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Behavioral fingerprints predict insecticide and
anthelmintic mode of action
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Abstract

Novel invertebrate-killing compounds are required in agriculture
and medicine to overcome resistance to existing treatments.
Because insecticides and anthelmintics are discovered in pheno-
typic screens, a crucial step in the discovery process is determining
the mode of action of hits. Visible whole-organism symptoms are
combined with molecular and physiological data to determine
mode of action. However, manual symptomology is laborious and
requires symptoms that are strong enough to see by eye. Here, we
use high-throughput imaging and quantitative phenotyping to
measure Caenorhabditis elegans behavioral responses to
compounds and train a classifier that predicts mode of action with
an accuracy of 88% for a set of ten common modes of action. We
also classify compounds within each mode of action to discover
substructure that is not captured in broad mode-of-action labels.
High-throughput imaging and automated phenotyping could
therefore accelerate mode-of-action discovery in invertebrate-
targeting compound development and help to refine mode-of-
action categories.
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Introduction

Invertebrate pests including insects, mites, and nematodes damage

crops, decrease livestock productivity, and cause disease in humans.

Nematodes alone infect over 1 billion people and lead to the loss of

5 million disability-adjusted life-years annually (Pullan et al, 2014).

In livestock, they infect sheep, goats, cattle, and horses causing

gastroenteritis that leads to diarrhea, reduced growth, and weight

loss. Nematodes that parasitize crops have been estimated to cause

well over $100 billion in annual crop losses (Elling, 2013). Crop loss

due to insects is measured in tens of metric megatons and is

predicted to increase due to climate change (Deutsch et al, 2018).

Compounds that kill or impair invertebrates are one of the primary

means of defense in human and veterinary medicine and in crop

protection. However, resistance is widespread in nematodes and

insects and drives continuing efforts to discover new invertebrate-

targeting compounds (Sparks & Nauen, 2015; Nixon et al, 2020).

To date, most currently approved treatments for infections in

humans and livestock and for crop protection in the field have been

discovered through phenotypic screens (Geary et al, 2015; Wing,

2020). That is, compounds are first screened for the ability to kill or

impair a target species without any hypothesized molecular target.

A critical problem is then determining hit compounds’ mode of

action, which is important for understanding resistance mecha-

nisms, avoiding pathways where resistance is already common, and

subsequent lead optimization. Despite advances in biochemical and

genetic methods for determining mode of action, direct observation

of the symptoms induced by compounds remains a key step in

mode-of-action discovery (Wing, 2020). Because most insecticides

and anthelmintics target the neuromuscular system, behavioral

symptoms are a particularly important class of phenotypes to

consider, but manual observation of behavior is time-consuming,

insensitive to subtle phenotypes, and prone to inter-operator vari-

ability and bias (Garcia et al, 2010). We therefore sought to develop

more automated and quantitative methods to do mode-of-action

prediction from phenotypic screens of freely behaving invertebrates.

Pioneering work in zebrafish showed that behavioral fingerprints

can be used to discover neuroactive compounds and that behavioral

fingerprints correlate with compound mode of action (Kokel et al,

2010; Rihel et al, 2010; Laggner et al, 2011). However, this approach

has not yet been applied to invertebrate animals—the targets of

insecticides and anthelmintics—at a large scale. Furthermore,

although previous zebrafish screens were high throughput, their

spatial resolution was low and phenotypes were limited to activity

levels in response to stimuli. Recent work in computational ethology

has shown the power of moving beyond point representations of

animal behavior to include information on posture (Anderson &

Perona, 2014; Egnor & Branson, 2016; Berman, 2018; Brown & de
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Bivort, 2018). From previous symptomology work, it is clear that

detailed postural information can be useful for resolving mode of

action (Sluder et al, 2012; Salgado, 2017). We chose C. elegans as

our model system because it is small and compatible with multiwell

plates and automated liquid handling. It is sensitive to anthelmintics

and insecticides and has played an important role in mode-of-action

discovery in the past (Brenner, 1974; Sluder et al, 2012; Bucking-

ham et al, 2014; Burns et al, 2015; Hahnel et al, 2020).

To combine the benefits of high throughput and high resolution,

we used megapixel camera arrays to record the behavioral

responses of worms to a library of 110 compounds covering 22

distinct modes of action. We simultaneously recorded all of the

wells of 96-well plates with sufficient resolution to extract the pose

of each animal and a high-dimensional behavioral fingerprint that

captures aspects of posture, motion, and path. We show that worms

have diverse dose-dependent behavioral responses to insecticides

and anthelmintics and develop a machine learning approach that

shares information across replicates and doses to accurately predict

the mode of action of previously unseen test compounds. Further-

more, we show that a novelty detection algorithm can provide an

indication that a compound belongs to a mode of action not seen in

the training set. This novelty score can be used as a measure of con-

fidence in the class prediction, suggesting a way to prioritize

compounds with potentially novel modes of action early in the

development process. These results demonstrate that high-through-

put phenotyping in C. elegans is a promising approach for assisting

target deconvolution in anthelmintic and insecticide discovery.

Finally, we show that our prediction accuracy might be limited by

uncertainties in the class definition rather than noise or phenotypic

dimensionality. Specifically, we show that we can classify

compounds even within a mode-of-action class, suggesting that

there are limitations in our knowledge of the relevant pharmacology

rather than limitations in our ability to reproducibly detect

compound-induced phenotypes.

Results

Insecticides affect phenotypes in multiple behavioral dimensions

We assembled a library of 110 insecticides and anthelmintics with

diverse targets to sample a range of modes of action used medi-

cally and commercially (see Dataset EV1 for full list). The modes

of action represented in the library cover 70% of the market of

insecticides used in the field (Sparks & Nauen, 2015) and several

important classes of anthelmintics used in veterinary and human

medicine (Nixon et al, 2020). To quantify the effects of the

compounds on behavior, we recorded worms using megapixel

camera arrays that simultaneously image all of the wells of 96-

well plates (Fig 1A). We recorded at least 10 replicates at three

doses for each compound with enough resolution to extract high-

dimensional behavioral fingerprints following segmentation, pose

estimation, and tracking (Fig 1A). The behavioral fingerprints are

vectors of posture and motion features that are subdivided by

body segment and motion state including “midbody curvature

during forward crawling” or “angular velocity of the head with

respect to the tail while the worm is paused”. We have previously

shown that similar features can detect even subtle behavioral dif-

ferences that can be difficult to detect by eye (Yemini et al, 2013)

and that the combined feature set has sufficient dimensionality to

accurately classify worms with diverse behavioral differences

caused by genetic variation and optogenetic perturbation (Javer

et al, 2018a, 2018b).

As expected, several compound classes have strong visible

effects on C. elegans behavior including the glutamate-gated chlo-

ride channel activator emamectin benzoate, the spiroindoline

vesicular acetylcholine transporter inhibitor SY1713, and the sero-

tonin receptor antagonist mianserin. All three compounds at speci-

fic doses can be distinguished from DMSO controls and from each

other in a simple two-dimensional space defined by speed and

body curvature (Fig 1B). The large differences in curvature and in

motion caused by some compounds are observable by eye, as

shown in the inset images and in Fig 1C. However, not all

compounds are well separated in these two dimensions; the gray

points in Fig 1B show the dose means and standard deviation of

all the compound doses in the speed/tail curvature space, which

largely overlap. Some of the screened compounds might not have

detectable effects on C. elegans and therefore cannot be used for

phenotypic mode-of-action prediction. To find the compounds with

no effect, we compared the behavioral fingerprints of treated

worms with DMSO controls using univariate statistical tests for

each feature and correcting for multiple comparisons with the

Benjamini–Yekutieli procedure (Benjamini & Yekutieli, 2001). To

account for random day-to-day variation in the experiments, we

used a linear mixed model for these statistical tests, where the

fixed effect is the drug dose and the day of the experiment is

added as a random effect. The number of features that are signifi-

cantly different at a false discovery rate of 1% between the

▸Figure 1. Insecticides affect phenotypes in multiple behavioral dimensions.

A We image an entire 96-well plate with a megapixel camera array with enough resolution and high enough frame rate to track, segment, and estimate the posture of
C. elegans over time.

B All compound doses in the speed/tail curvature space, with points and lines showing the mean and standard deviation of biological dose replicates. On average, 12
biological replicates were collected per compound dose, together with 601 DMSO replicates, across at least 3 different tracking days for each condition. Several
compounds, including the serotonin receptor antagonist mianserin (blue), glutamate-gated chloride channel activator emamectin benzoate (purple), and vesicular
acetylcholine transporter inhibitor SY1713 (red), have a strong effect on the worms’ behavioral phenotype. They can be distinguished from the DMSO control (black)
and from each other based on speed and tail curvature alone. Not all compounds are well separated in these two dimensions (gray points). Inset images are samples
that show postural differences.

C Sample worm skeletons over time show the effect of the compounds highlighted in (B) on motion.
D Number of features significantly different from the DMSO control at a false discovery rate of 1% for each compound, grouped by mode of action. The pre-stimulus,

blue light stimulus, and post-stimulus data are shown separately (a total of 3,020 features are tested for each assay period). The percentage of significantly different
features is highest for the blue light stimulus recording.
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behavior of worms treated with each compound and the DMSO

controls is summarized in a heat map (Fig 1D).

To further increase the dimensionality of the behavioral pheno-

types, we included a blue light stimulation protocol. Each tracking

experiment is divided into three parts: (i) a 5 min pre-stimulus record-

ing, (ii) a 6-min stimulus recording with three 10-s blue light pulses

starting at 60, 160, and 260 s, and (iii) a 5 min post-stimulus record-

ing. Blue light is aversive to C. elegans (Edwards et al, 2008) and so it

can help to distinguish between animals that are simply pausing and

those that are not able to move (Churgin et al, 2017). Behavioral dif-

ferences are observed in each assay period, but the stimulus period

shows the most differences (Fig 1D). Even within mode-of-action

classes, compound potency can be highly variable. The largest potency

difference is observed for the octopamine agonists where amidine

affects 0.08% of features and oxazoline affects 75% of features. Over-

all, 86% of compounds have a detectable effect on behavior in at least

one feature. The 17 compounds that showed no detectable effect in

any stimulus period were not included in subsequent analysis.
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Compounds with the same mode of action have similar
effects on behavior

Having established that C. elegans shows diverse behavioral

responses to insecticides and anthelmintics, we next sought to deter-

mine to what extent the responses are mode-of-action-specific. For

the initial clustering, we used 256 features from each blue light

condition. These features were selected for their usefulness in classi-

fying mutant worms in a previous paper (Javer et al, 2018b). For all

clustering and classification tasks, we first z-normalize each feature

to put them on a common scale and to prevent arbitrary choices of

units from impacting the analysis. We used hierarchical clustering

to visualize the relationships between the behavioral responses to

different compounds at different doses (Fig 2A). Each row of the

heat map is the average of all of the replicates of a given compound

at a specific dose. We also included the averages of six subsets of

the DMSO replicates randomly partitioned across tracking days as

control points. Several of the compound classes show clear cluster-

ing, including the AChE inhibitors, vAchT inhibitors, GluCl agonists,

and mAchR agonists. The DMSO averages also cluster closely

together. The degree of mode-of-action clustering is greater than

expected by chance, which can be seen in a plot of the cluster purity
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Figure 2. Clustering and dose response of behavioral fingerprints.

A Hierarchical clustering of behavioral fingerprints highlights structure in the responses to different compounds. Each row of the heat map represents the mean dose
fingerprint of a specific compound described by 256 pre-selected features from each blue light condition. Clear clusters can be observed for some compound classes,
e.g., AChE inhibitors, vAchT inhibitors, GluCl agonists, and mAchR agonists. Low doses and low potency compounds from different classes cluster together around the
DMSO averages at the center-top part of the heat map.

B Cluster purity as a function of the hierarchical cluster distance shows that the degree of mode-of-action clustering (red) is greater than expected by chance for
random clusters (gray).

C Compounds in the same class can have different dose–response curves. (upper) The three mitochondrial inhibitors cyazofamid, rotenone, and SY1048 all decrease
angular velocity, but the concentration at which their effect is measurable is not conserved across compounds. (lower) Different spiroindolines affect body curvature
differently. SY1786’s dose–response curve is non-monotonic. The central band and box limits show the median and quartiles of the distribution of the biological
replicates for each compound dose (on average 12 wells per dose and 601 DMSO wells), while the whiskers extend to 1.5 IQRs beyond the lower and upper quartile.
The P-values reported in the legend represent the significance of the drug dose effect and were estimated using linear mixed models with tracking day as random
effect and drug dose as fixed effect. The positions of these compounds in the heat map in (B) are marked using the color bar on the right side of the heat map.
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observed in the data compared with random clustering (Fig 2B).

However, the distance between compounds that share the same

mode of action can be large, even for classes that cluster well over-

all, in part because behavioral fingerprints change with dose. It is

also not always possible to align feature vectors using doses because

compounds can have very different potencies: A low dose for

one compound could be a high dose for another. Furthermore, the

compound concentration inside the worm is likely to be much lower

than the concentration in the media because of C. elegans’ consider-

able xenobiotic defenses (Hartman et al, 2021) and the degree of

uptake will also vary across compounds even within a mode-of-

action class. For this reason, the center-top part of the heat map in

Fig 2A is populated with low doses and compounds that either have

a low potency or low uptake in the worm, which do not form

distinct clusters based on their mode of action, but are rather clus-

tered around the DMSO averages.

These effects can be seen in dose–response plots for individual

features. The three mitochondrial inhibitors in Fig 2C all decrease

angular velocity, but they do it at different doses. At 3 μM, only

SY1048 has a strong effect, while at 30 μM, rotenone has a similarly

strong effect. Clustering based on angular velocity would lead to

qualitatively different conclusions about nearest neighbors at these

different doses. For the spiroindolines, similar differences in dose–
response are observed for body curvature with the added difference

that the effect of SY1786 is non-monotonic and returns to baseline

at high doses. These non-monotonic effects can be due to

compounds precipitating from solution at high doses or due to

intrinsically complex compound effects such as a compound that

causes an increase in speed at low doses but is lethal at high doses.

Regardless of the cause, complex dose–response curves present

challenges for mode-of-action prediction since supervised machine

learning algorithms rely on differences in feature distributions to

learn decision boundaries and dose–response effects spread out the

distributions and increase the overlap between classes.

Combining classifiers by voting enables
mode-of-action prediction

The behavioral fingerprints of compounds with the same mode of

action have the same direction in the phenotypic space and can be

used for classification in mode-of-action classes. For the classification

task, we need a minimum number of compounds per class to get an

accurate representation of the class distribution. Out of the

compounds with detectable effects in C. elegans, we choose only the

classes with at least five compounds (10 classes with 76 compounds).

We take advantage of the fact that several replicates are recorded per

condition and resample with replacement from the multiple replicates

for each dose to create a set of average behavioral fingerprints. This

effectively smooths the data reducing the effect of outliers. At the

same time, it provides a simple method for balancing classes before

classifier training. For classes with fewer compounds, we resample

more times so that each class contains the same number of points

(see Fig EV1). To partially mitigate the effect of compound potency,

we then normalize each behavioral fingerprint to unit magnitude.

This normalization is done row-wise on each sample in contrast to

the z-normalization described above which is done column-wise on

each feature. Rescaling in this way brings compounds with similar

effect profiles but different potencies closer together in feature space

(Figs 3A and EV2), but because of nonlinearities in the dose–-
response profiles, the overlap is not perfect even after rescaling.

Predictions must be combined across doses and replicates to

make a single prediction for the mode of action of a given

compound. Inspired by an analogy with the multi-sensor fusion

problem (Singh et al, 2019), we use a voting procedure to make a

final prediction. However, in contrast to multi-sensor fusion, we

cannot train different classifiers for each dose because 1 μM for one

compound is not equivalent to 1 μM for another compound. Instead,

we train a single classifier for all doses and make predictions for

each data point. Each data point contributes a vote for a

compound’s class and the class with the most votes wins.

We split our data into a training/tuning set consisting of 60

compounds and a hold-out/reporting dataset consisting of 16

compounds containing at least one compound for each mode-

of-action class. For mode-of-action prediction, we started with the

full set of features output by Tierpsy (3,020 per blue light condition

for 9,060 in total) and used the training set to determine an appro-

priate classifier, select features, and tune hyperparameters using

cross-validation. We achieved the highest cross-validation accuracy

with 1,024 features selected using recursive feature elimination with

a logistic regression estimator. The hyperparameters of the classifier

were also tuned using cross-validation, and the best version of the

estimator was multinomial logistic regression with l2 regularization

and penalty parameter C = 10. Using a regularized linear classifier

helps to control overfitting in this high-dimensional feature space,

which boosts the cross-validation accuracy. The confusion matrix

from cross-validation using the best performing feature set and clas-

sifier is shown in Fig 3. To determine whether the classifier could

generalize to unseen compounds, we applied it to the test data with-

out further tuning. The classifier predicted the correct mode of

action for the unseen compounds 88% of the time (Fig 3C). We

generated a null model by partitioning the DMSO data randomly

across tracking days to 10 classes. Following the same steps as for

the compound-treated data, we obtained a maximum cross-valida-

tion accuracy of 10% using the training set, while the prediction

accuracy in the test set was 12.5%.

In addition to the 10 modes of action that were represented by at

least five compounds in our dataset, we had 17 compounds with a

detectable effect on C. elegans that belonged to 11 sparsely popu-

lated mode-of-action classes. We used these additional compounds

to simulate another use case for our approach: detecting screening

hits that represent potentially novel modes of action that do not fall

into known classes. We use the term “novel test set” to describe

these compounds, since their modes of actions are unknown (novel)

to the trained classifier. Using a novelty detection algorithm

(preprint: Vinokurov & Weinshall, 2016) with some modifications,

we assigned a novelty score to each of the test and novel test

compounds based on their affinity to each of the existing classes. To

obtain the novelty score, we use an ensemble of support vector

machine (SVM) classifiers that flag novel compounds based on the

confidence values of the main multinomial logistic regression classi-

fier used for the predictions of known classes. The ensemble of SVM

classifiers is trained using partitions of the training set into

presumed-known and presumed-unknown classes. The novelty

score is defined as the weighted average of the output of this ensem-

ble. Most of the novel compounds were assigned novelty scores

above 0.8 (Fig 3D). Several of the non-novel compounds—those
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that come from a class that is present in the training data—have

high novelty scores, but this includes the two test compounds that

were incorrectly classified. In this case, the high novelty score

correctly indicates low confidence in the prediction of the classifier.

To explore the origin of the high novelty score for the incorrectly

classified compounds, we looked for differences between the effects

of compounds within a class.

Mode-of-action deconvolution within classes

Although compounds are categorized into broad mode-of-action

classes, most compounds will have some degree of off-target

engagement. If the off-target effects are different for compounds

within a mode-of-action class or if the compounds have differences

in pharmacokinetics, they may lead to different phenotypes. In this

case, it may be possible to use behavioral fingerprinting to further

deconvolve mode-of-action classes revealing hidden compound

heterogeneity. To test for phenotypic differences within mode-

of-action classes, we trained a classifier to distinguish the replicates

from each compound within a class from the replicates of the other

compounds in the class. We then used cross-validation accuracy to

quantify the distinguishability of the compounds within a class. We

hypothesized that for classes without mechanistic sub-classes, the

classifier would perform similarly to random guessing. In contrast,
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Figure 3. Classifiers trained on behavioral fingerprints can predict the mode of action of unseen test compounds.

A Toy data illustrating the potential benefit of normalization in correcting for potency differences within mode-of-action classes. Following normalization, each
behavioral fingerprint exists on a hypersphere in the phenotype space regardless of effect size in the original space. Nonlinear dose–response curves will not collapse
perfectly following normalization, which is a linear transformation.

B The confusion matrix obtained through cross-validation for the best performing feature set (1,024 features) and logistic regression classifier following feature
selection and hyperparameter tuning on the training data.

C The confusion matrix for the classifier trained in (B) applied to previously unseen test compounds without any further tuning.
D The novelty score assigned to novel test compounds with a mode of action not seen during training compared to the novelty score of compounds from the test set in

(C). Novel compounds tend to have higher novelty scores than compounds from previously seen modes of action. The non-novel compounds with high novelty scores
include the two incorrectly classified test compounds (in red box).
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if compounds with the same mode of action had different off-target

profiles or different pharmacokinetics, the classifier would be able

to reliably distinguish individual compounds or subsets of

compounds with the same broad mode of action.

In all classes, the compound-level classifiers performed better

than random guessing, in some cases by a large margin. One of the

incorrectly classified compounds in the test set was ritanserin,

which was also assigned a high novelty score. The within-class clas-

sifier shows that it is indeed clearly distinguishable from the other

5-HT receptor antagonists (Fig 4A). Although ritanserin is known to

be a 5-HT receptor antagonist, it is also known to affect multiple

other targets. In addition to detecting outlying compounds, the devi-

ations from random guessing revealed substructures within the

classes. For example, one group contains the two antidepressants,

which are nearest neighbors in terms of structural similarity (atom

pair Tanimoto coefficient of 0.44 between the antidepressants

compared with a Tanimoto coefficient of 0.20 � 0.09 (mean � SD)

for the other pairwise comparisons within the class). As with ritan-

serin, the other four compounds in this class have known polyphar-

macology, which could be driving their clustering. Another class

with interesting substructure is that consisting of mitochondrial inhi-

bitors, which also separates into distinguishable groups (Fig 4B). In

this case, the phenotypically distinct groups separate the complex I

inhibitors from the complex II and complex III inhibitors, which

appear phenotypically more similar. The mectins we tested are

structurally similar and are known to share the same binding site,

suggesting they would be difficult to separate into subgroups.

Consistent with this expectation, the compound-level mectin classi-

fier performs only slightly better than chance (Fig EV3).

Discussion

We have shown that worms have diverse responses to insecticides

and anthelmintics and that behavioral fingerprints can be used to

cluster compounds with similar modes of action. With appropriate

normalization and by combining information across doses and repli-

cates through voting, we can also accurately predict the mode of

action of previously unseen compounds despite differences in

compound potency and uptake into the worm. Improving
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Figure 4. Mode of action can be resolved within compound classes.

A The confusion matrix showing cross-validation performance of a classifier trained to distinguish serotonin receptor antagonists from each other. Ritanserin is
distinguishable from all other compounds, and the two structurally similar antidepressants (mianserin and methiothepin) are somewhat mutually confused by the
classifier but are distinguishable from the non-antidepressants.

B The confusion matrix for the mitochondrial inhibitors also shows some substructure: complex II and III inhibitors (cyazofamid, antimycin, cyenopyrafen) are
phenotypically similar, and distinct from the complex I inhibitors.
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compound delivery through non-specific means such as using cuti-

cle disrupting mutants (Xiong et al, 2017) could equalize the inter-

nal concentrations of compounds and reduce this source of

variation in the data. Improved delivery may increase the number of

compounds with detectable effects on behavior and improve the

accuracy of mode-of-action predictions.

Given the wide variety of modes of action included in this study,

it might be expected that the dimensionality of worm behavior

would be limiting. In other words, it could have been the case that

worm behavior can only vary in a small number of ways and that

this would limit the number of distinct classes that are distinguish-

able using tracking data alone. On the contrary, we found that in

addition to predicting mode of action across ten classes, we could

often classify at the level of individual compounds and that the

within-mode-of-action confusion matrices revealed subgroups that

related to finer-scale mechanistic divisions. This finding suggests

there is sufficient dimensionality in worm behavioral responses to

detect mode of action and more detailed pharmacological dif-

ferences such as the spectrum of a compound’s off-target effects or

differences in target engagement. These results belie worms’ superfi-

cial simplicity but are consistent with genetic findings that muta-

tions can lead to multiple types of uncoordination (Brenner, 1974)

and with tracking results, suggesting that even wild-type sponta-

neous locomotion is surprisingly complex (Schwarz et al, 2015;

Gomez-Marin et al, 2016).

The most obvious limitation of our method is that not all

compounds affect the N2 strain of C. elegans. Only a small minority

of the compounds we assayed had no detectable effect, but there

will be entire classes of compounds that are not expected to have an

effect on C. elegans because their targets are not conserved, such as

the pyrethroid insecticides that target voltage-gated sodium chan-

nels (Vijverberg & van den Bercken, 1990). Expanding the range of

organisms included in the training data is one way to address this

limitation. There are methods for deriving multidimensional behav-

ioral fingerprints that incorporate postural information from flies

(Berman et al, 2014) and zebrafish larvae (Marques et al, 2018),

and both organisms are compatible with high-throughput screening.

Because our approach already involves the fusion of data from

multiple samples, additional species-level classifiers could be seam-

lessly incorporated into the voting procedure to arrive at a final

prediction. Results from ensemble learning in diverse fields suggest

a further benefit of a multi-species approach: Increasing the votes

from independent classifiers should increase classifier accuracy if

the predictions from different species are partially uncorrelated (Kit-

tler et al, 1998). The sample principle applies beyond behavioral

phenotypes. The results of automated symptomology can also be

combined—within the same analysis framework—with data from

non-animal species including bacteria and fungi as well as other

assays commonly used in mode-of-action identification including

genetic and biochemical assays.

Strains of C. elegans that have been recently isolated from the wild

are readily available (Cook et al, 2016) and have given insight into

anthelmintic resistance (Ghosh et al, 2012). Using wild-isolated

strains of C. elegans would increase the diversity of compound

responses without having to modify the experimental protocols for

screening or downstream analysis. Moving beyond C. elegans to other

nematode species, including parasitic nematodes, could provide

further independent phenotypes for improving mode-of-action

prediction. However, particularly for animal parasites, different

morphologies might require alternative analysis approaches (Mar-

cellino et al, 2012; Buckingham et al, 2014; Partridge et al, 2018).

Phenotypes derived from in vitro microscopy of cells in culture

have also been extensively studied for mode-of-action prediction

(Perlman, 2004; Ljosa et al, 2013; Caicedo et al, 2017). Human cells

in culture would provide an additional phylogenetically distinct

species to combine with invertebrate screening. Human cell

responses may also give an indication of mammalian toxicity (Klein-

streuer et al, 2014). However, there are drawbacks with respect to

insecticide and anthelmintic discovery. The first, which is shared

with zebrafish, is that the goal of these compounds is to affect inver-

tebrates without affecting vertebrates so there may be a lower

response rate than for pharmaceutical compounds. Cultured insect

cells (Douris et al, 2006) could be used in similar assays as human

cells but may provide more relevant information for insecticide

mode of action. The second drawback, which applies to most

culture systems, is that some compounds act on super-cellular struc-

tures. For example, acetylcholinesterase inhibitors act by causing a

buildup of acetylcholine at synapses or neuromuscular junctions.

Whole-animal phenotypic screening is therefore likely to continue

to play a role in phenotypic screening of neuroactive compounds

both for discovery and for mode-of-action prediction.

Symptomology is an important technique for mode-of-action

determination in insecticide discovery. Our method would therefore

fit straightforwardly into existing discovery pipelines. Since pheno-

typic screening in pest species is the primary means of lead identifi-

cation, an intriguing possibility would be to adapt our method to

primary screening data so that mode-of-action prediction is not only

available for selected hits but can already be included at the earliest

stages of decision making. Given advances in computer vision and

pose estimation (Mathis et al, 2018; Graving et al, 2019; Pereira

et al, 2019), it should be possible to track pest species in complex

media such as leaf sections with existing technology. Improved

phenotyping in primary screens might also reduce false-negative

rates by picking up compounds with unique phenotypic effects that

are too weak to register as hits using current metrics but might

provide useful starting points for optimization.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or catalog number

Experimental models

N2 (C. elegans) Caenorhabditis Genetics Center (CGC) N/A
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or catalog number

OP50 (E. coli) Caenorhabditis Genetics Center (CGC) N/A

Chemicals, enzymes and other reagents

Bactopetone (NGM) ThermoFisher 211820

Bio-agar (NGM) Biogene 400-050

CaCl2 (NGM) Sigma C3881-1KG

Cholestrerol (NGM) Sigma C1145-250MG

DMSO Sigma-Aldrich 276855-100ML

Ethonol (NGM) VWR 20823.362

KH2PO4 (M9) Sigma-Aldrich P0662-500G-M

MgSO4 (M9) Fisher M/1050/53

NaCl (M9/NGM) Sigma- Aldrich 71376-1KG

NaHPO4 (M9) VWR 28040.291

Sodium Hydroxide 1 M (Bleach) Merck Millipore 1091371000

Sodium hypochlorite, 5% Chlorine (Bleach) Fisher Scientific #419550010

Software

tierpsy-tracker ver 1.5.2-alpha+3c2c254 https://github.com/Tierpsy/tierpsy-tracker

tierpsy-tools-python ver 0.1 https://github.com/Tierpsy/tierpsy-tools-python

Well-annotator https://github.com/Tierpsy/WellAnnotator

Other

Whatman UNIPLATE 96-Well Clear Microplates VWR international Ltd WHAT7701-1651

Whatman Clear Universal Microplate Lid VWR international Ltd WHAT-77041001

VIAFILL Bulk Reagent Dipenser INTEGRA 5600

VIAFLO 96, 24 and 96 channel handheld pipette INTEGRA 6001

acA4024-29um - Basler ace (camera) Basler 107404

HF3520-12 M 1" (lens) FUJIFILM HF3520-12 M

Hydra Imaging Rig LoopBio GMBH N/A

Methods and Protocols

Worm husbandry
The N2 Bristol C. elegans strain was obtained from the CGC

(Caenorhabditis Genetics Center) and cultured on Nematode Growth

Medium at 20°C and fed with E. coli (OP50) following standard

procedures (Brenner, 1974).

Worm preparation
Synchronized populations of young adult worms for imaging were

cultured by bleaching unsynchronized gravid adults, and allowing

refed L1 diapause progeny to develop for two and a half days (a

version of the protocol is maintained at protocols.io https://dx.doi.

org/10.17504/protocols.io.2bzgap6). On the day of imaging, young

adults were washed in M9 (a version of the protocol is maintained

at protocols.io https://dx.doi.org/10.17504/protocols.io.bfqbjmsn)

and transferred to the prepared drug plates (2 worms per well for

the first round of imaging in December 2019 and 3 worms per well

in the second round in January 2020) via the COPAS 500 Flow Pilot

(a version of the protocol is maintained at protocols.io https://dx.

doi.org/10.17504/protocols.io.bfc9jiz6) and returned to a 20°C incu-

bator for 3.5 h. Plates were then transferred onto the multi-camera

tracker for another 30 min to habituate prior to imaging so that the

total drug exposure time was 4 h.

Plate preparation
Low peptone (0.013%) nematode growth medium (a version of the

protocol is maintained at protocols.io https://dx.doi.org/10.17504/

protocols.io.2rcgd2w) was prepared as follows: 20 g agar (Difco),

0.13 g bactopeptone, and 3 g NaCl were dissolved in 975 ml of Milli-

Q water. After autoclaving, 1 ml of 10 mg/ml cholesterol was added

along with 1 ml of 1 M CaCl2, 1 ml 1 M MgSO4, and 25 ml of 1 M

KPO4 buffer (pH 6.0). Molten agar was cooled to 50–60°C, and 200 μl
was dispensed into each well of 96-square well plates (WHAT-

7701651) using an Integra VIAFILL (a version of the protocol is main-

tained at protocols.io https://dx.doi.org/10.17504/protocols.io.bmxb

k7in). Poured plates were stored agar side up at 4°C until required.

Prior to applying compounds, plates were placed without lids in

a drying cabinet to lose 3–5% weight by volume and then stored

with lids (WHAT-77041001) at room temperature until required.

Compound preparation
Compounds were prepared for screening by dissolving in DMSO at

1,000× their final imaging plate concentration (so that final
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concentration of DMSO in imaging plates was 0.01%). The results

presented here are pooled from two rounds of experiments that used

two different methods of adding compounds.

For the first round (December 2019), the library was stored in 56

“master” 96-well plates in which eight replicates of each compound

solution were in a single column of a 96-well plate and lower

concentrations were made by serial dilution of the highest concen-

tration using DMSO. There were up to six doses per drug and one

column was reserved for DMSO and one column for no compound

controls on each master plate, which were stored at −20°C. The day

prior to imaging, “source” plates were prepared using an Integra

VIAFLO 96-channel pipette by adding 7 µl water and 0.5 µl 1,000×
drug and mixing by pipetting up and down. 5 µl water was added to

the surface of each well of an imaging plate to facilitate compound

transfer and prevent agar damage from pipette contact. Then, 3 µl of
compound was transferred from the source plates to the destination

imaging plates using an Opentrons liquid handling robot, which

randomly shuffled the column order during the transfer (Fig EV4).

For the second round (January 2020), “master” 96-well plates

were filled sequentially with three doses of each drug (made by serial

dilution of the highest concentration using DMSO) so that the entire

library fitted into three and a half 96-well plates. Three sets of shuf-

fled “library” plates were created with randomized column orders

using an Opentrons robot so that three replicates per drug per dose fit-

ted into 10.5 96-well plates. All plates were stored at −20°C. The day
prior to imaging, “source” plates were prepared using the VIAFLO by

transferring 1.4 µl of 1,000× drug from the shuffled “library” plates

into 96-well (PCR) plates filled with 19 µl of water and pipetted up

and down to mix. 5 µl of water was added to the imaging plates to

facilitate compound transfer, and then, 3 µl of the pre-diluted

compounds was then transferred to imaging plates using the VIAFLO.

After the drug had absorbed into the agar, imaging plates were

seeded with 5 µl OP50 diluted 1:10 in M9 solution using an Integra

VIAFILL and left overnight at room temperature in the dark. Full

protocols are available at https://doi.org/10.17504/protocols.io.

9vqh65w and https://doi.org/10.17504/protocols.io.bn5zmg76.

Image acquisition
Image acquisition was performed on five custom-built tracking rigs

(LoopBio GMBH, Vienna). Each rig features six Basler acA4024

cameras (Basler AG, Ahrensburg, Germany) arranged in a 3 × 2 array

and equipped with Fujinon HF3520-12 M lenses (Fujifilm Holding

Corporation, Tokyo, Japan) and long-pass filters (Schneider-Kreuz-

nach IF 092; Schneider-Kreuznach, Germany, and MidOpt LP610;

Midwest Optical Systems Inc., Palatine, IL, USA). This allows us to

simultaneously image all the wells of a 96-well plate at up to 30

frames/s and with 12.4 µm/px resolution. Blue light stimulus was

provided using four Luminus CBT-90 TE light-emitting diodes with a

peak wavelength of 456 nm and peak radiometric flux of 10.3W each.

To avoid any light avoidance response during the off-stimulus

imaging periods, we used a near-infrared (850 nm) LED panel with

two collimation filters (3 M; St. Paul, MN, USA) to provide uniform

bright-field illumination.

Each imaging rig is connected to two Dell workstations with an

Intel i7 CPU (Intel Corporation, Santa Clara, CA, USA), 16 GB of

RAM, an Nvidia Quadro P2000 (Nvidia Corporation, Santa Clara,

CA, USA), and running Ubuntu 18.04 LTS (Canonical Ltd., London,

UK). Each machine handles the data acquisition of three cameras,

via as many USB3 connections. Loopbio’s Motif software and API

are used to control the image acquisition and light stimulation.

Each tracking experiment is divided into three parts, which are

run in series by a script: (i) a 5 min pre-stimulus recording, (ii) a

6 min stimulus recording with three 10-s blue light pulses starting at

60, 160, and 260 s, and (iii) a 5 min post-stimulus recording.

Image processing and quality control
Segmentation and skeletonization were performed using Tierpsy

tracker (Javer et al, 2018a) (https://github.com/Tierpsy/tierpsy-trac

ker). Each video was manually checked using the Tierpsy tracker

viewer, and any wells that had precipitation, excess unabsorbed

liquid that led to swimming worms, or damaged agar were marked

as bad and excluded from the analysis.

Feature extraction and pre-processing
Python code to reproduce the analysis in the paper is available on

GitHub (https://github.com/Tierpsy/moaclassification). We used

Tierpsy tracker to obtain summarized behavioral features for each

screened well (Javer et al, 2018b). These include morphological

features such as length and width, postural features such as curva-

ture, and features describing movement such as speed and angular

velocity. A total of 3,020 features is obtained. We derived summa-

rized features separately for the pre-stimulus period, for the period

with blue light stimuli, and for the post-stimulus period resulting in a

total of 9,060 features for each well.

In addition to the manual quality control described above, we

used the filtering options in Tierpsy tracker to filter out tracked

objects that have average width smaller than 20 μm or larger than

500 μm and average length smaller than 200 μm or larger than

2,000 μm. We also removed wells in which the number of tracked

skeletons is smaller than 50 and wells for which more than 20% of

the features could not be evaluated. Features that have more than

5% NaN values in the entire dataset are removed entirely. Any

remaining NaN values are imputed to the mean of the given feature

calculated across all wells. Compounds with very low effect

compared with DMSO are also removed from the dataset. A

compound is considered to have very low effect when none of the

features shows significant differences across doses (including DMSO

as dose 0) in a statistical test based on a linear mixed model with

random intercept where the dose is the fixed effect and the day of

the experiment is the random effect. The Benjamini–Yekutieli
method (Benjamini & Yekutieli, 2001) with 1% false discovery rate

was used to correct for multiple comparisons. Out of 110

compounds that were screened, 17 do not show a detectable effect

in any of the features based on the univariate statistical tests and

are therefore dropped from subsequent analysis. After cleaning up

the dataset, we standardize the features (to mean 0 and standard

deviation 1) to bring them on a common scale and prevent the unit

differences from influencing the analysis.

For the classification task, we use a bootstrap method that simul-

taneously smooths the data and balances the classes. We bootstrap

from the dose replicates of every compound (i.e., we resample with

replacement until we get a sample 0.6 times the size of the initial

sample) multiple times and each time we derive the mean feature

values. In this way, we replace the drug dose replicates with boot-

strapped averages, which smooth the data reducing the effect of

outliers. This method also gives an easy way to balance the classes.
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The number of bootstrapped averages per dose in the training set

depends on how well-populated the mode-of-action class is. In the

class with the most members (AChE inhibitors with 9 compounds),

we get 20 bootstrap averages per drug dose. In the rest of the

classes, the number of averages is proportional to the ratio between

the max number of members in a class (9) and the number of

members in the given class. Finally, to partially mitigate the effect

of compound potency, we normalize each behavioral fingerprint to

unit L2 norm. Rescaling in this way brings compounds with similar

effect profiles across features but different potencies closer together

in feature space.

Train, test, novel split
For the classification task, we created a training set and a test set.

We considered that we need at least 4 compounds per class in the

training set for cross-validation, so classes with less than 5

compounds were not included. As a result, we used ten classes for

the classification task with a total of 76 compounds. The partitioning

in training set and test set was done using stratified split as imple-

mented in scikit-learn (Pedregosa et al, 2011) with 20% of the

compounds of each class included in the test set. Using this method,

60 compounds were assigned to the training set, while 16

compounds spanning all ten classes were assigned to the test set.

The compounds of the sparsely populated classes that are not

included in the classification task were considered novel test

compounds and were used for novelty detection. Eleven classes with

a total of 17 compounds are included in the novel test set. The train-

ing set was used for feature selection and hyperparameter selection.

The test set was used to test the classification accuracy of the

selected trained model. Both the test set and the novel test set were

used to test the novelty detection method. The pre-processing and

splitting of the data are described in a flow chart in Fig EV5.

Hierarchical clustering
To investigate how well the compounds of the same mode-of-action

cluster together in an unsupervised way, we use hierarchical cluster-

ing. For this task, we use the 256 features in the tierpsy_256 feature

set (Javer et al, 2018b) from every blue light condition. We need a

reduced feature set for the clustering, because of the redundancy in

our full feature set and for visualization purposes. The tierpsy_256

set is a useful subset of the total feature set derived in a previous

paper (Javer et al, 2018b), which we use as a starting point before

doing problem-specific feature selection. For the hierarchical cluster-

ing, we create a matrix where each row is the average of all the

replicates of a specific drug dose and each column is one of the

tierpsy_256 features at a specific blue light condition. We also

include 6 rows with the average of 6 partitions of the DMSO control

replicates randomly samples across tracking days. We generate

multiple DMSO averages to check how well they cluster together

and locate the region of low compound effects in the clustermap.

We create 6 DMSO partitions because in this way the number of

averaged DMSO replicates is similar to the number of data points

per compound. We use the hierarchical clustering algorithm imple-

mented in the seaborn (Waskom, 2021) clustermap function with

complete linkage and cosine distances. To assess the quality of the

clustering, we use the row linkage dendrogram and compare the

cluster purity at each level of the dendrogram with the purity of

random clusters. To get the random clusters, we permute the cluster

labels derived from the dendrogram. We repeat the permuta-

tion 1,000 times. A flow chart of the steps followed for the hierar-

chical clustering is shown in Fig EV6.

Classification by mode of action
The classification of compounds into modes of action is a classifi-

cation of “bags” of data points, as we know that we have the same

label across doses and across replicates of the same compound. To

get compound-level predictions, we use the following approach. We

train a single classifier with the rescaled bootstrapped averages from

all the compounds, and then, we combine the predictions across all

the data points of the same compound with a simple voting proce-

dure. Each bootstrapped average point contributes one vote for the

class of the compound. The predicted class for the compound is the

one with the most votes. We initially tested three types of classi-

fiers: logistic regression, random forest, and XGBoost. Logistic

regression performed better than the ensemble methods in terms of

cross-validation accuracy in the training set, so it was adopted for

the entire pipeline. Despite being a linear classifier, logistic regres-

sion performs well in this classification problem probably because

of the high dimensionality of the feature space, which renders the

separation of classes with linear hyperplanes possible. At the same

time, it limits overfitting both with the linear boundaries and with

the adoption of regularization.

As we have thousands of highly correlated features, we

performed feature selection with recursive feature elimination using

the training set. The estimator used for feature selection was multi-

nomial logistic regression with elastic net as implemented in sklearn

(Pedregosa et al, 2011). The term elastic net refers to a combination

of l1 and l2 regularization. We used a ratio of 0.5 between the l1 and

l2 regularization parameters. We tested different sizes of selected

feature sets and chose the set with 1,024 features, which resulted in

the highest fourfold cross-validation accuracy. The full list of

selected features is reported in Dataset EV2.

Using only the 1,024 selected features, we optimized the hyper-

parameters of the estimator using stratified fourfold cross-validation.

We tested the parameter grid shown in Table 1. The optimal param-

eters for the logistic regression classifier are penalty=“l2”, C=10,
multi_class=“multinomial”. The cross-validation accuracy presented

in Fig 3B is the result obtained with the optimal parameters. Finally,

using the optimal feature set and the optimal hyperparameters we

trained a classifier with the entire training set and predicted the class

of the unseen compounds in the held-out test set. The entire pipe-

line for the feature selection, hyperparameter tuning, training, and

testing of the classifier is outlined in the flow chart in Fig EV7.

To obtain a baseline for our classification accuracy, we generated

a null model by partitioning the DMSO data randomly across

Table 1. Parameter grid for model selection

Parameter Values option 1 Values option 2

Penalty “l1”, “l2” “elasticnet”

C 0.01, 0.1, 1, 10, 100, 1,000 0.01, 0.1, 1, 10, 100, 1,000

L1_ratio 0.1, 0.5, 0.9

Multi_class “multinomial”, “ovr” “multinomial”, “ovr”

Solver ‘saga” “saga”
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tracking days to fictitious 10 classes. We then followed the same

pipeline as for the real data: split the data in a training/tuning set

and a test set, performed features and hyperparameter selection

using cross-validation on the training set, trained a classifier with

the selected features and hyperparameters on the entire training set,

and predicted the class in the test set.

Novelty detection
To detect potentially novel modes of action that are not part of the

known classes seen by the trained classifier, we use an adjusted

version of the novelty detection algorithm for multiclass problems

proposed in Ref preprint: Vinokurov and Weinshall (2016). The

algorithm uses θ scores to assess the affinity of a compound to the

known classes. The θ score is defined as the ratio between the confi-

dence of the classifier in the most likely class and the confidence in

the second most likely class. Using our logistic regression classifier,

the θ score of a compound is given by:

θ¼
sort mean

i ∈ S
ðclass_probasÞ

� �
½0�

sort mean
i ∈ S

ðclass_probasÞ
� �

½1�

where S is the set of data points belonging to the given compound

and class_probas are the probabilities of each class predicted by

the trained classifier. These θ scores are fed to an ensemble of

binary support vector machines (SVMs) to flag novel compounds.

The ensemble is trained with the following procedure. First, we

partition the training set ten times, each time leaving one class out

as presumed novel. For each partition, we train a logistic regres-

sion classifier and we get the θ scores for the compounds of the

known classes and for the compounds of the presumed novel class.

Using the θ scores and the mean θ scores in the respective class as

input features, we train a binary SVM with RBF kernel to label

compounds with 0 if they are known and with 1 if they are novel.

This procedure gives us an ensemble of ten SVMs that take as

input the θ score of a compound and the mean θ score of its

assigned class and give as output a prediction of whether the

compound is novel. The final novelty score of the compound is

given by the average of the ten predictions weighted by the cross-

validation accuracy of the SVM in its respective training set. A flow

chart of the novelty detection method is shown in Fig EV8.

Within mode-of-action classification
To test for phenotypic differences within mode-of-action classes, we

trained a classifier to distinguish the replicates from each compound

within a class from the replicates of the other compounds in the

class. In this case, we did not use the bootstrapped averages, but

the standardized and normalized raw data. For each of the ten

modes of action included in the main classification task, we pool all

the compounds from the training set and the test set. Each

compound is considered a separate class. We use stratified fourfold

cross-validation to include replicates of every compound at every

dose both in the training and the test set in each fold. We then pool

together the predictions for each test fold to create a confusion

matrix for all the replicates. Finally, we cluster the confusion matrix

using the spectral co-clustering algorithm as implemented in scikit-

learn to reveal internal structure within the mode of action.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

� Tierpsy features and metadata: Zenodo (https://doi.org/10.5281/

zenodo.4681682).

� Raw data and tracking data: Zenodo (individual links per tracked

multiwell plate reported in Dataset EV3).

� Analysis computer scripts in Python: GitHub (https://github.com/

Tierpsy/moaclassification).

Expanded View for this article is available online.
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