlation scatter plot of m6A genes in disease 
samples and all samples was drawn using the R packages stats and corplot. Additionally, differential analysis of all genes in the training 

Fig. 1. The m6A gene landscape. (A) The chromosome location map of m6A genes expression. (B) The protein-protein interaction (PPI) among m6A 
genes. (C) The correlation of m6A gene expression levels in disease samples and all samples, with the upper right corner showing the relevance point 
map of m6A genes expression levels in all samples, and the lower left corner showing the relavance point map of m6A genes expression levels in 
disease samples. (D）The box plot of m6A genes expressed differentially. (E) The heat map of m6A genes expressed differentially. 
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set was managed by the R package limma. The box plot and the heat map of the differential expression levels of m6A genes were 
generated. 

2.3. m6A gene and disease immune regulation 

We obtained genes that mark 28 immune infiltrating cell types from Charoentong’s research and calculated the immune cell 
infiltration score using SSGSEA, XCELL and CIBERSORT [40]. Analysis and examination of immune cells infiltration scores differences 
the relevance between health and disease samples base on m6A gene levels. Additionally, seventeen immune response gene sets ob-
tained by the ImmPort database (http://www.immport.org) and calculated the immune response score using CIBERSORT, XCELL, and 
SSGSEA. We then analyzed the difference in immune response scores between disease and health patterns and evaluated the relevance 
between m6A gene expression levels with the immune response scores. Finally, we obtained 16 HLA genes from GSE16134 dataset and 
Table S3 and analyzed HLA genes expression differences from normal and disease samples [41]. 

2.4. m6A gene expression divides diseases into biologically different subtypes 

Using hierarchical clustering as the clustering method. Using consensus clustering conducted the maximum number of clusters set 
to 5, 1000 repeated samplings, and 80 % of samples and 100 % of genes sampled. The Pearson correlation coefficient was selected as 
the sample distance for the similarity matrix. The best clustering number was determined by selecting the class with the gentlest drop 

Fig. 2. (A) The analysis of immune infiltration scores differences between disease and healthy groups. (B) The relevance between m6A gene 
expression levels and immune infiltration scores. 
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in amplitude, and the sample subtype classification result was obtained from the consistency cumulative distribution function (CDF) 
curve. The analysis was performed on the samples using R packages stats and generated expression heatmaps and boxplots of m6A 
genes between different sample subtypes. 

2.5. Functional differences between different subtypes 

Pathway enrichment scores were evaluated by estimating sample scores in each pathway using KEGG gene sets and hallmark gene 
sets (v7.4) from the msigdb database as input data. The ssGSEA method in the R package GSVA was utilized based on the training set 
expression data and generated enrichment score distributions of different KEGG and hallmark pathways. 

2.6. Different immune characteristics between different subtypes 

Immune cell infiltration scores and immune reaction scores obtained in section 2.3. Boxplots of score differences between different 

Fig. 3. (A) The analysis of HLA gene expression differences between disease and healthy groups. (B) The relevance between m6A gene expression 
levels and HLA gene expression. 
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sample subtypes and expression differences of HLA genes were generated. 

2.7. Key molecules were identified based on the co-expression network approach 

Using the limma package obtained differential genes between subtypes with criteria of adjust log2|FC| > 1 and p value < 0.05. 
Appling weighted gene co-expression network analysis (WGCNA) to all genes in the training set expression profile and cluster 
phenotype, and modules significantly related to each subtype were identified based on GS > 0.5 and MM > 0.6. Hub genes for each 
module and subtype were selected, and the intersection of hub genes and corresponding differential genes for each subtype was taken 
as the final hub DEG gene set. 

2.8. Animal model 

C57BL/6 mice with 6 weeks old were purchased from Slac Laboratory animal Co. Ltd (Shanghai, China) were random divided into 
two groups, then the mice back skin injected with LL37 peptide (320uM) for 4 times, the mice euthanized and their skins were rapidly 

Fig. 4. (A) The analysis of immune response score differences in healthy and disease groups. (B) The relevance between m6A gene expression levels 
and immune response score. 
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Fig. 5. The subtype classification results and related analysis. (A) The consensus clustering heatmap. (B) The cumulative distribution function 
(CDF) curve. (C) The area under the CDF curve relative changes. (D) The box plot of m6A genes differential expression in each subtype. (E) The 
heatmap of m6A genes differential expression in each subtype. 
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collected. Evaluate skin inflammation of mouse model by erythema severity [42]. The animal experiments were approved by the 
Animal Ethics Committee of the Xiangya School of Medicine, Central South University. 

2.9. Human samples 

From 2020 to 2023, all skin biopsies were obtained from the central face of female healthy volunteers or patients with rosacea aged 
18–60 years in the dermatology department of the Third Xiangya Hospital, Central South University. The clinical diagnosis of the 
rosacea subtype is made according to the classification criteria of the American Rosacea Association. The written informed consent was 
acquired from all participants and usage of all human tissue samples was approved by the ethical committee of The Third Xiangya 
Hospital of Central South University [43]. 

2.10. Immunohistochemistry 

Fix human skin samples in formalin and embedded in paraffin, then cut into 5 μm skin sections and use. Incubate skin sections with 

Fig. 6. The heatmap of KEGG pathway enrichment differences among subtypes.  
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antibodies for METTL3 (1:200, Abcam). And take pictures from three typical areas from each skin sample and use scale of 0–4 to 
evaluation the intensity of staining. 

2.11. Statistical analysis 

When conducting differential significance analysis throughout the study, Kruskal-Wallis test was used for comparison among more 
than two groups. Wilcoxon test was used for pairwise comparison between two groups. In figures, "ns" equals p > 0.05, "*" equals p ≤
0.05, "**" equals p ≤ 0.01, "***" equals p ≤ 0.001, and "****" equals p ≤ 0.0001. 

3. Results 

3.1. m6A gene landscape 

We analyze the situation of m6A genes in the training set, as shown that there was no obvious clustering of 21 m6A genes in the 
chromosome (Fig. 1A). It was found that the PPI degree of all other 20 m6A genes except for the LRPPRC gene was relatively large, 
indicating that these genes were closely related (Fig. 1B). It was found that the correlation of m6A gene expression levels between all 
samples and disease samples was significant differences. For example, the relevance between gene ZC3H13 and KIAA1429 expression 
levels in all samples was 0.8, and the relevance between gene ZC3H13 and KIAA1429 expression levels in disease samples was 0.38 
(Fig. 1C). It was found that the expression of 10 genes, including KIAA1429, ZC3H13, METTL14, FMR1, ELAVL1, YTHDC1, YTHDF2, 
CBLL1, ALKBH5, and RBM15B, was downregulated significantly, while the expression of HNRNPA2B1 and YTHDC2 was upregulated 
significantly (Fig. 1D and E). 

3.2. m6A genes involved in disease immune regulation 

It demonstrates immune infiltration scores differences between disease and healthy groups using the ssGSEA method (Fig. 2A). It 
was found that infiltration scores of immune cells in the disease group were higher than the healthy group. Only CD56 positive natural 
killer cell infiltration scores showed lower in the disease group than in the healthy group. The differences in HLA gene expression 
between disease and healthy groups were shown (Fig. 3A), and it was found that all 15 HLA genes in the expression profile were higher 
in the disease group significantly. The immune response scores between disease and healthy groups were also compared using the 
ssGSEA method (Fig. 4A), and it was found that the activity levels of 15 immune responses were significantly higher in the disease 
group (such as Antimicrobials, BCR Signaling Pathway, etc.), while TGF-β family member and its receptor were significantly more 
active in the healthy group. Overall, the immune activity was stronger in the disease group. The relevance between m6A gene 

Fig. 7. The heatmap of enrichment differences of hallmark pathway among subtypes.  
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expression levels and immune infiltration scores (except for CD56 positive natural killer cell), HLA expression, and immune response 
scores were also demonstrated (Figs. 2B, 3B and 4B). It was found that CBLL1, ELAVL1, FMR1, KIAA1429, METTL14, YTHDC1, and 
ZC3H13 were significantly negatively correlated with immune infiltration scores, HLA expression, and immune response scores 
(except for TGF-β family member and its receptor), while HNRNPA2B1 and YTHDC2 were significantly positively correlated with 
immune infiltration scores, HLA expression, and immune response scores (except for TGF-β family member and its receptor). 

3.3. Using m6A genes categorize disease samples into biologically different subtypes 

Analyze the different expression levels between subtypes by consensus clustering (Fig. 5A). The three classes with the most gradual 
decrease in the CDF were selected as the best clustering result (Fig. 5B and C). The differential expression of m6A genes in each subtype 
is shown in Fig. 5D and E, and it was found that 15 m6A genes showed differences significantly among the three subtypes. 

KEGG and hallmark pathway differences between subtypes are also shown that significantly differentially enriched KEGG pathways 
included KEGG NOTCH SIGNALING PATHWAY and KEGG GLUTATHIONE METABOLISM, while significantly differentially enriched 

Fig. 8. The different immune characteristics between three subtypes. (A) Immune infiltration scores differences between three subtypes. (B) HLA 
gene different expression between three subtypes. (C) Immune response scores differences between three subtypes. 

Fig. 9. The results of differential analysis and WGCNA between subtypes. (A) Venn diagram of the differential analysis results between each pair of 
subtypes. (B) KEGG pathway enrichment map of 423 genes obtained from the differential analysis results intersection of the three combinations of 
subtypes. (C) KEGG pathway enrichment map of 7 genes obtained from the intersection of the differential analysis results for the three combinations 
of subtypes. (D) The training set samples in WGCNA displayed hierarchical clustering tree. (E) Corresponding scale free fit indices and Various soft 
thresholds, y-axis representing the scale free fit index corresponding to different soft thresholds and x-axis representing different soft thresholds. (F) 
WGCNA constructed the gene hierarchical clustering tree and modules (gray indicating genes that did not cluster into modules and other colors 
representing the modules constructed). (G) Module-phenotype correlations, with each color block representing a module, and the numbers inside 
the module representing the ’module-phenotype’ relevance coefficient and the consequence p-value of the module in different subgroups of a 
phenotype. The colors are arranged from blue-white-red according to the direction of correlation values from − 1 to 1. 
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Fig. 10. MM-GS correlation scatterplots of 6 modules. (A-F) Correspond to the pink, yellow, blue, magenta, black, and brown modules, respectively.  
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hallmark pathways included REACTIVE OXYGEN SPECIES PATHWAY and GLYCOLYSIS (Figs. 6 and 7). 

3.4. Different immune characteristics among subtypes 

This results show the differences in ssGSEA immune infiltration scores, HLA expression levels, and ssGSEA immune response scores 
between subtypes. It shows that among the 27 types of immune cells except for activated B cells, the infiltration scores were Subtype-2 
is greater than Subtype-3 which is greater than Subtype-1 (Fig. 8A). And it shows that among the 12 types of HLA cells except for HLA- 
DOB, the expression were Subtype-2 is greater than Subtype-3 which is greater than Subtype-1 (Fig. 8B). It shows that among the 15 
types of immune response scores, all immune response scores except for the BCR Signaling Pathway were Subtype-2 is greater than 
Subtype-3 which is greater than Subtype-1 (Fig. 8C). Therefore, it can be concluded that the sample classification is reliable, and the 
immune activity were Subtype-2 is greater than Subtype-3 which is greater than Subtype-1. 

3.5. Recognition of key genes though Co-expression network 

We performed differential analysis to identify differential genes between each subtype, and plotted a Venn diagram (Fig. 9A). 
Differential analysis results for the three combinations of Subtype-1, Subtype-2 and Subtype-3 were merged, resulting in 423 genes. 
Then we performed KEGG pathway enrichment analysis on these genes, and enriched pathways included Viral protein interaction and 
Cytokine-cytokine receptor interaction with cytokine and its receptor (Fig. 9B). The intersection of the differential analysis results for 
the three combinations resulted in seven genes and enriched pathways revealed by KEGG pathway enrichment analysis were 
Leukocyte trans-endothelial migration and Cell adhesion molecules (Fig. 9C). WGCNA was performed on all genes and cluster phe-
notypes, with a soft threshold of 5 used for network construction (Fig. 9D–G). Combined with the module-phenotypic correlation 
coefficient of Fig. 9G, pink and yellow modules are selected for Subtype-1, blue and magenta modules are selected for Subtype-2, and 
black and brown modules are selected for Subtype-3. Select the hub genes of the six selected modules according to the threshold GS >
0.5 and MM > 0.6 (Fig. 10A–F). 

Fig. 11. The potential drug exploration of key genes. (A) PPI network of 92 hub DEG genes. (B) The top 3 genes by degree and their potential drugs. 
(C) Gene-drug chord diagram. 
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3.6. Potential drug mining 

The module hub genes mined by each phenotype were intersected with the corresponding subtype differential genes, and 92 genes 
were obtained by combining the three intersection results as the final hub DEG genes. The 92 hub DEG genes were made into PPI 
(Fig. 11A), and the genes of degree top3 were used to mine the potential drugs of these genes (Fig. 11B and C) by using the gene-drug 
interaction function of DGIdb database. 

3.7. Potential m6A gene mining in rosacea mice skins 

We used LL37 induced rosacea-like inflammation mouse model to further sustain above discovery, and found that the mice 
appeared obvious rosacea-like erythema after LL37 injection (Fig. 12A). Histological analysis showed that inflammatory cells were 
increased in rosacea mice compared with control mice significantly (Fig. 12B). We further mining potential m6A gene of rosacea, like 
METTL3 positive cells increased in rosacea mice post LL37 injection (Fig. 12C). Remarkedly, LL37 induced rosacea mice promoted the 
production of methylase METTL3, METTL14 and cytokines (IL-6, VEGF, IL-1β, TNF-α) in a much higher level than in control mice 
(Fig. 12D and E). Collectively, the levels of METTL3 between rosacea and control mice skin was significant differences, suggesting that 
METTL3 might be related to the alteration of global m6A levels in rosacea mice skin. 

3.8. Expression of m6A genes in rosacea skins 

We first detected the expression of METTL3 at mRNA level in rosacea and healthy individuals to investigate m6A modification in 
rosacea. Obviously, increased METTL3 expression can been seen during rosacea skin (Fig. 13A). Then, we examined METTL3 
expression in specimens from rosacea and healthy individuals. IHC showed that METTL3 levels increased in the rosacea patients skins 
(Fig. 13B). Human dermal fibroblasts (HDFs) participate the skin immune program via secreting pro inflammatory factors and 
recruiting immune cells post stimulation participate in the pathogenesis of rosacea. We thus treated the HDFs with LL37 and compared 
the levels of m6A modification factors. Significantly, HDFs treated by LL37 shown higher levels of METTL3 and METTL14 compared 
with PBS control (Fig. 13C). To further study the increased m6A methyltransferases METTL3 levels in rosacea, we pre-treated HDFs 
with METTL3 siRNA and treated cells with LL37 (Fig. 13D). RT-qPCR analysis revealed that IL-6, VEGF, IL-1β, and TNF-α mRNA levels 

Fig. 12. The incidence of m6A genes in rosacea mice. (A) The pictures of mice back skins injected by LL37 or control vehicle (n = 6). Pictures were 
taken on 2 days post first LL37 injection to display the representative results (n = 6). (B) HE staining from LL37 or control mice lesional skin. (n = 6). 
(C) Immunofluorescence showed METTL3 positive cells in control and LL37 groups. (D) The mRNA levels of m6A genes (METTL3, METTL4, 
METTL14, ALKBH5, YTHDF1, YTHDF2, YTHDF3, FTO, WTAP) in mice skin lesions with LL37 or PBS control (n = 6). (E) IL-6, VEGF, IL-1B, TNF-α 
mRNA levels in mice skin lesions with LL37 or PBS control (n = 6). 
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were inhibited by knockdown of METTL3 (Fig. 13D and E). Consequently, reduction of METTL3 significantly suppressed inflammatory 
response in HDFs with LL37 stimulation. To sum up, these results demonstrated that m6A methyltransferases METTL3 aggravated 
rosacea symptoms development. 

4. Discussion 

The study was to investigate the m6A gene landscape and immune regulation differences between disease and healthy samples. A 
consensus clustering analysis was conducted to classify sample subtypes based on m6A gene expression and pathway enrichment [44]. 
The results showed significant differences in m6A genes and KEGG & hallmark pathways among subtypes. Furthermore, the study 
demonstrated that Subtype-2 exhibited the highest degree of immune activity, followed by Subtype-3 and then Subtype-1 [45]. 

The study also analyzed genes differential expression between three subtypes and identified 92 hub DEG genes related to WGCNA 
modules. PPI analysis was conducted on these 92 hub DEG genes, and the top 5 genes with high degree were identified. The study then 
explored potential drugs for these genes through the gene-drug interaction function in the DGIdb database. 

Overall, this study provides valuable insights into the m6A gene landscape, immune regulation differences among subtypes, and 
potential drugs for hub DEG genes related to WGCNA modules. The molecular subtypes based on m6A gene expression could help 
reveal rosacea underlying mechanisms and lead to more personalized treatments potentially. Characterizing immune features among 
subtypes could provide insights into the immune response involved in rosacea development, and identifying key molecules through co- 
expression analysis could offer new targets for drug therapy. The study’s outcomes could contribute to understanding the pathogenesis 
of rosacea and facilitate the development of effective treatment strategies. However, further research and validation are necessary 
before applying these findings clinically. These findings have significant implications for developing new therapies and treatments for 
diseases associated with m6A gene dysregulation. 

Examining the impact of LL37-induced m6A modifications on gene expression in human rosacea skin and a rosacea mice model 
revealed an increase in mRNA expressions of m6A methylation genes. This suggests a positive correlation between m6A abundance and 
mRNA levels in LL37-treated fibroblasts. Moreover, our findings indicate that m6A modification of mRNAs regulates gene expression 
by influencing translation efficiency and stability. Notably, METTL3 exhibited significant differential modification levels in LL37- 
treated HDFs, leading us to speculate that this distinct methylase may contribute to the observed alterations in mRNA expression 
induced by LL37 and play a role in rosacea potentially. 

In summary, our research indicates a substantial elevation in the overall m6A modification level in LL37-treated dermal fibroblasts 
and in rosacea skin. Utilizing genome-wide profiling of m6A-tagged mRNAs and subsequent bioinformatics analysis, we uncovered 
potential functions of transcripts with modified m6A in rosacea skin. These findings offer novel insights into LL37-induced rosacea and 
suggest potential targets for treating rosacea in human skin. 

Fig. 13. The potential m6A genes exploration of rosacea human samples. (A) qPCR analysis of METTL3 on skin sections from normal and rosacea 
patients samples. (B) IHC staining of METTL3 from control or rosacea patients skins. (C) The mRNA of m6A levels of Human dermal fibroblasts 
(HDFs) treated with LL37 for 24h. (D) Immunofluorescence (IF) and qPCR analysis of METTL3 from HDFs treated with METLL3 siRNAs after LL37 
treated. (E) The mRNA of cytokines and chemokines from HDFs treated with METLL3 siRNAs after LL37 treated. 

S. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e23310

15

Funding sources 

This work was supported from the National Natural Science Foundation of China (No. 82273508) and China Postdoctoral Science 
Foundation funded project (No. 2022M713537). 

Ethical statement 

This study was reviewed and approved by The IRB of Third Xiangya Hospital Ethics Committee, with the approval number: 2022- 
S171. All participants provided informed consent to participate in the study. Animal ethical approval adheres to ARRIVE guidelines 
and the Institutional Experimental Animal Committee of Central South University, with the approval number: XMSB-2022-0167. 

Data availability statement 

The data generated in this study are available upon request from the corresponding author. Data included in article/supp. Material/ 
referenced in article. 

CRediT authorship contribution statement 

Shuping Zhang: Writing – review & editing, Writing – original draft, Resources, Project administration, Funding acquisition, Data 
curation, Conceptualization. Meng Wu: Writing – original draft, Methodology, Investigation, Formal analysis. Wenbo Xue: Writing – 
review & editing, Visualization, Validation, Supervision, Software, Resources, Project administration. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

We thank all individuals who participated in this work. We are grateful for the funding provided by National Natural Science 
Foundation of China and China Postdoctoral Science Foundation funded project. Special thanks to the support from post-doctoral 
station of medical aspects of specific environments, the Third Xiangya hospital, central south university. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e23310. 

References 

[1] N.N. Kulkarni, T. Takahashi, J.A. Sanford, Y. Tong, A.F. Gombart, B. Hinds, et al., Innate immune dysfunction in rosacea promotes photosensitivity and vascular 
adhesion molecule expression, J. Invest. Dermatol. 140 (3) (2020) 645–655 e646. 

[2] J. Li, B. Wang, Y. Deng, W. Shi, D. Jian, F. Liu, et al., Epidemiological features of rosacea in Changsha, China: a population-based, cross-sectional study, 
J. Dermatol. 47 (5) (2020) 497–502. 

[3] A.M. Two, W. Wu, R.L. Gallo, T.R. Hata, Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors, J. Am. Acad. Dermatol. 72 (5) 
(2015) 749–758, quiz 759-760. 

[4] R.L. Gallo, R.D. Granstein, S. Kang, M. Mannis, M. Steinhoff, J. Tan, et al., Standard classification and pathophysiology of rosacea: the 2017 update by the 
national rosacea society expert committee, J. Am. Acad. Dermatol. 78 (1) (2018) 148–155. 

[5] A.F. Alexis, V.D. Callender, H.E. Baldwin, S.R. Desai, M.I. Rendon, S.C. Taylor, Global epidemiology and clinical spectrum of rosacea, highlighting skin of color: 
review and clinical practice experience, J. Am. Acad. Dermatol. 80 (6) (2019) 1722–1729 e1727. 

[6] T.H. Rim, M.J. Kang, M. Choi, K.Y. Seo, S.S. Kim, Ten-year incidence and prevalence of clinically diagnosed blepharitis in South Korea: a nationwide population- 
based cohort study, Clin. Exp. Ophthalmol. 45 (5) (2017) 448–454. 

[7] Y. Sun, P.J. Tsai, C.L. Chu, W.C. Huang, Y.S. Bee, Epidemiology of benign essential blepharospasm: a nationwide population-based retrospective study in 
Taiwan, PLoS One 13 (12) (2018), e0209558. 

[8] S. Zierl, A. Guertler, J.A. Hildebrand, B.M. Clanner-Engelshofen, L.E. French, M. Reinholz, A comprehensive epidemiological study of rosacea in Germany, Eur. 
J. Dermatol. 31 (6) (2021) 744–751. 

[9] B.M. Clanner-Engelshofen, D. Bernhard, S. Dargatz, M.J. Flaig, U. Gieler, M. Kinberger, et al., S2k guideline: rosacea, J Dtsch Dermatol Ges 20 (8) (2022) 
1147–1165. 

[10] S.P. Sinikumpu, H. Vahanikkila, J. Jokelainen, K. Tasanen, L. Huilaja, Ocular symptoms and rosacea: a population-based study, Dermatology 238 (5) (2022) 
846–850. 

[11] R. Yang, C. Liu, W. Liu, J. Luo, S. Cheng, X. Mu, Correction to: botulinum toxin A alleviates persistent erythema and flushing in patients with erythema 
telangiectasia rosacea, Dermatol. Ther. 12 (10) (2022) 2295. 

[12] B.M. Clanner-Engelshofen, L.M. Stander, T. Steegmuller, T. Kammerer, L.H. Frommherz, P.C. Stadler, et al., First ex vivo cultivation of human Demodex mites 
and evaluation of different drugs on mite proliferation, J. Eur. Acad. Dermatol. Venereol. 36 (12) (2022) 2499–2503. 

S. Zhang et al.                                                                                                                                                                                                          

https://doi.org/10.1016/j.heliyon.2023.e23310
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref1
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref1
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref2
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref2
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref3
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref3
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref4
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref4
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref5
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref5
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref6
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref6
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref7
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref7
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref8
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref8
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref9
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref9
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref10
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref10
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref11
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref11
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref12
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref12


Heliyon 9 (2023) e23310

16

[13] M. Chen, H. Xie, Z. Chen, S. Xu, B. Wang, Q. Peng, et al., Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-kappaB activation in 
keratinocytes, Biomed. Pharmacother. 116 (2019), 109011. 

[14] S.X. Chen, L.J. Zhang, R.L. Gallo, Dermal white adipose tissue: a newly recognized layer of skin innate defense, J. Invest. Dermatol. 139 (5) (2019) 1002–1009. 
[15] H. Wang, X. An, Z. Wang, Effect and safety of ALA-PDT combined with 1550 nm fractional therapy laser in treating rosacea, Evid Based Complement Alternat 

Med 2022 (2022), 3335074. 
[16] A. Grada, M.A. Ghannoum, C.G. Bunick, Sarecycline demonstrates clinical effectiveness against staphylococcal infections and inflammatory dermatoses: 

evidence for improving antibiotic stewardship in dermatology, Antibiotics (Basel) 11 (6) (2022). 
[17] M. Picardo, M. Ottaviani, Skin microbiome and skin disease: the example of rosacea, J. Clin. Gastroenterol. 48 (Suppl 1) (2014) S85–S86. 
[18] W. Fei, Y. Han, A. Li, K. Li, X. Ning, C. Li, et al., Summarization and comparison of dermoscopic features on different subtypes of rosacea, Chin Med J (Engl) 135 

(12) (2022) 1444–1450. 
[19] A.L. Chien, D.J. Kim, N. Cheng, J. Shin, S.G. Leung, A.M. Nelson, et al., Biomarkers of tretinoin precursors and tretinoin efficacy in patients with moderate to 

severe facial photodamage: a randomized clinical trial, JAMA Dermatol 158 (8) (2022) 879–886. 
[20] F. He, M. Shen, Z. Zhao, Y. Liu, S. Zhang, Y. Tang, et al., Epidemiology and disease burden of androgenetic alopecia in college freshmen in China: a population- 

based study, PLoS One 17 (2) (2022), e0263912. 
[21] S. Morizane, A. Kajita, K. Mizuno, T. Takiguchi, K. Iwatsuki, Toll-like receptor signalling induces the expression of serum amyloid A in epidermal keratinocytes 

and dermal fibroblasts, Clin. Exp. Dermatol. 44 (1) (2019) 40–46. 
[22] M. Martinot, A.S. Korganow, M. Wald, J. Second, E. Birckel, A. Mahe, et al., Case report: a new gain-of-function mutation of STAT1 identified in a patient with 

chronic mucocutaneous candidiasis and rosacea-like demodicosis: an emerging association, Front. Immunol. 12 (2021), 760019. 
[23] Z. Zhao, T. Liu, Y. Liang, W. Cui, D. Li, G. Zhang, et al., N2-Polarized neutrophils reduce inflammation in rosacea by regulating vascular factors and proliferation 

of CD4(+) T cells, J. Invest. Dermatol. 142 (7) (2022) 1835–1844 e1832. 
[24] Y.R. Woo, H.J. Ju, J.M. Bae, M. Cho, S.H. Cho, H.S. Kim, Patient visits and prescribing patterns associated with rosacea in korea: a real-world retrospective study 

based on electronic medical records, J. Clin. Med. 11 (6) (2022). 
[25] Y.R. Woo, J.H. Lim, D.H. Cho, H.J. Park, Rosacea: molecular mechanisms and management of a chronic cutaneous inflammatory condition, Int. J. Mol. Sci. 17 

(9) (2016). 
[26] Z. Zhao, H. Zhu, Q. Li, W. Liao, K. Chen, M. Yang, et al., Skin CD4(+) Trm cells distinguish acute cutaneous lupus erythematosus from localized discoid lupus 

erythematosus/subacute cutaneous lupus erythematosus and other skin diseases, J. Autoimmun. 128 (2022), 102811. 
[27] S. Geula, S. Moshitch-Moshkovitz, D. Dominissini, A.A. Mansour, N. Kol, M. Salmon-Divon, et al., Stem cells. m6A mRNA methylation facilitates resolution of 

naive pluripotency toward differentiation, Science 347 (6225) (2015) 1002–1006. 
[28] S. Ke, E.A. Alemu, C. Mertens, E.C. Gantman, J.J. Fak, A. Mele, et al., A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR 

regulation, Genes Dev. 29 (19) (2015) 2037–2053. 
[29] M. Robinson, P. Shah, Y.H. Cui, Y.Y. He, The role of dynamic m(6) A RNA methylation in photobiology, Photochem. Photobiol. 95 (1) (2019) 95–104. 
[30] S. Zaccara, R.J. Ries, S.R. Jaffrey, Reading, writing and erasing mRNA methylation, Nat. Rev. Mol. Cell Biol. 20 (10) (2019) 608–624. 
[31] C. Liu, J. Cao, H. Zhang, J. Yin, Evolutionary history of RNA modifications at N6-adenosine originating from the R-M system in eukaryotes and prokaryotes, 

Biology 11 (2) (2022). 
[32] S. Ke, A. Pandya-Jones, Y. Saito, J.J. Fak, C.B. Vagbo, S. Geula, et al., m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for 

splicing but do specify cytoplasmic turnover, Genes Dev. 31 (10) (2017) 990–1006. 
[33] J. Wang, S. Yan, H. Lu, S. Wang, D. Xu, METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-kappaB signaling pathway, Mediators 

Inflamm 2019 (2019), 3120391. 
[34] L. Xiao, Q. Zhao, B. Hu, J. Wang, C. Liu, H. Xu, METTL3 promotes IL-1beta-induced degeneration of endplate chondrocytes by driving m6A-dependent 

maturation of miR-126-5p, J. Cell Mol. Med. 24 (23) (2020) 14013–14025. 
[35] X. Wang, Z. Lu, A. Gomez, G.C. Hon, Y. Yue, D. Han, et al., N6-methyladenosine-dependent regulation of messenger RNA stability, Nature 505 (7481) (2014) 

117–120. 
[36] K. Shao, J. Hooper, H. Feng, Racial and ethnic health disparities in dermatology in the United States. Part 2: disease-specific epidemiology, characteristics, 

management, and outcomes, J. Am. Acad. Dermatol. 87 (4) (2022) 733–744. 
[37] A. Gurtler, S. Laurenz, The impact of clinical nutrition on inflammatory skin diseases, J Dtsch Dermatol Ges 20 (2) (2022) 185–202. 
[38] Y. Wang, B. Wang, Y. Huang, Y. Li, S. Yan, H. Xie, et al., Multi-transcriptomic analysis and experimental validation implicate a central role of STAT3 in skin 

barrier dysfunction induced aggravation of rosacea, J. Inflamm. Res. 15 (2022) 2141–2156. 
[39] B. Zhang, Q. Wu, B. Li, D. Wang, L. Wang, Y.L. Zhou, m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration 

characterization in gastric cancer, Mol. Cancer 19 (1) (2020) 53. 
[40] P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder, et al., Pan-cancer immunogenomic analyses reveal genotype-immunophenotype 

relationships and predictors of response to checkpoint blockade, Cell Rep. 18 (1) (2017) 248–262. 
[41] X. Zhang, S. Zhang, X. Yan, Y. Shan, L. Liu, J. Zhou, et al., m6A regulator-mediated RNA methylation modification patterns are involved in immune 

microenvironment regulation of periodontitis, J. Cell Mol. Med. 25 (7) (2021) 3634–3645. 
[42] K. Yamasaki, A. Di Nardo, A. Bardan, M. Murakami, T. Ohtake, A. Coda, et al., Increased serine protease activity and cathelicidin promotes skin inflammation in 

rosacea, Nat Med 13 (8) (2007) 975–980. 
[43] G. Li, X. Tang, S. Zhang, Z. Deng, B. Wang, W. Shi, et al., Aging-conferred SIRT7 decline inhibits rosacea-like skin inflammation by modulating toll-like receptor 

2‒NF-kappaB signaling, J. Invest. Dermatol. 142 (10) (2022) 2580–2590 e2586. 
[44] M. Huang, S. Xu, L. Liu, M. Zhang, J. Guo, Y. Yuan, et al., m6A methylation regulates osteoblastic differentiation and bone remodeling, Front. Cell Dev. Biol. 9 

(2021), 783322. 
[45] Y. Tong, W. Luo, Y. Gao, L. Liu, Q. Tang, Q. Wa, A randomized, controlled, split-face study of botulinum toxin and broadband light for the treatment of 

erythematotelangiectatic rosacea, Dermatol. Ther. 35 (5) (2022), e15395. 

S. Zhang et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(23)10518-4/sref13
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref13
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref14
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref15
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref15
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref16
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref16
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref17
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref18
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref18
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref19
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref19
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref20
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref20
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref21
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref21
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref22
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref22
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref23
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref23
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref24
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref24
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref25
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref25
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref26
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref26
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref27
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref27
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref28
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref28
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref29
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref30
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref31
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref31
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref32
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref32
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref33
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref33
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref34
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref34
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref35
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref35
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref36
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref36
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref37
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref38
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref38
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref39
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref39
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref40
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref40
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref41
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref41
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref42
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref42
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref43
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref43
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref44
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref44
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref45
http://refhub.elsevier.com/S2405-8440(23)10518-4/sref45

	Decoding the role of m6A Regulators in identifying and characterizing molecular subtypes of rosacea
	1 Introduction
	2 Materials and methods
	2.1 Data preprocessing
	2.2 m6A gene landscape
	2.3 m6A gene and disease immune regulation
	2.4 m6A gene expression divides diseases into biologically different subtypes
	2.5 Functional differences between different subtypes
	2.6 Different immune characteristics between different subtypes
	2.7 Key molecules were identified based on the co-expression network approach
	2.8 Animal model
	2.9 Human samples
	2.10 Immunohistochemistry
	2.11 Statistical analysis

	3 Results
	3.1 m6A gene landscape
	3.2 m6A genes involved in disease immune regulation
	3.3 Using m6A genes categorize disease samples into biologically different subtypes
	3.4 Different immune characteristics among subtypes
	3.5 Recognition of key genes though Co-expression network
	3.6 Potential drug mining
	3.7 Potential m6A gene mining in rosacea mice skins
	3.8 Expression of m6A genes in rosacea skins

	4 Discussion
	Funding sources
	Ethical statement
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


