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Abstract

Coronavirus protease nsp5 (Mpro, 3CLpro) remains a primary target for coronavirus therapeutics due to its indispensable and 
conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known 
coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity 
of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular 
emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS- CoV-2, 
this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the 
coronavirus protease nsp5.

HUMAN CORONAVIRUSES, DISEASE AND 
THE POTENTIAL FOR FUTURE EMERGING 
CORONAVIRUSES
Coronaviruses are enveloped, positive- strand RNA viruses 
responsible for a wide range of diseases in a diverse range of 
animal hosts. To date, seven human coronaviruses (HCoVs) 
have been identified to cause respiratory diseases of varying 
severities: HCoV- OC43, HCoV- 229E, HCoV- NL63, HCoV-
 HKU1, SARS- CoV, MERS- CoV and SARS- CoV-2. Among 
these seven HCoVs, four (HCoV- OC43, HCoV- 229E, 
HCoV- NL63 and HCoV- HKU1) are common co- circulating, 
seasonal coronaviruses that cause mild respiratory tract infec-
tions generally associated with cases of the common cold 
[1–4]. While these viruses are capable of more severe illness 
in more sensitive and susceptible populations, such as those 
that are immunocompromised, young and elderly, limited 
attention or support was given to the development of thera-
peutics or vaccines for coronaviruses until the emergence of 
the first of three novel pathogens of more significant disease, 
SARS- CoV, in 2002 [2, 5].

SARS- CoV emerged in November 2002 in Guangdong Prov-
ince, China, and ultimately spread to 29 countries, infecting 

over 8000 individuals, in a 2- year span [6, 7]. Severe acute 
respiratory syndrome (SARS) is characterized by flu- like 
symptoms including a high fever, myalgia, and in advanced 
forms of the disease commonly dyspnoea and pneumonia 
[8]. In contrast to the low mortality rates associated with the 
common cold- associated coronaviruses, SARS- CoV was the 
first of three HCoVs that illustrated the emerging potential 
for significant disease with a case fatality rate of approxi-
mately 10 % [9]. Approximately a decade after the SARS- CoV 
outbreak, a second emerging severe coronavirus pathogen, 
MERS- CoV, emerged in 2012 in Saudi Arabia [10]. Like 
SARS- CoV, this pathogen was capable of significant lower 
respiratory disease with flu- like symptoms leading to dysp-
noea, pneumonia and acute respiratory distress syndrome 
(ARDS) [11, 12]. However, MERS- CoV was associated with 
a far greater potential of severe disease with a case fatality 
rate of approximately 35–40 % [12]. While both SARS- CoV 
and MERS- CoV have highlighted the potential for signifi-
cant disease and mortality, public health efforts, barriers to 
human- to- human transmission and limited asymptomatic 
spread all hindered their pandemic potentials [13–15].

In December 2019, cases of viral pneumonia of an unknown 
cause first appeared in Wuhan, Hubei Province, China 
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[16, 17]. Quickly recognized by the World Health Organi-
zation (WHO) as a ‘public- health emergency of interna-
tional concern’ in January 2020 and later classified as a true 
pandemic, SARS- CoV-2 has resulted in over 67 million 
confirmed cases and 1.5 million deaths worldwide (as of 
December 2020) [18]. Studies of transmissibility of SARS-
 CoV-2 have indicated a greater R0 than SARS- CoV and 
MERS- CoV, suggesting a greater rate of transmissibility 
and infectivity for SARS- CoV-2 compared to either virus 
[19–22]. SARS- CoV-2 spreads mostly through respiratory 
droplets and direct contact with asymptomatic or sympto-
matic infected persons [20–23]. Although all three emerging 
infectious diseases share fever, shortness of breath and severe 
pneumonia as clinical manifestations, SARS- CoV-2 disease 
(named COVID-19) can specifically cause systemic inflam-
mation which can develop further into acute cardiac injuries, 
sepsis, abnormal organ functions and heart failure [19, 23, 24]. 
Other distinctive clinical features of SARS- CoV-2 include 
sore throat, hypoxaemia, dyspnoea, sneezing and diarrhoea 
[22, 23]. Unlike SARS- CoV and MERS- CoV, SARS- CoV-2 
has the potential to continue co- circulating throughout the 
world with the four common cold- associated HCoVs because 
of its lower case fatality rate and greater transmissibility [25].

Research suggests that all three emergent betacoronaviruses 
are zoonotic and originated within different bat species 
[26–28]. Due to infrequent bat–human interactions, the inter-
mediate hosts responsible for SARS- CoV, MERS- CoV and 
SARS- CoV-2 acquiring the appropriate mutations to infect 
humans were probably palm civets, dromedary camels and 
potentially Malayan pangolins, respectively [1, 15, 27]. Even 
though SARS- CoV-2 shares a considerable amount of nucleo-
tide sequence with MERS- CoV (51.8 %) and SARS- CoV 
(79.0 %), it is most similar (with greater than 95 % identity) 
to coronaviruses found in bats [20, 25, 27, 28]. There remain 
many more bat coronaviruses which have been identified 
and thus lack a human analogue, highlighting the continued 
potential for future emergent HCoVs.

Until recently, there remained no commercially available 
vaccines for coronaviruses and limited therapeutic options. 
Despite extensive investigation and hundreds of studies evalu-
ating critical viral targets including the polymerase (nsp12; 
RdRp) and main protease (nsp5), there remains a critical need 
for the development of effective therapeutics to treat current 
and future coronavirus infections [29, 30].

Coronavirus replication and the role of nsp5 
protease
Coronaviruses are enveloped viruses with 27–32 kb posi-
tive ssRNA (+ssRNA) genomes which are classified in four 
different genera (Alpha-, Beta-, Gamma- and Deltacorona-
virus) within the order Nidovirales and family Coronaviridae 
[31]. During virus infection, coronaviruses employ trimeric 
spike (S) proteins to facilitate entry into host cells [32, 33]. 
The interaction of this protein with its receptor dictates 
species and tissue tropism. Among human coronaviruses, 
several different cellular fusion receptors have been identified, 

including aminopeptidase N (HCoV- 229E), angiotensin- 
converting enzyme 2 (HCoV- NL63, SARS- CoV and SARS-
 CoV-2), and dipeptidyl peptidase 4 (DPP4) [34–38]. Upon 
receptor binding, the viral and cellular membranes are fused 
together triggered by spike (S) activation through proteolytic 
cleavage by a cellular protease such as TMPRR2 or cathepsin 
[39]. Immediately upon entry, the virus translates its repli-
case gene (ORF1) which consists of two large, overlapping 
ORFs, ORF1a and ORF1ab (Fig. 1) [31]. Located at the end 
of ORF1a, a ribosome frame- shifting sequence consisting 
of an RNA pseudoknot causes the co- translation of two 
large polyprotein precursors of differing lengths, pp1a and 
pp1ab [31, 40, 41]. Polyprotein pp1a contains non- structural 
proteins (nsps) 1–11, and polyprotein pp1ab comprises the 
complete translated coding region of nsps 1–16 [42, 43]. 
Essential for virus replication is the proteolytic processing 
of these polyproteins by virus- encoded proteases to yield the 
mature and functionally active replication machinery of the 
virus [42].

Once proteolytically processed, the translation products of 
pp1a collectively modulate host cell factors and help prepare 
the cell for viral RNA synthesis through the formation of repli-
cation complexes, while the C- terminal translation products 
of pp1ab largely catalyse and/or regulate the processes of RNA 
replication and transcription driven by the viral RdRp (nsp12) 
[31, 44]. Replication complexes assemble on virus- induced 
membrane structures such as double- membrane vesicles 
and convoluted membranes driven by transmembrane nsps 
3, 4 and 6 [45–48]. The active replication complex promotes 
the continuous and discontinuous synthesis of negative- 
sense RNA templates, which are subsequently used to drive 
formation of genomic copies and a nested set of subgenomic 
RNAs from the downstream ORFs encoding structural and 
accessory proteins, respectively [49]. Following replication of 
genomic and subgenomic RNA on double- membraned vesi-
cles, structural proteins like the spike (S), envelope (E), matrix 
(M) and nucleocapsid (N) proteins are translated by existing 
positive- strand subgenomic RNAs. S, E and M become glyco-
sylated within the Golgi before localizing to the endoplasmic 
reticulum- Golgi intermediate compartment (ERGIC) to be 
assembled into virions [50–53]. The N protein will localize 
with the replicase proteins at replication complexes within 
the cytoplasm while RNA is synthesized, where it is thought 
to encapsidate the newly made RNA [53, 54]. After RNA 
synthesis, genomic RNA and N protein move to the ERGIC 
and assimilate into budding virions. Additional S protein is 
expressed on the cell surface where it triggers cell- cell fusion 
between infected cells and nearby, uninfected cells [55]. 
Consequently, massive, multinucleated cell complexes called 
syncytia often form, facilitating spread of the virus while 
avoiding neutralization via virus- specific antibodies [31, 55].

As earlier mentioned, proteolytic processing acts as a key 
regulatory mechanism in the expression of the coronavirus 
replicase proteins, as blocking this process has been demon-
strated to block viral replication entirely [42, 56–58]. Typi-
cally, coronaviruses code for two or three proteases to process 
the replicase polyprotein: one or two papain- like proteases 
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(PLPs) encoded within nsp3, and one main protease, nsp5 
(3CLpro or Mpro) [31]. PLPs are responsible for cleavage 
events between nsp1 and the N terminus of nsp4, whereas all 
remaining pp1a/pp1ab cleavage events are mediated by nsp5 
[42, 59–61]. In addition, both proteases have been implicated 
in targeting host cell targets including modulating deubiquit-
ination, deISGylation and virus evasion of the innate immune 
response [60, 62].

Nsp5 protease structure and function
The coronavirus protease nsp5 (3CLpro or Mpro) is an approxi-
mately 30 kDa, three- domain cysteine protease conserved in 
structure and function in all known coronaviruses and serves 
as the main protease for proteolytic processing of the replicase 
polyproteins (pp1a and pp1ab) [31, 42, 63, 64]. The name ‘main 
protease’, or Mpro, refers to the critical role of this protease in 
coronavirus gene expression and replicase processing, and its 
other name ‘3C- like protease’ (3CLpro) refers to the similarities 
between this protease and 3C proteases seen in picornaviruses, 
namely their similar substrate specificities and core struc-
tural homology [65]. Among coronaviruses, nsp5 proteases 
within the same genus generally exhibit sequence identity of 
greater than 80 % whereas protease in different genera are far 
more divergent with sequence identity much closer to 50 % 
despite high tertiary and quaternary structural conserva-
tion especially in domains 1 and 2 (Fig. 2). Unsurprisingly, 
the greatest degree of sequence conservation exists in and 
around the enzyme active site (Fig.  3). Sequence analysis 
of the SARS- CoV and SARS- CoV-2 proteases reveals only 
12 residue differences (approximately 96 % identity) spread 
throughout the structure of the protease, with the majority 

of these residues distant from the active site (including along 
the distal surface of domain 1 and within domain 3), which 
strongly supports the prospect of developing active- site 
inhibitors that target both proteases.

The N- terminal domains (1 and 2) of nsp5 are structur-
ally highly conserved and form a chymotrypsin- like fold 
consisting of beta- barrels which surround the substrate 
binding site between the two domains (Fig. 4) [63, 65, 66]. 
The catalytic activity of the protease is mediated by a His- 
Cys catalytic dyad with the Cys residue serving as a nucleo-
phile in the enzyme- catalysed proteolytic reaction. The 
nsp5 protease almost exclusively orchestrates cleavage after 
a P1- Gln (with few exceptions) [67–70]. The P2 substrate 
residue is also generally well conserved with typically a Leu, 
although other residues can occupy this site including Met, 
Phe, Val or Ile [67, 69]. The P1’ substrate residue typically 
shows much more diversity with Ser, Gly, Ala and Val resi-
dues all being found in known nsp5 cleavage sites. Far more 
diversity in amino acid residue usage is observed at the P2–
P5 and P2’–P3’ sites. Collectively, the consensus cleavage 
site for nsp5 across known coronaviruses is P3- PLQ- (S/
G/A/V)- P1’ [67]. The high specificity and consistency in 
cleavage site recognition among known coronaviruses has 
made the enzymatic active site of nsp5 the primary target 
for current inhibitor design efforts (Fig. 3).

While nsp5 domains 1 and 2 have been well character-
ized, much less is known of the role of the alpha- helical 
third domain of the protease. Most of the function of the 
helical third domain of nsp5 has been shown to direct nsp5 
dimerization and help stabilize the chymotrypsin- like fold 

Fig. 1. Coronavirus genome organization, replicase gene expression and polyprotein processing. The 31.3 kb genome of beta- coronavirus 
MHV- A59 is depicted. The viral ORFs associated with replication (replicase gene; ORF1a/ORF1b) and structural and accessory genes 
are shown. The two variant polyproteins (pp1a and pp1ab) translated from the replicase gene are shown with the non- structural protein 
domains of the polyprotein labelled and the proteolytic cleavage sites marked with arrows. Three proteases mediate the proteolytic 
processing of the replicase polyproteins [PLP1, PLP2 and nsp5 (3CLpro/Mpro)], and the colour of the arrows (white for PLPs and black 
for nsp5) for each cleavage site correspond to the protease responsible for mediating its cleavage. PLP, papain- like protease; RdRp, 
RNA- dependent RNA polymerase; Hel, helicase; ExoN, exonuclease; N7- MT, N7- methyltransferase; EndoU, endoribonuclease; 2′-O- MT, 
2′- O- methyltransferase.
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[71, 72]. Nsp5 dimerization is essential for nsp5 function 
and the monomeric form of the protease is largely inac-
tive [65, 73–75]. In the nsp5 dimer, the monomers of 
the protease are orientated with their active sites facing 

away from one another with their N- terminal extensions 
(N- terminal fingers) and third domains directly interacting 
along a dimerization interface (Fig. 4). Studies evaluating 
residues important for dimerization have demonstrated that 

Fig. 2. Sequence alignment and conservation of the nsp5 (3CLpro) protease sequences of the seven known human coronaviruses. The 
seven human coronavirus protease sequences were aligned and the three domains of the proteases are colour coded and labelled. Alpha 
helices (open arrows) and beta sheets (filled arrows) are shown and the catalytic dyad residues (His/Cys) are boxed. A conservation 
matrix depicting percentage identity between amino acid sequences is shown at the end of the sequence alignment.
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Glu166 in SARS- CoV forms critical interactions with the 
N- terminal finger residues of the heterologous monomer 
[68, 76]. Deletion of the first few residues in the N- terminal 
finger of SARS- CoV results in significant losses in enzy-
matic activity and disruption of dimerization [68, 77]. 
Structural and biochemical studies have demonstrated 
that subtle differences exist in the coordinating residues for 
dimerization between SARS- CoV, MERS- CoV and SARS-
 CoV-2 [75, 78]. In addition, it has been shown that dimeri-
zation in MERS- CoV requires ligand association, whereas 

such a requirement is not present for SARS- CoV [75]. Prior 
to processing, nsp5 is found within a >800 kDa precursor 
which is processed into a 150 kDa, nsp4–10 precursor 
[79, 80]. nsp5 is initially responsible for coordinating its own 
autoproteolytic cleavage [68, 81]. It is hypothesized that two 
nsp5 proteases anchored to membranes by transmembrane 
protein nsp4 and nsp6 form a dimer and trigger cleavage 
in trans [68, 75, 81, 82]. Upon its own maturation cleavage, 
nsp5 is believed to target the nsp9–10 site, prior to targeting 
the nsp8–9 and nsp7–8 sites, respectively, for processing 
[83]. Once these sites are processed, the other nsps that 
nsp5 is responsible for cleaving are individually separated 
from the nsp7–10 site. Before the final processing of nsps, 
one of the intermediate complexes, nsp7+8, conducts an 
important function: catalysing the cleavage of nsp12, an 
essential viral polymerase. Studies involving mutation of 
the nsp5 cleavage sites have shown that disruption of the 
nsp7–nsp8 and nsp8–nsp9 cleavage sites results in loss of 
virus viability whereas other sites such as the nsp9–nsp10 
site can be tolerated with reduced replication [84]. The 
ordered processing by the nsp5 protease may represent a 
unique facet of viral replication that may be disrupted by 
inhibitors.

It has been suggested that nsp5 associates with numerous 
other components of the replication complex. Several studies 
have shown important intra- and intermolecular associations 
between the nsp5 protease and the rest of the replicase gene, 
with mutations both within the nsp5 domain and muta-
tions in nsp3 and nsp10 negatively impacting nsp5 activity 
[80, 85, 86]. These data strongly suggest that important allos-
teric interactions exist between nsp5 and other members of 
the replicase gene. In addition, several temperature- sensitive 
mutations have been identified within the nsp5 proteases 
of mouse hepatitis virus (MHV) and HCoV- OC43 that 
selected for second- site compensatory mutations that were 
distant (>15 Å) from the initial mutation site [63, 85]. These 
data indicate that complex interactions which span all three 
domains of the protease are critical for protease structure and 
function. Additional studies are needed to understand their 
role as they may represent novel directions for proteolytic 
inhibition.

Therapeutic design strategies for nsp5 inhibitors
As SARS- CoV-2 continues to spread and interfere with our daily 
lives, a need for an effective, safe way to treat the viral infec-
tions has become much more prevalent. While the efficacy and 
safety of an array of vaccine candidates is currently being evalu-
ated, it seems unlikely that worldwide distribution of available 
vaccines at rates needed for herd immunity will not occur for 
quite some time [87, 88]. In addition to the challenges of testing 
for safety and efficacy, vaccines target specific pathogens which 
make them limited in treating future problematic diseases, 
especially diseases caused by rapidly mutating and evolving 
RNA coronaviruses. Because of these concerns, the practicality 
of utilizing therapeutic alternatives to treat current and future 
viral outbreaks appears more promising [87]. Considering 
the heightened interactions among humans and animals, the 

Fig. 3. Structural alignment of HCoV nsp5 (3CLpro) protease crystal 
structures. An overlay of the monomeric crystal structures of HCoV 
nsp5 proteases of SARS- CoV-2 (PDB 6M2N), SARS- CoV (PDB 2Q6G), 
MERS- CoV (PDB 4YLU), HCoV- 229E (PDB- 2ZU2), HCoV- HKU1 (PDB- 
3D23), HCoV- NL63 (PDB- 3TLO) and the modelled structure of HCoV- 
OC43 (PM0079872) [66, 75, 104, 139–143].



6

Roe et al., Journal of General Virology 2021;102:001558

immense viral diversity characterizing coronaviruses, and 
frequent adaptations and mutations, targeting a conserved 
region among coronaviruses for therapeutic treatment might 
de- escalate the lingering threat of future human coronavirus 
outbreaks or pandemics [13].

Since the SARS- CoV outbreak of 2003–2004, there have 
been ongoing efforts to develop inhibitors that target nsp5. 
Several compounds have been designed and tested for nsp5 
active- site inhibition, including esters and covalent or non- 
covalent peptidomimetics (summmarized in Table 1) [89, 90]. 
The covalent modifiers (esters and peptidomimetics) act as 
competitive inhibitors that mimic natural peptide substrates 
of nsp5. The non- covalent inhibitors occupy the substrate 
binding site to competitively inhibit nsp5 activity. Addition-
ally, some groups have done computational screening of 
known drug libraries to identify potential inhibitors [91, 92].

The first ester- based compounds to be developed were benzo-
triazole ester- based and irreversibly acylated the C145 within 
the active site [93]. Next, chloropyridine- esters were tested 
and found to have potent inhibitory activity against nsp5. 
CE-5 is one of the chloropeptidyl esters that has been exten-
sively studied and shown to have broad activity across several 
CoVs. CE-5 has an EC50 of 8.5 µM for MHV [94], 24±0.9 µM 
for SARS- CoV [95] and 13.5 µM for MERS- CoV [96]. Addi-
tionally, this inhibitor was tested during BtCoV- HKU5 and 

MERS- CoV infection, where it resulted in a 10–100- fold 
decrease in viral titres depending on the timepoint [97].

Extensive work has been done to identify peptidomimetic 
inhibitors of nsp5 [89]. The majority of these compounds 
contain Michael acceptors, chloromethyl ketone or epoxide 
functional groups. These functional groups form covalent, irre-
versible interactions with nsp5 C145. However, some of these 
compounds also form non- covalent interactions with the nsp5 
active site. Early peptidomimetic inhibitors were designed based 
on AG7088, which targets the human rhinoviral 3C protease 
[98, 99]. While the AG7088 compound was not effective in 
SARS- CoV- infected cells [100], it was used to subsequently 
design molecules that have antiviral activity against the SARS-
 CoV nsp5 protease. Two groups studied the AG7088 derivative 
and showed potent activity on the SARS- CoV nsp5 [98, 99, 101]. 
Shie et al. identified five compounds with EC50 values of <20 µM, 
three of which were <0.2 µM. Kumar and colleagues extended 
the testing of 3Cpro inhibitors against both SARS- CoV and 
MERS- CoV and identified compounds with low micromolar 
activity and EC50 of 0.6–1.4 µM [102].

In addition to testing known inhibitors of 3C proteases, 
a structure- based design has also been used to identify 
nsp5 inhibitors. Using the crystal structure of MERS- CoV 
in complex with the antiviral compound GC376, Galasiti 
Kankanamalage et al. designed several compounds and 

Fig. 4. Nsp5 (3CLpro) structural features of SARS- CoV-2 protease. (a) Monomeric structure of the SARS- CoV-2 nsp5 protease (PDB 
6M2N) with the three domains shown. Key structural regions including the N- terminal finger (NF), N- terminal helix (NH) and domain 
2–domain 3 interdomain loop (IDL) are labelled. Corresponding locations of MHV nsp5 resistance mutations identified in Deng et al. are 
labelled with stars [144]. (b) A view of the active site with a consensus cleavage site peptide bound. The catalytic dyad residues are 
shown. (c) SARS- CoV-2 nsp5 dimer structure with the orientation of the two dimers shown by arrows and the dimerization interface 
labelled. Green asterisks denote the catalytic site with black sticks shown for the catalytic dyad residues (His41 and Cys145) in both the 
monomeric (a) and the dimeric structures (c).
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Table 1. Select nsp5 inhibitors

Compound Type of compound/
source

Virus IC50 (μM) EC50 (μM) References

CE-5 Chloropyridine- esters MHV nd 8.5 [94]

SARS- CoV nd 24±0.9 [95]

MERS- CoV nd 13.5 [96]

18a Peptidomimetic – 
AG7088 derivative

SARS- CoV 10 18.86 [101]

18b Peptidomimetic – 
AG7088 derivative

SARS- CoV 5 9.45

18c Peptidomimetic – 
AG7088 derivative

SARS- CoV 1 0.18

18d Peptidomimetic – 
AG7088 derivative

SARS- CoV 10 0.11

18e Peptidomimetic – 
AG7088 derivative

SARS- CoV 7 0.16

1 Peptidomimetic – 
AG7088 derivative

SARS- CoV 870/45 nd [98]

2 Peptidomimetic – 
AG7088 derivative

SARS- CoV 800/70 nd

3 Peptidomimetic – 
AG7088 derivative

SARS- CoV 8075 nd

4 Peptidomimetic – 
AG7088 derivative

SARS- CoV 10/100 nd

5 Peptidomimetic – 
AG7088 derivative

SARS- CoV 15/100 nd

16 Peptidomimetic – 
AG7088 derivative

SARS- CoV 300/nd nd

17 Peptidomimetic – 
AG7088 derivative

SARS- CoV 200/nd nd

4a Peptidomimetic SARS- CoV
MERS- CoV

>25
>25

nd
nd

[145]

5a Peptidomimetic SARS- CoV
MERS- CoV

>25
>25

nd
nd

6a Peptidomimetic SARS- CoV
MERS- CoV

>25
>25

nd
>100

6b Peptidomimetic SARS- CoV
MERS- CoV

229E
OC43
FIPV

0.7±0.2
2.4±0.3

nd
nd
nd

nd
1.4±0.0
4.3±0.1

13.5±0.8
2.5±1.1

6c Peptidomimetic SARS- CoV
MERS- CoV

229E
OC43
FIPV

0.5±0.1
4.7±0.6

nd
nd
nd

nd
1.2±0.6
4.2±0.3

16.8±0.3
1.9±0.2

6d Peptidomimetic SARS- CoV
MERS- CoV

229E
OC43
FIPV

nd
1.7±0.3

nd
nd
nd

nd
0.6±0.0
2.0±0.2

17.7±1.6
1.1±0.3

Continued
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Compound Type of compound/
source

Virus IC50 (μM) EC50 (μM) References

9a Structure- based design MERS
SARS
FIPV

0.6
2.1
0.8

nd [103]

10a Structure- based design MERS
SARS
FIPV

0.4
5.1
2.4

0.5
0.6
1.5

9b Structure- based design MERS
SARS
FIPV

0.7
28.8
3.5

nd

10b Structure- based design MERS
SARS
FIPV

0.6
42.1
2.3

nd

9c Structure- based design MERS
SARS
FIPV

0.8
5.2
1.6

nd

10c Structure- based design MERS
SARS
FIPV

0.7
6.3
2.1

0.8
1.0
0.1

9d Structure- based design MERS
SARS
FIPV

0.7
3.9
0.8

nd

10d Structure- based design MERS
SARS
FIPV

0.9
4.3
1.1

nd

9e Structure- based design MERS
SARS
FIPV

6.1
5.5
5.5

nd

10e Structure- based design MERS
SARS
FIPV

7.5
4.1
6.7

nd

9f Structure- based design MERS
SARS
FIPV

0.6
3.2
1.3

nd

10f Structure- based design MERS
SARS
FIPV

0.5
8.8
1.1

nd

11a Structure- based design SARS- CoV
HCoV- NL63

1.95±0.24
>50

2.0±0.2 [106]

11n Structure- based design SARS- CoV
HCoV- NL63

0.33±0.04
1.08±0.09

7.2±0.2

11r Structure- based design SARS- CoV
HCoV- NL63

0.71±0.36
12.27±3.56

1.4±0.1

11s Structure- based design SARS- CoV
HCoV- NL63

0.24±0.08
1.37±0.35

1.9±0.1

11t Structure- based design SARS- CoV
HCoV- NL63

1.44±0.4-
3.43±2.45

6.7±0.2

11u Structure- based design SARS- CoV
HCoV- NL63

1.27±0.34
5.41±2.31

3.6±0.1

Table 1. Continued

Continued
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Compound Type of compound/
source

Virus IC50 (μM) EC50 (μM) References

48 Peptidomimetic- 
decahydroisoquinolin 

derivatives

SARS- CoV 68 nd [109]

41 Peptidomimetic- 
decahydroisoquinolin 

derivatives

SARS- CoV 63 nd

49 Peptidomimetic- 
decahydroisoquinolin 

derivatives

SARS- CoV 49 nd

6n Peptidomimetic -serine 
derivatives

SARS- CoV 85 nd [1]

6o Peptidomimetic -serine 
derivatives

SARS- CoV 65 nd

4 (SK80) Phenylisoserine 
derivatives

SARS- CoV 43 nd [111]

10 Peptidomimetic 
– phenylisoserine 

derivatives

SARS- CoV 85 nd

17 Peptidomimetic 
– phenylisoserine 

derivatives

SARS- CoV 75 nd

18 peptidomimetic 
- phenylisoserine 

derivatives

SARS- CoV 65 nd

12 Peptidomimetic 
– phenylisoserine 

derivatives

SARS- CoV 65 nd

Ac- Val- Leu- 
NHCH(CH2CH2CON(CH3)2)- CHO

Peptidomimetic SARS- CoV ~6 nd [108]

Ac- Ser- Ala- Val- Leu- 
NHCH(CH2CH2CON(CH3)2)- CHO

Peptidomimetic SARS- CoV 37 nd

Ac- Thr- Ser- Ala- Val- Leu- 
NHCH(CH2CH2CON(CH3)2)- CHO

Peptidomimetic SARS- CoV 26 nd

Cinanserin In silico design SARS- CoV
HCoV- 229E

4.92
4.68

nd [112]

Cinanserin hydrochloride In silico design SARS- CoV
HCoV- 229E

5.05
5.68

nd

53 Non- covalent SARS- CoV 10 nd [113]

54 Non- covalent SARS- CoV 5.5 nd

56 Non- covalent SARS- CoV 45 nd

Table 1. Continued

Continued
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measured the IC50 for nsp5 of MERS- CoV, SARS- CoV 
and feline infectious peritonitis virus (FIPV) [103]. Inter-
estingly, some of the compounds had varying degrees of 
activity against the different proteases. For the compounds 
tested, the MERS- CoV IC50 ranged from 0.5 to 7.5 µM, 
FIPV ranged from 0.8 to 6.7 µM, but SARS- CoV was more 
divergent with ranges from 2.1 to 42.1 µM. They then tested 
the EC50 of two compounds with MERS- CoV, MHV and 
FIPV and showed a range of 0.5–1.5 µM across the three 
viruses. However, SARS- CoV was not tested for EC50 and 
it had the highest, most divergent IC50 values among the 
viruses tested. These data probably indicate differences in 
binding within the active site of each of these proteases and 
highlights the need to test inhibitors against multiple CoV 
proteases. This finding is consistent with both variations in 
the active sites between the CoV proteases (Fig. 2) as well as 

known differences in cleavage site sequences in pp1ab [67]. 
Consistent with numerous other studies evaluating inhibitors 
bound to crystallized nsp5 proteases, coordination between 
the active site inhibitor and subtle variations in the residues 
lining the pocket may be impacting the strength of binding 
and fit of the inhibitor [75, 104, 105]. In another study using 
a structure- based design, Zhang et al. were able to develop 
several α-ketoamides that have a glutamine lactam at the 
P1 site that mimics the glutamine in the P1 position of the 
nsp5 consensus cleavage site [106]. This strategy resulted in 
the design of six compound derivatives with EC50 values of 
<10 µM against SARS- CoV replicons and cross- reactivity 
with the enterovirus EV- A71 and CVB3 3C proteases. This 
cross- reactivity would allow for development of more broad- 
spectrum antivirals that can be tested using structure–activity 

Compound Type of compound/
source

Virus IC50 (μM) EC50 (μM) References

10c Non- covalent SARS- CoV 11 nd [114]

13a Non- covalent SARS- CoV 7.72 nd

13b Non- covalent SARS- CoV 25.3 nd

13c Non- covalent SARS- CoV 6.9 nd

13d Non- covalent SARS- CoV 4.1 nd

13e Non- covalent SARS- CoV 22.5 nd

13f Non- covalent SARS- CoV 9.1 nd

13g Non- covalent SARS- CoV 3.8 nd

13k Non- covalent SARS- CoV 26 nd

16a Non- covalent SARS- CoV 2.9 nd

16b Non- covalent SARS- CoV 3.6 nd

16c Non- covalent SARS- CoV 13.3 nd

16d Non- covalent SARS- CoV 3.4 nd

16e Non- covalent SARS- CoV 4.1 nd

16f Non- covalent SARS- CoV 8.1 nd

16g Non- covalent SARS- CoV 22.1 nd

16i Non- covalent SARS- CoV 10.3 nd

16j Non- covalent SARS- CoV 2.1 nd

16k Non- covalent SARS- CoV 1.5 nd

17a Non- covalent SARS- CoV 0.051 nd

17b Non- covalent SARS- CoV 0.97 nd

17c Non- covalent SARS- CoV 0.70 nd

17d Non- covalent SARS- CoV 2.0 nd

17e Non- covalent SARS- CoV 15.5 nd

nd, not determined.

Table 1. Continued
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relationships (SARs) to make the compound more specific 
and potent to certain viral proteases.

There have been challenges to screening compounds in vitro 
with tagged nsp5. While purifying N- terminally tagged nsp5 
for testing peptidomimetic inhibitors, Akaji et al. identified 
an internal cleavage site in the SARS- CoV nsp5 at R188- 
Q189 that resulted in loss of enzyme activity that could have 
obscured the results of inhibition activity. They introduced 
an R188I mutation that prevents internal cleavage during 
in vitro screening and then used a structure- based design 
of inhibitors. Through several follow- up studies, they have 
identified inhibitors based on several scaffolds including alde-
hyde, decahydroisoquinolin, and serine or phenylisoserine 
derivatives. Using SAR analysis, they were able to identify 
compounds with IC50 of <100 µM [107–111]. In future 
studies, this R188I substitution will need to be used to screen 
compounds if tagging the N terminus of nsp5.

There has been some computational analysis of potential 
nsp5 inhibitors. Chen et al. screened the MDL- CMC data-
base for inhibitors that bound the nsp5 active site in silico 
[112]. They then identified 10 compounds and were able 
to show that cinanserine had antiviral activity against nsp5 
from both SARS- CoV and HCoV- 229E, as well as the HCoV- 
229E replicon cells, and during infections with SARS- CoV 
and HCoV- 229E. However, a subsequent study showed no 
inhibition of the SARS- CoV, HCoV- 229E or MHV nsp5 
proteases up to 100 µM of cinanserine [113]. Jacobs et al. 
used a high- throughput assay to test several non- covalent 
nsp5 inhibitors and identified several with an IC50 of >100 µM 
and showed that ML-188 [also called 16- (R)] had an EC50 
between 12.9±0.7 and 13.4±1.0 µM. Subsequently, this group 
then screened additional compounds and performed SAR 
studies to improve the efficacy of the compounds toward the 
SARS- CoV nsp5 protease [114].

Novel potential targets for future nsp5 inhibitor 
design
There has been limited work on testing for resistance to these 
active- site inhibitors. However, one study showed that three 
substitutions arose that block inhibition of CE-5 [94]. Of 
the three substitutions, two were in domain 1 and the other 
was in domain 3 (Fig. 4). Interestingly, the substitutions in 
domain 1 were not in the active site but were located above 
the active site. This, combined with studies demonstrating 
that temperature- sensitive mutants were capable of gaining 
function through substitutions in distant portion of the 
proteins [85, 115], suggests that (1) we should expect that 
resistance mutations will arise to these active site inhibitors, 
and (2) those changes that confer resistance may be in one of 
many different locations throughout the protease due to the 
complex interactions within the protease that are required for 
enzymatic function and between the protease and host and 
viral proteins regulating its function allosterically. Therefore, 
targeting multiple regions of the protease may be a better 
strategy than using a single therapeutic that targets the 
active site. Therefore, there remain many additional potential 

approaches which may be used to inhibit nsp5 as highlighted 
in Fig. 5, which include protein folding and stability, dimeri-
zation, and allosteric interactions with host and viral proteins.

Protein folding and stability
In order to be catalytically active, nsp5 has to be properly 
folded into the correct conformation after it is cleaved from 
the polyprotein. While it may not be possible to target 
specific folding of nsp5, there has been studies showing the 
use of protein folding inhibition in cancer treatment [116]. 
Since this would alter global protein folding, there may be 
challenges in delivery of such a compound. As groups are 
screening compounds in silico, it would be interesting to also 
look for allosteric inhibitors that bind to nsp5 and alter the 
conformation of the active site to preclude substrate binding 
or alter protein stability. The interdomain loop (IDL), which 
connects domains 2 and 3, is a structurally conserved region 
of the protease that is probably involved in substrate recogni-
tion [78, 117–119]. This region would be an interesting target 
for inhibition since altering the IDL could change the stability 
of the chymotrypsin- like fold or alter substrate recognition to 
decrease enzymatic activity. Other regions are known to be 
involved in protein stability and function. Through the study 
of nsp5 temperature- sensitive mutants and their second- site 
suppressor mutations in both MHV and OC43 [63, 85], it has 
been suggested that there are long- distance communication 
networks within the nsp5 structure. These nodes of the long- 
distance communication can be targeted by small molecules 
to alter the conformation and stability of nsp5.

Dimerization
Targeting dimerization of a protease is a strategy that has 
been explored with human immunodeficiency virus (HIV) 
[120–122]. The mechanism of inhibition is to design peptides 
that match the dimerization region that will then bind to the 
region and prevent the binding of a second protease molecule. 
Dimerization of nsp5 is critical for nsp5 function [123]. Based 
on the strategy used for the HIV protease, an N- terminal 
octapeptide of nsp5 has been designed and shown to inhibit 
dimerization [124, 125]. This peptide is likely to block interac-
tion of the N- finger regions to prevent dimerization. Addi-
tional studies could be performed to enhance the potency of 
the peptide inhibitors of dimerization.

Allosteric interactions with host and viral proteins
Nsp5 interacts with other viral and host proteins to mediate 
virus replication and innate immune evasion and those inter-
actions may also impact nsp5 function. Therefore, blocking 
these interactions could dampen viral replication. A recent 
study looked at interaction of 26 of 29 SARS- CoV-2 viral 
proteins with host proteins and showed that the catalyti-
cally dead nsp5 (C145A) interacts with proteins involved in 
the response to oxidative stress and mitochondrial matrix 
proteins [126]. Since nsp5 may cleave proteins that it interacts 
with and/or have short- lived interactions, these interactions 
may be difficult to assess by mass spectrometry. The proteins 
identified in the study are probably an underestimate of the 
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host proteins that nsp5 is interacting with. Additional yeast 
two- hybrid studies have shown that nsp5 interacts with other 
nsps, including nsp7 and nsp8 in SARS- CoV [127] or nsp7, 
nsp9 and nsp12 in PRRSV [128]. Since these studies were 
done with mature proteins, these interactions should be 
independent of cleavage and represent interactions that can 
be blocked using small molecules.

Several groups have shown that CoV nsp5 proteases cleave 
host targets in innate immune pathways. For example, porcine 
deltacoronavirus (PDCoV), porcine epidemic diarrhoea virus 
(PEDV) and FIPV nsp5 proteases cleave the nuclear factor-κB 
(NF-κB) essential modulator (NEMO) to antagonize type I 
IFNs [129–131]. PDCoV also cleaves STAT2 to inhibit acti-
vation of IFN- stimulated genes [132]. Recent studies with 
SARS- CoV-2 showed that nsp5 cleaved IRF3 and two innate 
immune proteins, NLRP12 and TAB1 [133]. It is likely that 
nsp5 may target other host proteins for cleavage, which may 
provide a unique and novel avenue for development of nsp5 
inhibitors. Fragment- based design is a technique that is now 
being used to identify allosteric inhibitors [134–137]. For the 
HIV protease (PR), this approach was used and identified 
two allosteric sites that bound to PR and prevented access 
to the active site [136]. It was not determined whether these 
locations could block binding to other proteins. However, the 
fragment- based design technique has been used to disrupt 
allosteric interactions between the protease and helicase 
domains of hepatitis C virus NS3 [138]. It would be inter-
esting to see what interactions could be disrupted using this 
method on CoV nsp5 proteases.

CONCLUSIONS
With the emergence of three coronaviruses in the last 20 years 
that cause significant disease and mortality, there remains a 
critical need for therapeutics for current and future emerging 
coronaviruses. As the SARS- CoV-2 pandemic approaches 
25 million cases worldwide, the ability to have effective tools 
to limit COVID-19 disease and arrest the spread of this 
pandemic are paramount to a return to normality. Coro-
navirus protease nsp5 remains a key target for therapeutic 
design efforts and renewed interest should be given to find 
novel conserved structural and functional features of the 
protease that may be exploited. We have highlighted in this 
review an array of features that have and have not been exten-
sively explored for therapeutic targets. It is our hope that an 
effective therapeutic with broad- spectrum activity against the 
nsp5 protease of a majority of coronaviruses can be developed 
to respond.
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