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Abstract
Purpose: Adaptive radiotherapy requires auto-segmentation in patients with
head and neck (HN) cancer. In the current study, we propose an auto-
segmentation model using a generative adversarial network (GAN) on magnetic
resonance (MR) images of HN cancer for MR-guided radiotherapy (MRgRT).
Material and methods: In the current study, we used a dataset from the Amer-
ican Association of Physicists in Medicine MRI Auto-Contouring (RT-MAC)
Grand Challenge 2019. Specifically, eight structures in the MR images of HN
region, namely submandibular glands, lymph node level II and level III, and
parotid glands, were segmented with the deep learning models using a GAN
and a fully convolutional network with a U-net. These images were compared
with the clinically used atlas-based segmentation.
Results: The mean Dice similarity coefficient (DSC) of the U-net and GAN
models was significantly higher than that of the atlas-based method for all the
structures (p < 0.05). Specifically, the maximum Hausdorff distance (HD) was
significantly lower than that in the atlas method (p < 0.05). Comparing the 2.5D
and 3D U-nets, the 3D U-net was superior in segmenting the organs at risk
(OAR) for HN patients. The DSC was highest for 0.75–0.85, and the HD was
lowest within 5.4 mm of the 2.5D GAN model in all the OARs.
Conclusions: In the current study, we investigated the auto-segmentation of
the OAR for HN patients using U-net and GAN models on MR images. Our
proposed model is potentially valuable for improving the efficiency of HN RT
treatment planning.
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1 INTRODUCTION

Head and neck cancer (HNC) is the sixth most common
cancer worldwide.1 Radiotherapy is offered to 75% of
patients.2 The treatment technique has been advanced
from 3D-conformal radiotherapy to intensity-modulated
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radiation therapy (IMRT).3 Specifically, IMRT can permit
dose coverage of target volumes by reducing the dose
for organs at risk (OARs).4 Thus, it is important to accu-
rately delineate the target volume and OAR.5 There are
many OARs, including the parotid glands, submandibu-
lar glands, and optic nerves. An accurate segmentation
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is required to ensure effective and safe patient treat-
ment. A manual delineation for the segmentation of
the target volume and OAR is labor-intensive and time-
consuming. Based on a previous study, the segmenta-
tion for each HNC patient undergoing IMRT requires an
average of 2.7 h.6

To reduce the stress and time consumption involved
in manual segmentation, an auto-segmentation system
has been developed. Atlas-based auto-segmentation
has already been established by several vendors.7

This technique decreases the amount of time required
for segmentation by 30%–40% when compared to
manual segmentation.8 However, atlas-based auto-
segmentation uses a fixed size.Hence, this limits its abil-
ity to adapt to the difference in patient anatomy.9

Artificial intelligence (AI)-based methods have
recently been proposed for the segmentation required
for treatment planning.AI-based algorithms can perform
highly intensive computations. Thus, auto-segmentation
can be completed within a short time after the training
model is created. An AI-based auto-segmentation is
desirable for replanning and adaptive radiotherapy
(ART). Several machine learning-based algorithms,
such as random forest-based, support vector machine
(SVM)-based, and deep learning (DL)-based methods,
have been used for HN multi-organ segmentation.10–13

For DL-based methods, convolutional neural networks
(CNNs) have generally been used for segmenta-
tion. Ibragimov et al. proposed the first DL-based
algorithm for HN segmentation in OARs using CT
images.14

Magnetic resonance imaging (MRI) can provide a
higher contrast for soft tissue than CT without radiation
exposure. An MR-based radiation treatment planning
has been performed with the help of recent advanced
developments such as MR-Linac.15–17 Recently, ART
has been developed to modify the treatment plan for
weight loss and target shrinkage during treatment.18

MR-guided RT (MRgRT) can modify radiotherapy plans
according to changes in patient anatomy assessed by
daily MRI.19 To realize MRgRT, rapid delineation of the
target and OAR should be performed. In several previ-
ous studies, MRI-based segmentation with CNNs has
been proposed for HN patients.20,21 In these studies,
a 3D CNN was used for the segmentation of tumor
regions in the brain and HN.

General adversarial networks (GANs) have proved
successful in image synthesis. The GAN uses two
networks that enhance each other’s performance by
performing competitive and iterative training. Dong
et al. reported that GAN improved the accuracy of
thorax segmentation.22 However, GAN has not been
used for the segmentation of HN patients.

The current study proposes an auto-segmentation
model using GAN using a patch segmentation. More-
over, we compare the GAN model with the conventional
models for HN segmentation.

2 MATERIALS AND METHODS

2.1 Data

In the current study, 55 sets of HN MRI images were
obtained for tissue segmentation from the American
Association of Physicists in Medicine annual meeting
auto-segmentation grand-challenge (RT-MAC) 2019.24

The data were split into a 40/15 training and validation
dataset. Specifically, patients who underwent treatment
at the University of Texas MD Anderson Cancer Cen-
ter between 2017 and 2018 were selected. The patients
included 50 men (91%) and five women (5%) with a
median age of 63 years (range: 32–77 years).

2.2 MRI scan

T2-weighted scans were acquired using a single 1.5 T
Siemens MAGNETOM Aera MRI scanner (Siemens
Healthcare, Erlangen, Germany). All scans were
acquired using a multiple two-dimensional (2D) turbo
spin-echo sequence. The acquisition parameters corre-
sponded to refocusing pulse = 180◦, echo time = 80 ms,
repetition time = 4800 ms, flip angle = 90◦, slice thick-
ness = 2.0 mm, pixel bandwidth = 300 Hz, matrix
size = 512 × 512, and field of view = 256 × 256 mm2.

2.3 Manual delineation of target
structures

Normal tissue was segmented on T2-weighted images
by a radiation oncologist with over 10 years of clini-
cal experience (ASRM). Each MRI scan covered the
entire HN area, and manual segmentations were per-
formed according to the consensus guidelines.25 The
targets of the segmentations were lymph node levels
II and III, parotid glands, and submandibular glands.
The details of the segmentations were demonstrated
in Kieselmann et al.26 The interobserver variability of
the segmentation was evaluated by three observers with
sufficient clinical experience of medical physicist and
dosimetrists.

2.4 Fully CNN

Conventionally, a 2D CNN, generally utilized for pattern
recognition and image classification, is used for seg-
mentation.It operates with 2D input and 2D filters.Zhang
et al. proposed a multimodal network with various MRI
images inputted for red-green-blue (RGB) channels.27

The 3D CNN, which uses 3D input images and 3D fil-
ters, fully utilizes the advantages of spatial information
and can train using images up to the voxel level. Urban
et al. demonstrated the feasibility of the 3D CNN for
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F IGURE 1 2.5D U-net (a) and 3D U-net (b) for head and neck segmentation

segmenting brain tumors.28 The approaches involving
2.5D were introduced by Moeskops et al.29 In these
approaches, three orthogonal 2D patches were used in
the XY, YZ, and XZ planes. The 2.5D CNN exhibits the
advantage of more spatial information with less compu-
tational cost when compared to the 3D CNN. In another
2.5D CNN approach,a patch of multiple slices was used
for the input image during training.The U-net uses a fully
convolutional neural network (FCN) with a skip connec-
tion. In the current study, we used a 3D U-net that can
efficiently segment arbitrarily voxel-sized images. More-
over,we evaluated the augmentation effect using a 2.5D
U-net that uses a random patch of multiple slices by
comparing it with the 3D U-net. A detailed network of
the 3D U-net and 2.5D U-net is shown in Figure 1. The
size of the MRI image was set to 512 × 512 × 130 mm3,
which was resized to 136 × 136 × 64 mm3 for train-
ing. The 3D U-Net was trained on full-sized 3D volumes.
With respect to the 2.5D U-net, the patch size was 136
× 136 × 32 mm3. The patch size was determined as
the minimum size that the patched image included in
segmentation. The 2.5D U-Net was trained with multi-
slice image volumes. All the U-net models comprised a
total of 59 layers containing 12 convolution layers, three

max-pooling layers, 19 batch normalization layers, 18
activation layers, and Dice pixel classification. All activa-
tion layers were rectified linear units (ReLUs).The kernel
sizes were set to 3 × 3 × 3 for all the convolution layers.
Furthermore, upsampling of the low-resolution images
was performed using a transposed convolution layer
with kernel sizes of 2 × 2 × 1 and 2 × 2 × 2.The ReLU
removes output values below 0 at the output features
and makes learning with images more efficient.The loss
function was employed using the Dice loss function.

2.5 GAN

In the current study, we implemented an auto-
segmentation model using a 3D GAN and 2.5D GAN.
The 2.5D GAN used a random patch of multiple slices,
which was similar to that used by the 2.5D U-net. An
overview of the 3D and 2.5D GAN models is shown in
Figure 2.

The GAN includes a generator to estimate the
segmentation and a discriminator to distinguish the
reference segmentation from the generated segmen-
tation. The generator attempts to produce realistic
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F IGURE 2 2.5D generative adversarial network (GAN) architecture (a) and 3D GAN architecture (b) for head and neck segmentation

segmentations that confuse the discriminator. The gen-
erator of the 3D GAN model for the 3D U-net and 2.5D
model GAN uses the 2.5D U-net.The discriminator uses
the FCN, which has six convolution layers for extracting
features from image and product the output image.
These two networks were simultaneously trained. With
respect to the training dataset, the hyperparameters
were optimized. Specifically, it was adjusted to one
for each algorithm of the test dataset. The genera-
tor loss was computed as the sum of the weighted
cross-entropy loss of the contour images and mean
squared error of the residual images. The weighted
cross-entropy was used as the discriminator loss. To
minimize these losses, an Adam optimizer was applied.
The 3D GAN was trained with 200 epochs,and the 2.5D
GAN was trained with 80 epochs and 30 patches. The
proposed models were implemented using MATLAB (v.
2019b, MathWorks, Inc., MI, USA) on a 12-GB NVIDIA
GeForce RTX 3090 Graphics Processing Unit (GPU).

2.6 Atlas-based segmentation

The atlas-based segmentation used commercial atlas-
based segmentation software Velocity AI (Velocity
Medical Systems, Atlanta, Georgia). An automatic seg-
mentation with single atlases of the HN cancer data
was performed using T2-weighted MRI images.

2.7 Evaluation metrics

The accuracy of the auto-segmentation was evaluated
by comparing it to the manual segmentation, which
corresponds to the gold standard for the validation
dataset.30,31 The degree of coincidence of the manual
segmentation and auto segmentation with atlas or DL
methods was assessed using mean Dice similarity coef-
ficient (DSC), mean Jaccard similarity coefficient (JSC),
and maximum Hausdorff distance (HD) (unit: mm).
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F IGURE 3 The mean Dice similarity coefficient (DSC) values between the manual segmentation data included in RT-MAC 2019 dataset
and manual segmentation by three radiation observers

The DSC measures the volumetric overlap between
the manual and auto-segmentation,31,32 which is calcu-
lated as follows:

DSC =
2 |A ∩ B|
|A| + |B|

where A is used manual segmentations, and B is the
segmentations obtained with auto-segmentations. The
DSC produces output values between 0 and 1, where
1 denotes two perfectly coincidental contours, and 0
denotes two contours with no coincidence. The JSC
calculates the ratio of the intersection volume and
entire union volume of the manual segmentation and
auto-segmentation32; it is calculated as follows:

JSC =
|A ∩ B|
|A ∪ B|

where A is used manual segmentations, and B is
the segmentations obtained with auto-segmentations.
The JSC is also situated between 0 and 1, wherein 1
indicates perfect coincidence, and 0 indicates no coin-
cidence. The maximum HD measures the maximum
distance of a point in a set manual segmentation to the
nearest point in a second set of auto-segmentation.33

HD = max (h (A, B) , h (B, A))

h (A, B) = max
a∈A

min
b∈B

‖a − b‖

where A is used manual segmentations, and B is
the segmentations obtained with auto-segmentations.
Specifically, ||a–b|| denotes the Euclidean distance
between a and b, which are points on the boundary
of manual segmentation and auto-segmentation.
Furthermore, h (A, B) is termed as directed HD.
A smaller HD suggests higher coincidence of the
segmentations.

To evaluate the segmentation accuracy, a t-test was
performed to compare the differences between the
reference segmentation and atlas-based or DL-based

methods. The level of significance was set at p < 0.05
in statistical analyses.

3 RESULTS

Figure 3 showed the DSC measured the volumetric over-
lap between the manual segmentation data included in
RT-MAC 2019 dataset and manual segmentation by 3
radiation observers. The average DSCs were 0.87 for
the left submandibular gland, 0.88 for the right sub-
mandibular gland, 0.86 for the left lymph node levels II,
0.87 for the right lymph node levels II, 0.85 for the left
lymph node levels III, 0.81 for the right lymph node lev-
els III, 0.88 for the left parotid gland, and 0.89 for right
parotid gland.

Figures 4–11 showed the segmentation results of the
U-net model,GAN model,and atlas-based model for one
representative patient. The atlas-based method under-
estimated all the segmentations. Comparing the U-net
and GAN models, the 2.5D GAN segmented the bilat-
eral submandibular glands, bilateral lymph node levels
II and III, and bilateral parotid glands with high accuracy.

Figure 12 shows the results of the DSC, in which
manual segmentation is compared with U-net,GAN,and
atlas-based models. The mean DSC obtained with DL
methods of U-net or GAN was higher than that obtained
with the atlas-based method.There was a significant dif-
ference between the DSC values obtained with the DL
methods of U-net or GAN models and that obtained with
the atlas-based method for all OAR segmentations. The
DSC of 2.5D GAN was 0.83 for the left submandibular
gland, 0.83 for the right submandibular gland, 0.80 for
the left lymph node levels II,0.81 for the right lymph node
levels II,0.77 for the left lymph node levels III,0.75 for the
right lymph node levels III, 0.85 for the left parotid gland,
and 0.85 for right parotid gland, which was the high-
est. The mean DSC with DL methods of U-net or GAN
was higher than that with the atlas-based method.There
was a significant difference between the DSC values of
2.5D GAN and 3D GAN for the bilateral submandibular
glands, bilateral lymph node levels II and III, and right
parotid gland (p < 0.05).A comparison of the 2.5D GAN
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F IGURE 4 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the left submandibular segmentation. The yellow region denotes the reference segmentation, and red line
denotes the segmentation by atlas-based or deep learning methods

F IGURE 5 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the right submandibular segmentation. The yellow region denotes the reference segmentation, and red line
denotes the segmentation by atlas-based or deep learning methods

and 2.5D U-net revealed that there was a significant dif-
ference in the DSC values for the right lymph node lev-
els II and bilateral lymph node levels III (p < 0.05). A
comparison of the 2.5D GAN and 3D Unet revealed that
there was a significant difference in the DSC value for
the bilateral lymph node level III (p < 0.05). A compari-

son of 2.5D U-net and 3D U-net revealed that the DSC
value of the 3D U-net was significantly higher than that
of the 2.5D U-net for bilateral lymph node level II and
bilateral lymph node level III (p < 0.05).

Figure 13 shows the result of the JSC, which com-
pares the manual segmentation with the U-net, GAN,
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F IGURE 6 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the left lymph node levels II. The yellow region shows the reference segmentation, and red line shows the
segmentation by atlas-based or deep learning methods

F IGURE 7 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the right lymph node levels II. The yellow region denotes the reference segmentation, and red line denotes
the segmentation by atlas-based or deep learning methods

and atlas-based models. The mean JSC with DL meth-
ods of U-net or GAN was higher than that with the
atlas-based method. There was a significant difference
between the JSC value with the DL method of U-net or
GAN models and that with atlas-based method for all
OAR segmentations (p < 0.05).

The JSC of 2.5D GAN was 0.70 for the left sub-
mandibular gland, 0.71 for the right submandibular
gland, 0.65 for the left lymph node levels II, 0.68 for the
right lymph node levels II, 0.63 for the left lymph node
levels III, 0.61 for the right lymph node levels III, 0.74
for the left parotid gland, and 0.75 for the right parotid
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F IGURE 8 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the left lymph node levels III. The yellow region denotes the reference segmentation, and red line denotes
the segmentation by atlas-based or deep learning methods

F IGURE 9 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the right lymph node levels III. The yellow region denotes the reference segmentation, and red line denotes
the segmentation by atlas-based or deep learning methods

gland, which was the highest. There was a significant
difference between the JSC values of 2.5D GAN and
3D GAN for the bilateral submandibular glands, bilat-
eral lymph node levels II and III, and right parotid gland
(p < 0.05). A comparison of 2.5D GAN and 2.5D U-net
revealed that there was a significant difference in the

JSC values for the right lymph node levels II and bilat-
eral lymph node levels III (p< 0.05).A comparison of the
2.5D GAN and 3D U-net revealed that there was a sig-
nificant difference in the JSC values for the right lymph
node level III (p < 0.05). Furthermore, a comparison of
2.5D U-net and 3D U-net revealed that the JSC values



KAWAHARA ET AL. 9 of 13

F IGURE 10 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the left parotid glands segmentation. The yellow region shows the reference segmentation, and red line
denotes the segmentation by atlas-based or deep learning methods

F IGURE 11 Comparison of manual segmentation and (a) 2.5D generative adversarial network (GAN), (b) 3D GAN, (c) 2.5D U-net, (d) 3D
U-net, and (e) atlas-based method in the right parotid glands segmentation. The yellow region denotes the reference segmentation, and red line
denotes the segmentation by atlas-based or deep learning methods

of 3D U-net were significantly higher than those of 2.5D
U-net for the right lymph node level II and left lymph node
level III (p < 0.05).

Figure 14 shows the results of the maximum HD that
compares the manual segmentation with U-net, GAN,
and atlas-based models. The maximum HD with DL
methods of U-net or GAN was lower than that with the

atlas-based method for all OAR segmentations. There
was a significant difference between the maximum
HD values with the DL method of U-net or GAN mod-
els and that with the atlas-based method for all OAR
segmentations (p < 0.05). Furthermore, there was a
significant difference between the maximum HD values
of 2.5D GAN and 3D GAN for the right submandibular
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F IGURE 12 Mean and standard deviation of the Dice similarity coefficient (DSC) values for 2.5D generative adversarial network (GAN), 3D
GAN, 2.5D U-net, 3D U-net, and atlas-based methods

F IGURE 13 Mean and standard deviation of the Jaccard similarity coefficient (JSC) values for 2.5D generative adversarial network (GAN),
3D GAN, 2.5D U-net, 3D U-net, and atlas-based methods

F IGURE 14 Mean and standard deviation of maximum Hausdorff distance (HD) values for 2.5D generative adversarial network (GAN), 3D
GAN, 2.5D U-net, 3D U-net, and atlas-based methods

gland, right lymph node level II, right lymph node level
III, and left parotid gland (p < 0.05). A comparison of
2.5D GAN and 2.5D U-net revealed that there was a
significant difference in the maximum HD of the right
submandibular gland, right lymph node level II, and
bilateral lymph node level III (p < 0.05). Furthermore,
a comparison of the 2.5D GAN and 3D U-net revealed
that there was a significant difference in the maximum
HD for the right submandibular gland and right lymph
node level III (p < 0.05). Additionally, a comparison of
2.5D U-net and 3D U-net revealed that the maximum
HD values of 3D U-net were significantly higher than
those of 2.5D U-net for the right lymph node level II
and bilateral lymph node level III (p < 0.05). Table 1

summarized of the comparison of the segmentation
performance between 2.5D GAN and the other models
of 3D GAN, 2.5D CNN, 3D CNN, and Atlas model.

4 DISCUSSION

The conventional auto-segmentation tool uses atlas-
based segmentation that builds a library of normal
tissue from manual segmentation and extrapolates
it to a new patient with rigid or deformable image
registration.34 Atlas-based segmentation on the refer-
ence image corresponds to the transposition of a new
image after a reference image is registered to a new
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TABLE 1 The comparison of the segmentation performance between 2.5D generative adversarial network (GAN) and the other models of
3D GAN, 2.5D convolutional neural network (CNN), 3D CNN, and atlas model

2.5D GAN
versus 3D GAN

2.5D GAN versus
2.5D CNN

2.5D GAN
versus 3D CNN

2.5D GAN
versus Atlas

Submand_L ○ (2.5D GAN) n.s. n.s. ◎ (2.5D GAN)

Submand_R ◎ (2.5D GAN) ○ (2.5D GAN) ○ (2.5D GAN) ◎ (2.5D GAN)

Neck_LNII_L ○ (2.5D GAN) n.s. n.s. ◎ (2.5D GAN)

Neck_LNII_R ◎ (2.5D GAN) ◎ (2.5D GAN) n.s. ◎ (2.5D GAN)

Neck_LNIII_L ○ (2.5D GAN) ◎ (2.5D GAN) n.s. ◎ (2.5D GAN)

Neck_LNIII_R ◎ (2.5D GAN) ◎ (2.5D GAN) ◎ (2.5D GAN) ◎ (2.5D GAN)

Parotid_L ○ (2.5D GAN) n.s. n.s. ◎ (2.5D GAN)

Parotid_R ◎ (2.5D GAN) n.s. n.s. ◎ (2.5D GAN)

Note: Submand_L: left submandibular gland; Submand_R: right submandibular gland; Neck_LNII_L: left lymph node levels II; Neck_LNIII_R: right lymph node levels
III; Neck_LNIII_R: right lymph node levels III; Parotid_L: left parotid gland; Parotid_R: right parotid gland; ◎: significantly higher DSC, JSC, and smaller HD (p < 0.05);
�, one or two of three metrics had a significantly higher DSC, JSC, and smaller HD (higher performance model).
Abbreviation: n.s., not significant.

image. The proposed DL methods with U-net and GAN
indicated a more accurate segmentation than the atlas-
based method.It is difficult for the atlas-based method to
correspond to the various body shapes. Conversely, DL,
which can adapt to a larger dataset,can aid in improving
the statistical power of segmentation. Tong et al. com-
pared the atlas-based method, model-based method,
and theU-net for HN segmentation with CT images.35

The U-Net displayed a highly accurate segmentation
performance. The current study used only T2-weighted
MRI images. Hague et al. compared the accuracy of
auto-segmentation between MRI and CT images of the
HN.36 The auto-segmentation model with MRI images
outperformed the model with CT images of the bilateral
parotid glands and bilateral submandibular glands. The
MRI image exhibited superior visualization of the soft
tissue when compared to the CT image, and thus the
MRI image was suitable for auto-segmentation.

Kieselmann et al.compared 2D U-net,2.5D U-net,and
3D U-net for parotid gland segmentation.37 The input
image used three adjacent slices for the 2.5D U-Net.The
2.5D U-net displayed lower accuracy for the right parotid
gland segmentation and higher accuracy for left parotid
gland segmentation. The accuracy of the segmentation
with the proposed DL methods is equivalent to or slightly
higher than that of Kieselmann et al. In the current study,
we used 2.5D networks that use patch multi-slices for an
efficient OAR auto-segmentation method. Kieselmann
et al. prepared a patched image that focused on the
center of mass of each parotid gland due to limita-
tions in GPU memory. They indicated a limitation that
the parotid gland can be omitted in the process of cre-
ating the patched image. In this study, a random patch
image was created in the slice direction without identi-
fying the geometric position. It plays a role in augmenta-
tion. Moreover, 2.5D networks can reduce computation
time and consumption of the GPU memory. The accu-

racy of the segmentation with the 2.5D U-net did not
differ from that of the 3D U-net for the bilateral parotid
glands and bilateral submandibular glands. Conversely,
3D U-net was superior to 2.5D U-Net for the segmenta-
tion of the lymph node. For segmentation with U-net, it
is necessary to learn the entire 3D shape for the seg-
mentation of the lymph node. Conversely, 2.5D GAN
significantly improves the accuracy of the segmenta-
tion for most OARs of HN patients when compared to
3D GAN, 2.5D, and 3D U-nets. Dong et al. proposed U-
Net-GAN for segmentation of thorax using CT images.22

Dong et al. revealed that U-Net-GAN improved accu-
racy of segmentation when compared to U-Net. Fur-
thermore, Sultana et al. reported that a GAN with a 3D
U-net successfully segmented the pelvic region using
CT images.23 The 3D network had the advantage that
it obtains more spatial information to use entire image
volumes.On the other hand, it has the disadvantage that
it requires more training patient data to achieve robust
performance. In the current study, the 3D U-net had bet-
ter segmentation performance than 2.5D U-net. Thus,
the effect of the number of sample size between 3D U-
net and 2.5D U-net were small and the difference of the
spatial information for the training may be dominant. On
the other hand, the 2.5D GAN showed better segmen-
tation performance than 3D GAN. The generator used
U-net which provides the image requires more spatial
information. The GAN uses the discriminator in addi-
tion to the generator.The discriminator that distinguishes
the ground truth and the segmentation created by the
generator would be required fine training with the aug-
mentation of the patched images. The proposed 2.5D
GAN contributes to accurate segmentation via provid-
ing trained parameters and fine distinguishing between
real and fake segmentations.

A previous study reported that there was a signif-
icant difference in mean volumes between five HN
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cancer expert oncologists despite the use of accepted
delineation guidelines.38 The current study evaluated
the interobserver variability of the segmentation. The
minimum DSC values between the manual segmen-
tation data included in RT-MAC 2019 dataset and
manual segmentation by radiation observers were 0.80.
Therefore, the accuracy of the manual segmentation
and interobserver variability can be dominant to the
uncertainty of segmentation with DL. However, auto-
segmentation aids in decreasing the interobserver
variability, the time, and cost of treatment planning by
using reference segmentation with sufficient levels.

The proposed model may be useful for MRI-based
planning. GAN can perform image synthesis such as
CT-to-MRI.39 In further studies, we will use the pro-
posed model that synthesized MRI images from the CT
images to enhance accuracy of the segmentation with
the CT image. The European SocieTy for Radiation and
Oncology -Advisory Committee on Radiation Oncology
Practice (ESTRO-ACROP) reported the limitations and
benefits of MRgRT.40 They recommended developing
data-intensive computer-based solutions, such as auto-
segmentation with DL, and supporting medical deci-
sions with radiomics analysis. The proposed model can
aid in the online adaptive workflow of the MRgRT. The
limitation of the current study corresponds to the evalua-
tion of the dosimetric effect via auto-segmentation.With
respect to clinical implementation,an evaluation of dosi-
metric errors with manual and auto-segmentation will be
performed in future studies. Moreover, the current study
has difficulty comparing their result with the competition
participants because the RT-MAC challenge already fin-
ished. Additionally, the available structures were lim-
ited. The current study showed a 2.5D GAN that used
patched images has a possibility to improve the accu-
racy of the segmentation than conventional atlas-based,
U-net,and 3D GAN segmentations.Further study will be
performed to improve the applicable 2.5D GAN model
for the other structures such as the brainstem, chiasm,
optic nerves, and larynx.

5 CONCLUSION

In the current study, we investigated auto-segmentation
of the OAR for HN patients with U-net and GAN mod-
els on MR images. The results indicated that the 2.5D
GAN-based segmentation is superior to conventional U-
net-based and atlas-based segmentation.Our proposed
model is potentially valuable in terms of improving the
efficiency of HN radiotherapy treatment planning.
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