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P H Y S I C S

Mutually unbiased bases and symmetric 
informationally complete measurements in  
Bell experiments
Armin Tavakoli1*†, Máté Farkas2,3‡, Denis Rosset4, Jean-Daniel Bancal1, Jedrzej Kaniewski5

Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many 
conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) 
introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, 
(ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs 
and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distri-
bution and device-independent quantum random number generation, respectively. Moreover, we also present 
the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum 
realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important 
discrete Hilbert space structures to the field of quantum nonlocality.

INTRODUCTION
Measurements are crucial and compelling processes at the heart of 
quantum physics. Quantum measurements, in their diverse shapes 
and forms, constitute the bridge between the abstract formulation 
of quantum theory and concrete data produced in laboratories. 
Crucially, the quantum formalism of measurement processes gives 
rise to experimental statistics that elude classical models. Therefore, 
appropriate measurements are indispensable for harvesting and re-
vealing quantum phenomena. Sophisticated manipulation of quantum 
measurements is both at the heart of the most well-known features 
of quantum theory such as contextuality (1) and the violation of Bell 
inequalities (2) as well as its most groundbreaking applications such 
as quantum cryptography (3) and quantum computation (4). In the 
broad landscape of quantum measurements (5), certain classes of 
measurements are outstanding because of their breadth of relevance 
in foundations of quantum theory and applications in quantum in-
formation processing.

Two widely celebrated, intensively studied, and broadly useful 
classes of measurements are known as mutually unbiased bases 
(MUBs) and symmetric informationally complete measurements (SICs). 
Two measurements are said to be mutually unbiased if by preparing 
any eigenstate of the first measurement and then performing the 
second measurement, one finds that all outcomes are equally likely 
(6). A typical example of MUBs corresponds to measuring two per-
pendicular components of the polarization of a photon. A SIC is a 
quantum measurement with the largest number of possible outcomes 
such that all measurement operators have equal magnitude overlaps 

(7, 8). Thus, the former is a relationship between two different mea-
surements, whereas the latter is a relationship within a single mea-
surement. Since MUBs and SICs are both conceptually natural, 
elegant, and (as it turns out) practically important classes of mea-
surements, they are often studied in the same context (9–14). Let us 
briefly review their importance to foundational and applied aspects 
of quantum theory.

MUBs are central to the concept of complementarity in quantum 
theory, i.e., how the knowledge of one quantity limits (or erases) the 
knowledge of another quantity [see, e.g., (15) for a review of MUBs]. 
This is often highlighted through variants of the famous Stern-Gerlach 
experiment in which different Pauli observables are applied to a qubit. 
For instance, after first measuring (say) x, we know whether our 
system points up or down the x axis. If we then measure z, our 
knowledge of the outcome of yet another x measurement is entirely 
erased since z and x are MUBs. This phenomenon leads to an in-
herent uncertainty for the outcomes of MUB measurements on all 
quantum states, which can be formalized in terms of entropic quan-
tities, leading to so-called entropic uncertainty relations. It is then 
natural that MUBs give rise to the strongest entropic uncertainties 
in quantum theory (16). Moreover, MUBs play a prominent role in 
quantum cryptography, where they are used in many of the most 
well-known quantum key distribution protocols (17–21) and in secret 
sharing protocols (22–24). Their appeal to cryptography stems from 
the idea that eavesdroppers who measure an eigenstate of one basis 
in another basis unbiased to it obtain no useful information, while 
they also induce a large disturbance in the state that allows their 
presence to be detected. Furthermore, complete (i.e., largest possible 
in a given dimension) sets of MUBs are tomographically complete, 
and their symmetric properties make them pivotal for quantum 
state tomography (25, 26). In addition, MUBs are useful for a range 
of other problems such as quantum random access coding (27–31), 
quantum error correction (32, 33), and entanglement detection (34). 
This broad scope of relevance has motivated much effort toward de-
termining the largest number of MUBs that exist in general Hilbert 
space dimensions (15).

The motivations behind the study of SICs are quite similar to the 
ones discussed for MUBs. It has been shown that SICs are natural 
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measurements for quantum state tomography (35), which has also 
prompted several experimental realizations of SICs (36–38). In addi-
tion, some protocols for quantum key distribution derive their success 
directly from the defining properties of SICs (39, 40), which have 
also been experimentally demonstrated (41). Furthermore, a key 
property of SICs is that they have the largest number of outcomes 
possible while still being extremal measurements, i.e., they cannot 
be simulated by stochastically implementing other measurements. 
This gives SICs a central role in a range of applications, which include 
random number generation from entangled qubits (42), certification 
of nonprojective measurements (43–46), semi–device-independent 
self-testing (45), and entanglement detection (47, 48). Moreover, SICs 
have a key role in quantum Bayesianism (49), and they exhibit in-
teresting connections to several areas of mathematics, for instance, 
Lie and Jordan algebras (50) and algebraic number theory (51). Be-
cause of their broad interest, much research effort has been directed 
toward proving the existence of SICs in all Hilbert space dimensions 
(presently known, at least, up to dimension 193) (7, 8, 52–55). See, 
e.g., (54) for a recent review of SICs.

In this work, we broadly investigate MUBs and SICs in the context 
of Bell nonlocality experiments. In these experiments, two separated 
observers perform measurements on entangled quantum systems 
that can produce nonlocal correlations that elude any local hidden 
variable model (56). In recent years, Bell inequalities have played a 
key role in the rise of device-independent quantum information 
processing where they are used to certify properties of quantum sys-
tems. Naturally, certification of a physical property can be achieved 
under different assumptions of varying strength. Device-independent 
approaches offer the strongest form of certification since the only 
assumptions made are space-like separation and the validity of quan-
tum theory. The advent of device-independent quantum informa-
tion processing has revived interest in Bell inequalities, as these can 
now be tailored to the purpose of certifying useful resources for 
quantum information processing. The primary focus of such certi-
fication has been on various types of entangled states (57). However, 
quantum measurements are equally important building blocks for 
quantum information processing. Nevertheless, our understanding 
of which arrangements of high-dimensional measurements can be 
certified in a device-independent manner is highly limited. We speak 
of arrangements of measurements because for a single measurement 
(acting on a quantum system with no internal structure), no inter-
esting property can be certified. The task becomes nontrivial when 
at least two measurements are present and we can certify the rela-
tion between them. The simplest approach relies on combining known 
self-testing results for two-qubit systems, which allows us to certify 
high-dimensional measurements constructed out of qubit building 
blocks (58, 59). Alternatively, device-independent certification of 
high-dimensional structures can be proven from scratch, but to the 
best of our knowledge, only two results of this type have been proven: 
(i) a triple of MUBs in dimension three (60) and (ii) the measure-
ments conjectured to be optimal for the Collins-Gisin-Linden-Massar-
Popescu Bell inequality (the former is a single result, while the latter 
is a family parameterized by the dimension d ≥ 2) (61). None of these 
results can be used to certify MUBs in dimension d ≥ 4.

Since mutual unbiasedness and symmetric informational com-
pleteness are natural and broadly important concepts in quantum 
theory, they are prime candidates of interest for such certification in 
general Hilbert space dimensions. This challenge is increasingly 
relevant because of the broader experimental advances toward high-

dimensional systems along the frontier of quantum information 
theory. This is also reflected in the fact that recent experimental im-
plementations of MUBs and SICs can go well beyond the few lowest 
Hilbert space dimensions (38, 41, 62).

Focusing on mutual unbiasedness and symmetric informational 
completeness, we solve the above challenges. To this end, we first 
construct Bell inequalities that are maximally violated using a max-
imally entangled state of local dimension d and, respectively, a pair of 
d-dimensional MUBs and a d-dimensional SIC. In the case of MUBs, 
we show that the maximal quantum violation of the proposed Bell 
inequality device independently certifies that the measurements 
satisfy an operational definition of mutual unbiasedness as well as 
that the shared state is essentially a maximally entangled state of local 
dimension d. Similarly, in the case of SICs, we find that the maximal 
quantum violation device independently certifies that the measure-
ments satisfy an analogous operational definition of symmetric 
informational completeness. Moreover, we also show that our Bell 
inequalities are useful in two practically relevant tasks. For the case 
of MUBs, we consider a scheme for device-independent quantum 
key distribution and prove a key rate of log d bits, which is optimal 
for any protocol that extracts key from a d-outcome measurement. 
For SICs, we construct a scheme for device-independent random 
number generation. For two-dimensional SICs, we obtain the largest 
amount of randomness possible for any protocol based on qubits. 
For three-dimensional SICs, we obtain more randomness than can 
be obtained in any protocol based on projective measurements and 
quantum systems of dimension up to seven. For low dimensions, 
we numerically show that both protocols are robust to noise, which 
is imperative to any experiment. The implementation of these two 
protocols involves performing a Bell-type experiment, estimating the 
outcome statistics and computing the resulting Bell inequality vio-
lation. The efficiency and security of the protocol is then deduced 
only from the observed Bell inequality violation, i.e., it does not re-
quire a complete characterization of the devices. Device-independent 
protocols can, in principle, be implemented on any experimental 
platform suitable for Bell nonlocality experiments, such as entangled 
spins (63), entangled photons (64, 65), and entangled atoms (66).

RESULTS
Bell inequalities for MUBs
The task of finding Bell inequalities that are maximally violated by 
MUBs for d ≥ 3 has been attempted several times (67–70) but with 
limited success. The only convincing candidate is the inequality 
corresponding to d = 3 studied in (67), and even then, there is only 
numerical evidence (no analytical proof is known). Some progress 
has been made in (60), which considers the case of prime d and 
proposes a family of Bell inequalities maximally violated by a specific 
set of d MUBs in dimension d. These inequalities, however, have 
two drawbacks: (i) There is no generalization to the case of nonprime 
d, and (ii) even for the case of prime d, we have no characterization 
of the quantum realizations that achieve the maximal violation.

In this work, we present a family of Bell inequalities in which the 
maximal quantum violation is achieved with a maximally entangled 
state and any pair of d-dimensional MUBs. These Bell inequalities 
have been constructed so that their maximal quantum violation can be 
computed analytically, which then enables us to obtain a detailed char-
acterization of the optimal realizations. As a result we find a previously 
unidentified, intermediate form of device-independent certification.



Tavakoli et al., Sci. Adv. 2021; 7 : eabc3847     10 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 13

We formally define a pair of MUBs as two orthonormal bases on 
a d-dimensional Hilbert space ℂd, namely, ​​{∣​e​ j​​ 〉}​j=1​ d  ​​ and ​​{∣​f​ k​​ 〉}​k=1​ d  ​​, 
with the property that

	​​ ∣〈 ​e​ j​​ ∣​f​ k​​ 〉∣​​ 2​  = ​  1 ─ d ​​	 (1)

for all j and k. The constant on the right-hand side is merely a con-
sequence of the two bases being normalized. To this end, consider a 
bipartite Bell scenario parameterized by an integer d ≥ 2. Alice ran-
domly receives one of d2 possible inputs labeled by x ≡ x1x2 ∈ [d]2 
(where [s] ≡ {1, …, s}) and produces a ternary output labeled by a ∈ 
{1,2, ⊥ }. Bob receives a random binary input labeled by y ∈ {1,2} 
and produces a d-valued output labeled by b ∈ [d]. The joint prob-
ability distribution in the Bell scenario is denoted by p(a, b∣x, y), 
and the scenario is illustrated in Fig. 1.

To make our choice of Bell functional transparent, we will phrase 
it as a game in which Alice and Bob collectively win or lose points. 
If Alice outputs a = ⊥, then no points will be won or lost. If she outputs 
a ∈ {1,2}, then points will be won or lost if b = xy. More specifically, 
Alice and Bob win a point if a = y and lose a point if ​a  =  ​ ̄  y ​​, where 
the bar sign flips the value of y ∈ {1,2}. This leads to the score

	​​ ℛ​d​ MUB​  ≡ ​  ​  x,y ​​p(a  =  y, b  = ​ x​ y​​∣x, y ) − p(a  = ​  ̄  y ​, b  = ​ x​ y​​∣x, y)​

(2)

where the sum goes over x = x1x2 ∈ [d]2 and y ∈ {1,2}.
At this point, the outcome a = ⊥ might seem artificial, so let us 

show why it plays a crucial role in the construction of the game. To 
this end, we use intuition based on the hypothetical case in which 
Alice and Bob share a maximally entangled state

	​ ∣​​d​ max​ 〉  = ​   1 ─ 
​√ 
_

 d ​
 ​ ​ ​ 

k=1
​ 

d
  ​∣k, k〉​	 (3)

The reason that we consider the maximally entangled state is that 
we aim to tailor the Bell inequalities so that this state is optimal. 
Then, we would like to ensure that Alice, via her measurement and 
for her outcomes a ∈ {1,2}, remotely prepares Bob in a pure state. 
This would allow Bob to create stronger correlations as compared 
to the case of Alice remotely preparing his system is a mixed state. 
Hence, this corresponds to Alice’s outcomes a ∈ {1,2} being repre-
sented by rank-one projectors. Since the subsystems of ​∣​​d​ max​ 〉​ are 
maximally mixed, it follows that (a = 1∣x) = p(a = 2∣x) = 1/d ∀x. 
Thus, we want to motivate Alice to use a strategy in which she out-
puts a = ⊥ with probability p(a = ⊥∣x) = 1 − 2/d. Our tool for this 
purpose is to introduce a penalty. Specifically, whenever Alice de-

cides to output a ∈ {1,2}, she is penalized by losing d points. Thus, 
the total score (the Bell functional) reads

	​​ S​d​ MUB​  ≡ ​ ℛ​d​ MUB​ − ​​ d​​ ​​ x​ ​(p(a  =  1∣x ) + p(a  =  2∣x ) )​	 (4)

Now, outputting a ∈ {1,2} not only contributes toward ​​ℛ​d​ MUB​​ but 
also causes a penalty d. Therefore, we expect to see a trade-off be-
tween d and the rate at which Alice outputs a = ⊥. We must suitably 
choose d such that Alice’s best strategy is to output a = ⊥ with (on 
average over x) the desired probability p(a = ⊥∣x) = 1 − 2/d. This 
accounts for the intuition that leads us to the following Bell inequal-
ities for MUBs.

Theorem II.1 (Bell inequalities for MUBs). The Bell functional 
​​S​d​ MUB​​ in Eq. 4 with

	​​ ​ d​​  = ​  1 ─ 2 ​ ​√ 
_

 ​ d − 1 ─ d  ​ ​​	 (5)

obeys the tight local bound

	​​ ​S​d​ MUB​ ​  ≤​​ LHV​ 2(d − 1 ) ​(​​1 − ​ 1 ─ 2 ​ ​√ 
_

 ​ d − 1 ─ d  ​ ​​)​​​​	 (6)

and the quantum bound

	​​ S​d​ MUB​ ​≤​​ 
Q

 ​ ​√ 
_

 d(d − 1) ​​	 (7)

Moreover, the quantum bound can be saturated by sharing a 
maximally entangled state of local dimension d and Bob performing 
measurements in any two MUBs.

Proof. A complete proof is presented in the Supplementary Ma-
terials (section S1A). The essential ingredient to obtain the bound 
in Eq. 7 is the Cauchy-Schwarz inequality. Furthermore, for local 
models, by inspecting the symmetries of the Bell functional ​​S​d​ MUB​​, 
one finds that the local bound can be attained by Bob always out-
putting b = 1. This greatly simplifies the evaluation of the bound in 
Eq. 6.

To see that the bound in Eq. 7 can be saturated in quantum theory, 
let us evaluate the Bell functional for a particular quantum realiza-
tion. Let ∣〉 be the shared state, ​​{​P​ ​x​ 1​​​​}​​x​ 1​​=1​ d  ​​ and ​​{​Q​ ​x​ 2​​​​}​​x​ 2​​=1​ d  ​​ be the mea-
surement operators of Bob corresponding to y = 1 and y = 2, respectively, 
and Ax be the observable of Alice defined as the difference between 
Alice’s outcome-one and outcome-two measurement operators, i.e., ​​
A​ x​​  = ​ A​x​ 1​ − ​A​x​ 2​​. Then, the Bell functional reads

	​​ S​d​ MUB​ = ​​  x ​ ​ 〈∣​A​ x​​ ⊗ (​P​ ​x​ 1​​​​ − ​Q​ ​x​ 2​​​​) − ​​ d​​(​A​x​ 1​ + ​A​x​ 2​) ⊗ 𝟙∣〉​	 (8)

Now, we choose the maximally entangled state of local dimen-
sion d, i.e., ​∣〉 = ∣​​d​ max​ 〉​, and define Bob’s measurements as 
rank-one projectors Px1 = ∣x1⟩⟨x1∣ and Qx2 = ∣φx2⟩⟨φx2∣, which 
correspond to MUBs, i.e., ∣⟨x1∣φx2⟩∣2 = 1/d. Last, we choose 
Alice’s observables as ​​A​ x​​  = ​ √ 

_
 d / (d − 1) ​ ​(​P​ ​x​ 1​​​​ − ​Q​ ​x​ 2​​​​)​​ T​​, where the pref-

actor ensures the correct normalization and T denotes the transpose 
in the standard basis. Note that Ax is a rank-two operator; the cor-
responding measurement operator ​​A​x​ 1​​ (​​A​x​ 2​​) is a rank-one projector 
onto the eigenvector of Ax associated to the positive (negative) 
eigenvalue. Since the subsystems of ​∣​​d​ max​⟩​ are maximally mixed, 
this implies ​⟨​​d​ max​∣(​A​x​ 1​ + ​A​x​ 2​ ) ⊗ 1∣​​d​ max​⟩= 2 / d​. Inserting all this 

Fig. 1. Bell scenario for two MUBs of dimension d. Alice receives one of d2 inputs 
and produces a ternary output, while Bob receives a binary input and produces a 
d-valued output.
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into the above quantum model and exploiting the fact that for 
any linear operator O, we have ​​O ⊗ 𝟙∣​​d​ max​​⟩​​ = 𝟙 ⊗ ​O​​ T​∣​​d​ max​​⟩​​​​, we 
straightforwardly saturate the bound in Eq. 7.

We remark that for the case of d = 2 one could also choose 2 = 0 
and retain the property that qubit MUBs are optimal. In this case, 
the marginal term is not necessary because in the optimal realiza-
tion, Alice never outputs ⊥. Then, the quantum bound becomes ​2 ​√ 

_
 2 ​​, 

and the local bound becomes 2. The resulting Bell inequality resem-
bles the Clauser-Horne-Shimony-Holt (CHSH) inequality (71) not 
only because it gives the same local and quantum values but also 
because the optimal realizations coincide. More specifically, the mea-
surements of Bob are precisely the optimal CHSH measurements, 
whereas the four measurements of Alice correspond to two pairs of 
optimal CHSH measurements.

Device-independent certification of mutual unbiasedness
Theorem II establishes that a pair of MUBs of any dimension can 
generate a maximal quantum violation in a Bell inequality test. We 
now turn to the converse matter, namely, that of device-independent 
certification. Specifically, given that we observe the maximal quantum 
violation, i.e., equality in Eq. 7, what can be said about the shared 
state and the measurements? Since the measurement operators can 
only be characterized on the support of the state, to simplify the 
notation, let us assume that the marginal states of Alice and Bob are 
full rank. (Note that this is not a physical assumption but a mathe-
matical convention that simplifies the notation in the rest of this 
work. Whenever the marginal state is not full rank, the local Hilbert 
space naturally decomposes as a direct sum of two terms, where the 
state is only supported on one of them. The measurement operators 
can only be characterized on the support of the state, and that is 
precisely what we achieve. This convention allows us to only write 
out the part that can be characterized and leave out the rest.)

Theorem II.2 (Device-independent certification). The maximal 
quantum value of the Bell functional ​​S​d​ MUB​​ in Eq. 4 implies that (i) 
there exist local isometries that allow Alice and Bob to extract a 
maximally entangled state of local dimension d, and (i) if the mar-
ginal state of Bob is full rank, the two d-outcome measurements that 
he performs satisfy the relations

	​​ P​ a​​  =  d ​P​ a​​ ​Q​ b​​ ​P​ a​​ and ​Q​ b​​  =  d ​Q​ b​​ ​P​ a​​ ​Q​ b​​​	 (9)

for all a and b.
Proof. The proof is detailed in the Supplementary Materials 

(section S1A). Here, we briefly summarize the part concerning Bob’s 
measurements. Since the Cauchy-Schwarz inequality is the main tool 
for proving the quantum bound in Eq. 7, saturating it implies that 
the Cauchy-Schwarz inequality is also saturated. This allows us to 
deduce that the measurements of Bob are projective, and moreover, 
we obtain the following optimality condition

	​​ A​ x​​ ⊗ 𝟙∣⟩ = 𝟙 ⊗ ​√ 
_

 ​  d ─ d − 1 ​ ​(​P​ ​x​ 1​​​​ − ​Q​ ​x​ 2​​​​)∣⟩​	 (10)

for all x1, x2 ∈ [d] where the factor ​​√ 
_

 d / (d − 1) ​​ can be regarded as a 
normalization. Since we do not attempt to certify the measurements 
of Alice, we can, without loss of generality, assume that they are pro-
jective. This implies that the spectrum of Ax only contains { + 1, − 1,0} 
and therefore (Ax)3 = Ax. This allows us to obtain a relation that only 
contains Bob’s operators. Tracing out Alice’s system and subsequently 

eliminating the marginal state of Bob (it is assumed to be full rank) 
leads to

	​​ P​ ​x​ 1​​​​ − ​Q​ ​x​ 2​​​​  = ​   d ─ d − 1 ​ ​(​P​ ​x​ 1​​​​ − ​Q​ ​x​ 2​​​​)​​ 3​​	 (11)

Expanding this relation and then using projectivity and the com-
pleteness of measurements, one recovers the result in Eq. 9.

We have shown that observing the maximal quantum value of 
​​S​d​ MUB​​ implies that the measurements of Bob satisfy the relations given 
in Eq. 9. It is natural to ask whether a stronger conclusion can be 
derived, but the answer turns out to be negative. In the Supplementary 
Materials (section S1B), we show that any pair of d-outcome mea-
surements (acting on a finite-dimensional Hilbert space) satisfying 
the relations in Eq. 9 is capable of generating the maximal Bell in-
equality violation. For d = 2,3, the relations given in Eq. 9 imply that 
the unknown measurements correspond to a direct sum of MUBs 
(see section S2C) and since, in these dimensions, there exists only a 
single pair of MUBs (up to unitaries and complex conjugation), our 
results imply a self-testing statement of the usual kind. However, 
since, in higher dimensions, not all pairs of MUBs are equivalent (72), 
our certification statement is less informative than the usual formu-
lation of self-testing. In other words, our inequalities allow us to 
self-test the quantum state, but we cannot completely determine the 
measurements [see (73, 74) for related results]. Note that we could 
also conduct a device-independent characterization of the measure-
ments of Alice. Equation 61 from the Supplementary Materials en-
ables us to relate the measurements of Alice to the measurements of 
Bob, which we have already characterized. However, since we do not 
expect the observables of Alice to satisfy any simple algebraic rela-
tions and since they are not directly relevant for the scope of this 
work (namely, MUBs and SICs), we do not pursue this direction.

The certification provided in Theorem II.2 turns out to be suffi-
cient to determine all the probabilities p(a, b ∣ x, y) that arise in the 
Bell experiment (see section S1C), which means that the maximal 
quantum value of ​​S​d​ MUB​​ is achieved by a single probability distribu-
tion. Because of the existence of inequivalent pairs of MUBs in certain 
dimensions (e.g., for d = 4), this constitutes the first example of an 
extremal point of the quantum set, which admits inequivalent 
quantum realizations. Recall that the notion of equivalence that we 
use is precisely the one that appears in the context of self-testing, 
i.e., we allow for additional degrees of freedom, local isometries, and 
a transposition.

It is important to understand the relation between the condition 
given in Eq. 9 and the concept of MUBs. Naturally, if ​​{​P​ a​​}​a=1​ d  ​​ and 
​​{​Q​ b​​}​b=1​ d  ​​ are d-dimensional MUBs, then the relations (Eq. 9) are sat-
isfied. However, there exist solutions to Eq. 9 that are neither MUBs 
nor direct sums thereof. While, as mentioned above, for d = 2,3, one 
can show that any measurements satisfying the relations (Eq. 9) must 
correspond to a direct sum of MUBs, this is not true in general. For 
d = 4,5, we have found explicit examples of measurement operators 
satisfying Eq. 9, which cannot be written as a direct sum of MUBs. 
They cannot even be transformed into a pair of MUBs via a com-
pletely positive unital map (see section S2 for details). These results 
beg the crucial question: How should one interpret the condition 
given in Eq. 9?

To answer this question, we resort to an operational formulation 
of what it means for two measurements to be mutually unbiased. 
An operational approach must rely on observable quantities (i.e., 
probabilities), as opposed to algebraic relations between vectors or 



Tavakoli et al., Sci. Adv. 2021; 7 : eabc3847     10 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 13

operators. This notion, which we refer to as mutually unbiased mea-
surements (MUMs), was recently formalized by Tasca et al. (75). 
Note that in what follows, we use the term “eigenvector” to refer to 
eigenvectors corresponding to nonzero eigenvalues.

Definition II.3 (MUMs). We say that two n-outcome measure-
ments ​​{​P​ a​​}​a=1​ n  ​​ and ​​{​Q​ b​​}​b=1​ n  ​​ are mutually unbiased if they are projective 
and the following implications hold

	​​
⟨ ∣ ​ P​ a​​ ∣  ⟩ = 1  ⇒  ⟨ ∣ ​ Q​ b​​ ∣ ⟩ = ​ 1 ─ n ​

​    
⟨ ∣ ​ Q​ b​​ ∣ ⟩ = 1  ⇒  ⟨ ∣ ​P​ a​​ ∣ ⟩ = ​ 1 ─ n ​

​​	 (12)

for all a and b. That is, two projective measurements are mutually 
unbiased if the eigenvectors of one measurement give rise to a uni-
form outcome distribution for the other measurement.

Note that this definition precisely captures the intuition behind 
MUBs without the need to specify the dimension of the underlying 
Hilbert space. MUMs admit a simple algebraic characterization.

Theorem II.4. Two n-outcome measurements ​​{​P​ a​​}​a=1​ n  ​​ and ​​{​Q​ b​​}​b=1​ n  ​​ are 
mutually unbiased if and only if

	​​ P​ a​​  =  n ​P​ a​​ ​Q​ b​​ ​P​ a​​ and ​Q​ b​​  =  n ​Q​ b​​ ​P​ a​​ ​Q​ b​​​	 (13)

for all a and b.
Proof. Let us first assume that the algebraic relations hold. By 

summing over the middle index, one finds that both measure-
ments are projective. Moreover, if ∣⟩ is an eigenvector of Pa, then ​
⟨ ∣ ​ Q​ b​​ ∣  ⟩= ⟨ ∣ ​ P​ a​​ ​Q​ b​​ ​P​ a​​ ∣  ⟩= ​ 1 _ n​⟨ ∣ ​ P​ a​​ ∣  ⟩= ​ 1 _ n​​

By symmetry, the analogous property holds if ∣⟩ is an eigen-
vector of Qb. Conversely, let us show that MUMs must satisfy the 
above algebraic relations. Since ​​​ a​​ ​P​ a​​ = 𝟙​, we can choose an ortho-
normal basis of the Hilbert space composed only of the eigenvectors 

of the measurement operators. Let ​​{∣ ​e​j​ a​⟩}​ 
a,j

​​​ be an orthonormal basis, 

where a ∈ [n] tells us which projector the eigenvector corresponds to 
and j labels the eigenvectors within a fixed projector (if Pa has fi-
nite rank, then j ∈ [tr Pa]; otherwise, j ∈ ℕ). By construction, for 
such a basis, we have

​​P​ a​​ ∣ ​ e​j​ ​a ′ ​​⟩= ​​ a​a ′ ​​​ ∣ ​ e​j​ a​⟩​. To show that Pa = nPaQbPa, it suffices to show that 
the two operators have the same coefficients in this basis. Since

	​ ⟨​e​j​ ​a ′ ​​ ∣  n ​P​ a​​ ​Q​ b​​ ​P​ a​​ ∣ ​ e​k​ ​a​​ ′′​​⟩ = n ​​ a​a ′ ​​​ ​​ a​a​​ ′′​​​⟨​e​j​ a​ ∣ ​ Q​ b​​ ∣ ​ e​k​ a​⟩​	 (14)

	​ ⟨​e​j​ ​a ′ ​​ ∣ ​ P​ a​​ ∣ ​ e​k​ ​a​​ ′′​​⟩ = ​​ a​a ′ ​​​ ​​ a​a​​ ′′​​​ ​​ jk​​​	 (15)

it suffices to show that ​n⟨​e​j​ a​ ∣ ​ Q​ b​​  ∣ ​ e​k​ a​⟩= ​​ jk​​​. For j = k, this is a direct 
consequence of the definition in Eq. 12. To prove the other case, 
define ​∣ ​ ​ ​​⟩= (∣ ​ e​j​ a​⟩+ ​e​​ i​ ∣ ​ e​k​ a​⟩) / ​√ 

_
 2 ​​, for  ∈ [0,2). Since Pa ∣ ⟩ = ∣ ⟩, 

we have ⟨∣Qb∣⟩ = 1/n. Writing this equality out gives

	​​ ​ 1 ─ n ​  = ​  1 ─ 2 ​​(​​ ​ 2 ─ n ​ + ​e​​ i​⟨​e​j​ a​ ∣ ​ Q​ b​​ ∣ ​ e​k​ a​⟩ +  ​e​​ −i​⟨​e​k​ a​ ∣ ​ Q​ b​​  ∣ ​ e​j​ a​⟩​)​​​​	 (16)

Choosing  = 0 implies that the real part of ​⟨​e​j​ a​ ∣ ​ Q​ b​​  ∣ ​ e​k​ a​⟩​ vanishes, 
while  = /2 implies that the imaginary part vanishes. Proving the 
relation Qb = nQbPaQb proceeds in an analogous fashion.

Theorem II.4 implies that the maximal violation of the Bell in-
equality for MUBs certifies precisely the fact the Bob’s measurements 

are mutually unbiased. To provide further evidence that MUMs 
constitute the correct device-independent generalization of MUBs, 
we give two specific situations in which the two objects behave in 
the same manner.

Maassen and Uffink (16) considered a scenario in which two mea-
surements (with a finite number of outcomes) are performed on an 
unknown state. Their famous uncertainty relation provides a state-
independent lower bound on the sum of the Shannon entropies of 
the resulting distributions. While the original result only applies to 
rank-one projective measurements, a generalization to nonprojective 
measurements reads (76)

	​ H(P ) + H(Q ) ≥  − log c​	 (17)

where H denotes the Shannon entropy and ​c  = ​ max​ a,b​​ ∥ ​√ 
_

 ​P​ a​​ ​ ​√ 
_

 ​Q​ b​​ ​ ​∥​​ 2​​, 
where ∥ · ∥ is the operator norm. If we restrict ourselves to rank-one 
projective measurements on a Hilbert space of dimension d, then 
one finds that the largest uncertainty, corresponding to c = 1/d, is 
obtained only by MUBs. It turns out that precisely the same value is 
achieved by any pair of MUMs with d outcomes regardless of the 
dimension of the Hilbert space

	​​
c  = ​ max​ 

a,b
​ ​ ​ ‖​√ 

_
 ​P​ a​​ ​ ​√ 
_

 ​Q​ b​​ ​‖​​ 2​  = ​ max​ 
a,b

​ ​ ​ ‖​P​ a​​ ​Q​ b​​‖​​ 2​
​   

 = ​max​ 
a,b

​ ​ ‖​P​ a​​ ​Q​ b​​ ​P​ a​​‖ = ​max​ a​ ​ ‖​P​ a​​ / d‖ = ​ 1 ─ d ​
  ​​	 (18)

A closely related concept is that of measurement incompatibility, 
which captures the phenomenon that two measurements cannot be 
performed simultaneously on a single copy of a system. The extent 
to which two measurements are incompatible can be quantified, e.g., 
by so-called incompatibility robustness measures (77). In the 
Supplementary Materials (section S2D), we show that according to 
these measures, MUMs are exactly as incompatible as MUBs. More-
over, we can show that for the so-called generalized incompatibility 
robustness (78), MUMs are among the most incompatible pairs of 
d-outcome measurements.

Application: Device-independent quantum key distribution
The fact that the maximal quantum violation of the Bell inequalities 
introduced above requires a maximally entangled state and MUMs 
and, moreover, that it is achieved by a unique probability distribution 
suggests that these inequalities might be useful for device-independent 
quantum information processing. In the task of quantum key distri-
bution (3, 17, 18), Alice and Bob aim to establish a shared dataset 
(a key) that is secure against a malicious eavesdropper. Such a task 
requires the use of incompatible measurements, and MUBs in di-
mension d = 2 constitute the most popular choice. Since, in the ideal 
case, the measurement outcomes of Alice and Bob that contribute 
to the key should be perfectly correlated, most protocols are based 
on maximally entangled states. In the device-independent approach 
to quantum key distribution, the amount of key and its security is 
deduced from the observed Bell inequality violation.

We present a proof-of-principle application to device-independent 
quantum key distribution based on the quantum nonlocality wit-
nessed through the Bell functional in Eq. 4. In the ideal case, Alice 
and Bob follow the strategy that gives them the maximal violation, 
i.e., they share a maximally entangled state of local dimension d and 
Bob measures two MUBs. To generate the key, we provide Alice with 
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an extra setting that produces outcomes that are perfectly correlated 
with the outcomes of the first setting of Bob. This will be the only 
pair of settings from which the raw key will be extracted, and let us 
denote them by x = x* and y = y* = 1. In most rounds of the experi-
ment, Alice and Bob choose these settings and therefore contribute 
toward the raw key. However, to ensure security, a small number of 
rounds is used to evaluate the Bell functional. In these rounds, which 
are chosen at random, Alice and Bob randomly choose their mea-
surement settings. Once the experiment is complete, the resulting 
value of the Bell functional is used to infer the amount of secure raw 
key shared between Alice and Bob. The raw key can then be turned 
into the final key by standard classical postprocessing. For simplicity, 
we consider only individual attacks, and moreover, we focus on the 
limit of asymptotically many rounds in which fluctuations due to 
finite statistics can be neglected.

The key rate, K, can be lower bounded by (79)

	​ K  ≥  − log (​P​g​ ​ ) − H(​B​ ​y​​ *​​​ ∣ ​ A​ ​x​​ *​​​)​	 (19)

where ​​P​g​ ​​ denotes the highest probability that the eavesdropper can 
correctly guess Bob’s outcome when his setting is y* given that the 
Bell inequality value  was observed, and H( · ∣ · ) denotes the con-
ditional Shannon entropy. The guessing probability ​​P​g​ ​​ is defined as

	​​​ P​g​ ​  ≡  sup​{​​​ ​ 
 c=1

​ 
d

  ​⟨ABE∣𝟙 ⊗ ​P​ c​​ ⊗ ​E​ c​​∣ABE⟩​}​​​​	 (20)

where ​​{​E​ c​​}​c=1​ d  ​​ is the measurement used by the eavesdropper to pro-
duce her guess, the expression inside the curly braces is the proba-
bility that her outcome is the same as Bob’s for a particular realization, 
and the supremum is taken over all quantum realizations (the 
tripartite state and measurements of all three parties) compatible 
with the observed Bell inequality value .

Let us first focus on the key rate in a noise-free scenario, i.e., in a 
scenario in which ​​S​d​ MUB​​ attains its maximal value. Then, one straight-
forwardly arrives at the following result.

Theorem II.5 (Device-independent key rate). In the noiseless case, 
the quantum key distribution protocol based on ​​S​d​ MUB​​ achieves the 
key rate of

	​ K  =  log d​	 (21)

for any integer d ≥ 2.
Proof. In the noiseless case, Alice and Bob observe exactly the 

correlations predicted by the ideal setup. In this case, the outcomes 
for settings (x*, y*) are perfectly correlated, which implies that 
H(By*∣Ax*) = 0. Therefore, the only nontrivial task is to bound the 
guessing probability.

Since the actions of the eavesdropper commute with the actions 
of Alice and Bob, we can assume that she performs her measurement 
first. If the probability of the eavesdropper observing outcome c ∈ 
[d], which we denote by p(c), is nonzero, then the (normalized) state 
of Alice and Bob conditioned on the eavesdropper observing that 
outcome is given by

	​​ ​AB​ (c) ​  = ​   1 ─ p(c) ​ ​tr​ C​​ [(𝟙 ⊗ 𝟙 ⊗ ​E​ c​​)∣​​ ABE​​⟩⟨​​ ABE​​∣]​	 (22)

Now, Alice and Bob share one of the postmeasurement states ​​​AB​ (c) ​​, 
and when they perform their Bell inequality test, they will obtain 

different distributions depending on c, which we write as pc(a, b ∣ x, y). 
However, since the statistics achieve the maximal quantum value of 
​​S​d​ MUB​​ and we have previously shown that the maximal quantum value 
is achieved by a single probability point, all the probability distribu-
tions pc(a, b ∣ x, y) must be the same. Moreover, we have shown that 
for this probability point, the marginal distribution of outcomes on 
Bob’s side is uniform over [d] for both inputs. This implies that

	​​ P​ g​​  = ​  ​ 
c=1

​ 
d

  ​p(c ) ​p​ c​​(b  =  c ∣  y  =  1 ) = ​ 1 ─ d ​​	 (23)

because ​​p​ c​​(b =  c ∣  y =  1 ) = p(b  =  c ∣  y  =  1 ) = ​ 1 _ d​​ for all c.
We remark that the argument above is a direct consequence of a 

more general result that states that if a bipartite probability distribu-
tion is a nonlocal extremal point of the quantum set, then no external 
party can be correlated with the outcomes (80). The obtained key rate 
is the largest possible for general setups in which the key is generated 
from a d-outcome measurement. In addition, the key rate is optimal 
for all protocols based on a pair of entangled d-dimensional systems 
subject to projective measurements. This follows from the fact that 
projective measurements in ℂd cannot have more than d outcomes. 
It has recently been shown that the same amount of randomness can 
be generated using a modified version of the Collins-Gisin-Linden-
Massar-Popescu inequalities (61), but note that the measurements 
used there do not correspond to MUBs (except for the special case 
of d = 2).

Let us now depart from the noise-free case and estimate the key 
rate in the presence of noise. To ensure that both the guessing prob-
ability and the conditional Shannon entropy can be computed in 
terms of a single noise parameter, we have to introduce an explicit 
noise model. We use the standard approach in which the measure-
ments remain unchanged, while the maximally entangled state is 
replaced with an isotropic state given by

	​​​ ​ v​​ = v∣​​d​ max​​⟩​​​⟨​​​​d​ max​∣+ ​ 1 − v ─ 
​d​​ 2​

 ​  𝟙​​	 (24)

where v ∈ [0,1] is the visibility of the state. Using this state and the 
ideal measurements for Alice and Bob, the relation between v and 
​​S​d​ MUB​​ can be easily derived from Eq. 8, namely

	​​ v  = ​  1 ─ 2 ​​(​​1 + ​ 
​S​d​ MUB​

 ─ 
​√ 
_

 d(d − 1) ​
 ​​)​​​​	 (25)

Using this formula, we also obtain the value of H(By* ∣ Ax*) as a 
function of the Bell violation. The remaining part of Eq. 19 is the 
guessing probability (Eq. 20). In the case of d = 3, we proceed to 
bound this quantity through semidefinite programming.

Concretely, we implement the three-party semidefinite relaxation 
(81) of the set of quantum correlations at local level 1 (we attribute 
one operator to each outcome of Bob and the eavesdropper but only 
take into account the first two outcomes of Alice). This results in a 
moment matrix of size 532 × 532 with 15,617 variables. The guess-
ing probability is directly given by the sum of three elements of the 
moment matrix. It can then be maximized under the constraints that 
the value of the Bell functional ​​S​3​ MUB​​ is fixed and the moment matrix 
is positive semidefinite. However, we notice that this problem is in-
variant under the following relabeling: b → (b) for y = 1, c → (c), 
and x1 → (x1), where  ∈ S3 is a permutation of three elements. 
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Therefore, it is possible to simplify this semidefinite program by re-
quiring the matrix to be invariant under the group action of S3 on the 
moment matrix (i.e., it is a Reynolds matrix) (43, 82, 83). This reduces 
the number of free variables in the moment matrix to 2823. With the 
Self-Dual Minimization (SeDuMi) (84) solver, this lowers the preci-
sion (1.1 × 10−6 instead of 8.4 × 10−8) but speeds up the computation 
(155 s instead of 8928 s) and requires less memory (0.1 gigabytes 
instead of 5.5 gigabytes). For the maximal value of ​​S​d​ MUB​​, we recover 
the noise-free result of K = log 3 up to the fifth digit. In addition, we 
have a key rate of at least one bit when ​​S​d​ MUB​  ≳  2.432​ and a nonzero 
key rate when ​​S​d​ MUB​  ≳  2.375​. The latter is close to the local bound, 
which is ​​S​d​ MUB​  ≈  2.367​. The resulting lower bound on the key 
rate as a function of the Bell inequality violation is plotted in Fig. 2.

Nonlocality for symmetric informational completeness
We now shift our focus from MUBs to SICs. We construct Bell in-
equalities whose maximal quantum violations are achieved with SICs. 
We formally define a SIC as a set of d2 unit vectors in ℂd, namely, 
​​{∣ ​ r​ j​​⟩}​j=1​ ​d​​ 2​ ​​, with the property that

	​​ ∣  ⟨​r​ j​​  ∣ ​ r​ k​​⟩∣​​ 2​ = ​   1 ─ d + 1 ​​	 (26)

for all j ≠ k, where the constant on the right-hand side is fixed by 
normalization. The reason for there being precisely d2 elements in a 
SIC is that this is the largest number of unit vectors in ℂd that could 
possibly admit the uniform overlap property (Eq. 26). Moreover, 
we formally distinguish between a SIC as the presented set of rank-
one projectors and a SIC-POVM (positive operator-valued mea-
sure), which is the generalized quantum measurement with d2 
possible outcomes corresponding to the subnormalized projectors 
​​​{​​ ​ 1 _ d​∣​r​ k​​⟩⟨​r​ k​​∣​}​​​

k=1
​ ​d​​ 2​ ​ ​.

Since the treatment of SICs in Bell nonlocality turns out to be 
more challenging than for the case of MUBs, we first establish the 
relevance of SICs in a simplified Bell scenario subject to additional 
constraints. This serves as a stepping stone to a subsequent relaxation, 
which gives a standard (unconstrained) Bell inequality for SICs. We 
then focus on the device-independent certification power of these 
inequalities, which leads us to an operational notion of symmetric 
informational completeness. Last, we extend the Bell inequalities so 
that their maximal quantum violations are achieved with both pro-

jectors forming SICs and a single generalized measurement corre-
sponding to a SIC-POVM.
Stepping stone: Quantum correlations for SICs
Consider a Bell scenario, parameterized by an integer d ≥ 2, involving 
two parties Alice and Bob who share a physical system. Alice receives 
an input labeled by a tuple (x1, x2) representing one of ​​​(​​ ​​d​​ 2​   2 ​​)​​​​ possible 
inputs, which we collectively refer to as x = x1x2. The tuple is ran-
domly taken from the set Pairs(d2) ≡ {x ∣ x1, x2 ∈ [d2] and x1 < x2}. 
Alice performs a measurement on her part of the shared system and 
produces a ternary output labeled by a ∈ {1,2, ⊥ }. Bob receives an 
input labeled by y ∈ [d2], and the associated measurement produces 
a binary outcome labeled by b ∈ {1, ⊥ }. The joint probability distri-
bution is denoted by p(a, b ∣ x, y), and the Bell scenario is illustrated 
in Fig. 3.

Similar to the case of MUBs, to make our choice of Bell functional 
transparent, we phrase it as a game played by Alice and Bob. We 
imagine that their inputs are supplied by a referee, who promises to 
provide x = x1x2 and y such that either y = x1 or y = x2. Similar to the 
previous game, Alice can output a = ⊥ to ensure that no points are 
won or lost. However, in this game also, Bob can ensure that no 
points are won or lost by outputting b = ⊥. If neither of them out-
puts ⊥, then a point is either won or lost. Specifically, when a = 1, a 
point is won if y = x1 (and lost otherwise), whereas if a = 2, then a 
point is won if y = x2 (and lost otherwise). Let us remark that in this 
game, Bob’s only role is to decide whether, in a given round, points 
can be won/lost or not. For this game, the total number of points 
(the Bell functional) reads

	​​
​​ℛ​d​ SIC​  ≡ ​   ​ ​x​ 1​​<​x​ 2​​​​​(​​p(1, 1 ∣  x, ​x​ 1​​ ) − p(1, 1 ∣  x, ​x​ 2​​)​

​    
​  +  p(2, 1 ∣  x, ​x​ 2​​ ) − p(2, 1 ∣  x, ​x​ 1​​ ) ​)​​​

  ​​	 (27)

where the sum is taken over all x ∈ Pairs(d2).
Let us now impose additional constraints on the marginal distri-

butions of the outputs. More specifically, we require that

	​​
∀ x : p(a =  1  ∣  x ) + p(a  = 2 ∣  x ) = ​ 2 ─ d  ​

​   
∀ y : p(b =  1  ∣ y ) = ​ 1 ─ d ​

  ​​	 (28)

The intuition behind these constraints is analogous to that dis-
cussed for the case of MUBs. Namely, we imagine that Alice and 
Bob perform measurements on a maximally entangled state of local 
dimension d. Then, we wish to fix the marginals such that the mea-
surements of Alice (Bob) for the outcomes a ∈ {1,2} (b = 1) remotely 
prepare Bob’s (Alice’s) subsystem in a pure state. This corresponds 
to the marginals p(a = 1 ∣ x) = p(a = 2 ∣ x) = p(b = 1 ∣ x) = 1/d, 
which is reflected in the marginal constraints in Eq. 28. We remark 

Fig. 2. Lower bound on the key rate K in the asymptotic limit versus the value 
of the Bell functional ​​S​3​ MUB​​. 

Fig. 3. Bell scenario for SICs of dimension d. Alice receives one of ​​​(​​ ​​d​​ 2​   2 ​​)​​​​ inputs 
and returns a ternary outcome, while Bob receives one of d2 inputs and returns a 
binary outcome.
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that imposing these constraints simplifies both the intuitive under-
standing of the game and the derivation of the results below. How-
ever, it merely serves as a stepping stone to a more general subsequent 
treatment in which the constraints (Eq. 28) will be removed.

To write the value of the Bell functional of a quantum realization, 
let us introduce two simplifications. The measurement operators of 
Alice are denoted by ​{​A​x​ a​}​, and as before, it is convenient to work 
with the observables defined as ​​A​ x​​  = ​ A​x​ 1​ − ​A​x​ 2​​. The measurements 
of Bob are denoted by ​{​B​y​ b​}​, but since they only have two outcomes, 
all the expressions can be written in terms of a single operator from 
each input y. In our case, it is convenient to use the outcome-one 
operator, and for convenience, we will skip the superscript, i.e., we 
will write ​​B​ y​​  ≡ ​ B​y​ 1​​ for all y. Then, the Bell functional evaluated on a 
specific quantum realization reads

	​​ ℛ​d​ SIC​  = ​   ​ ​x​ 1​​<​x​ 2​​​​〈∣​A​ x​​ ⊗ (​B​ ​x​ 1​​​​ − ​B​ ​x​ 2​​​​ )∣〉​	 (29)

Note that the Bell functional, in particular, when written in a 
quantum model, is much reminiscent of the expression ​​ℛ​d​ MUB​​ (Eq. 2) 
encountered for MUBs, with the key difference that the roles of the 
inputs and outputs of Bob are swapped. Let us consider a quantum 
strategy in which Alice and Bob share a maximally entangled state 
​∣​​d​ max​⟩​. Moreover, Bob’s measurements are defined as By = ∣ y⟩
⟨y∣, where ​​{∣​​ y​​⟩}​y=1​ ​d​​ 2​ ​​  is a set of unit vectors forming a SIC (as-
suming it exists in dimension d), i.e., ∣⟨y ∣ y′⟩∣2 = 1/(d + 1) for 
all y ≠ y′. In addition, we define Alice’s observables as ​​A​ x​​  = ​
√ 
_

 (d + 1 ) / d ​ ​​(​​ ​B​ ​x​ 1​​​​ − ​B​ ​x​ 2​​​​​)​​​​ T​​, where the prefactor ensures normalization. 
First, since the subsystems of Alice and Bob are maximally mixed 
and the outcomes a ∈ {1,2} and b = 1 each correspond to rank-one 
projectors, the marginal constraints in Eq. 28 are satisfied. Using 
the fact that for any linear operator O we have ​O ⊗ 𝟙∣​​d​ max​⟩ = 𝟙 ⊗ ​
O​​ T​∣​​d​ max​⟩​, we find that

​​
​ℛ​d​ SIC​ = ​√ 

_

 ​ d + 1 ─ d  ​ ​ ​  ​ ​ x​ 1​​<​x​ 2​​​​⟨​​d​ max​∣𝟙 ⊗ ​(∣​​ ​x​ 1​​​​⟩⟨​​ ​x​ 1​​​​∣−∣​​ ​x​ 2​​​​⟩⟨​​ ​x​ 2​​​​∣)​​ 2​∣​​d​ max​⟩
​     

​ = ​√ 
_

 ​ d + 1 ─ d  ​ ​ ​  ​ ​ x​ 1​​<​x​ 2​​​​​(​​ ​ 2 ─ d ​ − ​  2 ─ d(d + 1) ​​)​​ = d(d − 1 ) ​√ 
_

 d(d + 1) ​​
 ​​

(30)

This strategy relying on a maximally entangled state and a SIC 
achieves the maximal quantum value of ​​ℛ​d​ SIC​​ under the constraints 
of Eq. 28. In the Supplementary Materials (section S3A), we prove 
that under these constraints, the tight quantum and no-signaling 
bounds on ​​ℛ​d​ SIC​​ read

	​​ ℛ​d​ SIC​ ​≤​​ 
Q

 ​ d(d − 1 ) ​√ 
_

 d(d + 1) ​​	 (31)

	​​ ℛ​d​ SIC​ ​ ≤​​ NS​ d(​d​​ 2​ − 1)​	 (32)

We remark that SICs are not known to exist in all Hilbert space 
dimensions. However, their existence in all dimensions is strongly 
conjectured, and explicit SICs have been found in all dimensions up 
to 193 (53–55).
Bell inequalities for SICs
The marginal constraints in Eq. 28 allowed us to prove that the 
quantum realization based on SICs achieves the maximal quantum 
value of ​​ℛ​d​ SIC​​. Our goal now is to remove these constraints to obtain 

a standard Bell functional. Analogously to the case of MUBs, we add 
marginal terms to the original functional ​​ℛ​d​ SIC​​.

To this end, we introduce penalties for both Alice and Bob. Spe-
cifically, if Alice outputs a ∈ {1,2}, then they lose d points, whereas 
if Bob outputs b = 1, then they lose d points. The total number of 
points in the modified game constitutes our final Bell functional

	​​ S​d​ SIC​  ≡ ​ ℛ​d​ SIC​ − ​​ d​​ ​  ​ ​x​ 1​​<​x​ 2​​​​(p(a  =  1 ∣  x ) + p(a  =  2  ∣  x ) ) − ​​ d​​ ​​ y 

                           ​ ​p(b =  1  ∣  y)​
(33)

Hence, our aim is to suitably choose the penalties d and d so 
that the maximal quantum value of ​​S​d​ SIC​​ is achieved with a strategy 
that closely mimics the marginal constraints (Eq. 28) and thus 
maintains the optimality of Bob performing a SIC.

Theorem II.6 (Bell inequalities for SICs). The Bell functional 
​​S​d​ SIC​​ in Eq. 33 with

	​​
​
​ 

​​ d​​  = ​ 
1 − ​​ d,2​​

 ─ 2 ​ ​ √ 
_

 ​  d ─ d + 1 ​ ​
​  

​
​ 

​​ d​​  = ​  d − 2 ─ 2 ​ ​ √ 
_

 d(d + 1) ​
​​	 (34)

obeys the tight local bound

	​​ ​S​d​ SIC​ ​  ≤​​ LHV​​
{

​​​
4

​ 
for d  =  2

​    
​d​​ 2​(d − 1 ) − d(​d​​ 2​ − d − 1 ) ​√ 

_

 ​  d ─ d + 1 ​ ​
​ 

for d  ≥  3
​​​	 (35)

and the quantum bound

	​​ S​d​ SIC​ ​≤​​ 
Q

 ​ ​ d + 2 ​​ d,2​​
 ─ 2  ​ ​√ 
_

 d(d + 1) ​​	 (36)

Moreover, the quantum bound is tight and can be saturated by 
sharing a maximally entangled state of local dimension d and choos-
ing Bob’s outcome-one projectors to form a SIC.

Proof. The proof is presented in the Supplementary Materials 
(section S3B). To obtain the quantum bound in Eq. 36, the key 
ingredients are the Cauchy-Schwarz inequality and semidefinite re-
laxations of polynomial optimization problems. To derive the local 
bound in Eq. 35, the key observation is that the symmetries of the 
Bell functional allow us to notably simplify the problem.

The fact that the quantum bound is saturated by a maximally 
entangled state and Bob performing a SIC can be seen immediately 
from the previous discussion that led to Eq. 30. With that strategy, 
we find ​​ℛ​d​ SIC​  =  d(d − 1 ) ​√ 

_
 d(d + 1) ​​. Since it also respects (a = 1∣x) + 

p(a = 2∣x) = 2/d ∀x, as well as p(b = 1∣y) = 1/d ∀y, a direct inser-
tion into Eq. 33 saturates the bound in Eq. 36. Note that in the limit 
of d → ∞ both the local bound and the quantum bound grow qua-
dratically in d.

We remark that for the special case of d = 2, no penalties are 
needed to maintain the optimality of SICs (which is why the 
Kronecker delta appears in Eq. 34). The derived Bell inequality for 
a qubit SIC (which corresponds to a tetrahedron configuration on 
the Bloch sphere) can be compared to the so-called elegant Bell in-
equality (85) whose maximal violation is also achieved using the 
tetrahedron configuration. While we require six settings of Alice and 
four settings of Bob, the elegant Bell inequality requires only four 
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settings of Alice and three settings of Bob. However, the additional 
complexity in our setup carries an advantage when considering the 
critical visibility of the shared state, i.e., the smallest value of v in Eq. 24 
(defining an isotropic state) for which the Bell inequality is violated. 
The critical visibility for violating the elegant Bell inequality is 86.6%, 
whereas for our Bell inequality, it is lowered to 81.6%. We remark 
that on the Bloch sphere, the antipodal points corresponding to the 
four measurements of Alice and the six measurements of Bob form 
a cube and a cuboctahedron, respectively, which constitutes an in-
stance of the type of Bell inequalities proposed in (86).
Device-independent certification
Theorem II.6 shows that for any dimension d ≥ 2, we can construct 
a Bell inequality that is maximally violated by a SIC in that dimen-
sion (provided that a SIC exists). Let us now consider the converse 
question, namely, that of device-independent certification. In analogy 
with the case of MUBs (Eq. 9), we find a simple description of Bob’s 
measurements.

Theorem II.7 (Device-independent certification). The maximal 
quantum value of the Bell functional ​​S​d​ SIC​​, provided that the mar-
ginal state of Bob is full rank, implies that his measurement operators 
​​{​B​ y​​}​y=1​ ​d​​ 2​ ​​  are projective and satisfy

	​​ ​  y ​ ​ ​B​ y​​  =  d𝟙​	 (37)

and

	​​ B​ y​​  =  (d + 1 ) ​B​ y​​ ​B​ ​y ′ ​​​ ​B​ y​​​	 (38)

for all y ≠ y′.
A complete proof, which is similar in spirit to the proof of 

Theorem II.2, can be found in the Supplementary Materials (section 
S3C). For the special case of d = 2, the conclusion can be made even 
more accurate: The maximal quantum violation of ​​S​2​ SIC​​ implies that 
Bob’s outcome-one projectors are rank-one projectors acting on a 
qubit whose Bloch vectors form a regular tetrahedron (up to the 
three standard equivalences used in self-testing).

Similar to the case of MUBs, we face the key question of inter-
preting the condition in Eq. 38 and its relation to SICs. Again, in 
analogy with the case of MUBs, we note that the concept of a SIC 
references the dimension of the Hilbert space, which should not ap-
pear explicitly in a device-independent scenario. Hence, we consider 
an operational approach to SICs, which must rely on observable 
quantities (i.e., probabilities). This leads us to the following natural 
definition of a set of projectors being operationally symmetric in-
formationally complete (OP-SIC).

Definition II.8 (Operational SIC). We say that a set of projec-
tors ​​{​B​ a​​}​a=1​ ​n​​ 2​ ​​  is OP-SIC if

	​​ ​  a​ ​ ​B​ a​​  =  n𝟙​	 (39)

and

	​ ⟨ ∣ ​ B​ a​​ ∣  ⟩ = 1  ⇒  ⟨  ∣ ​ B​ b​​ ∣  ⟩ = ​  1 ─ n + 1 ​​	 (40)

for all a ≠ b.
This definition trivially encompasses SICs as special instances of 

OP-SICs. An argument analogous to the proof of Theorem II.4 shows 
that this definition is in fact equivalent to the relations given in Eqs. 37 
and 38. Hence, in analogy with the case of MUBs, the property of 

Bob’s measurements certified by the maximal violation of our Bell 
inequality is precisely the notion of OP-SICs.
Adding a SIC-POVM
The Bell inequalities proposed above (Bell functional ​​S​d​ SIC​​) are 
tailored to sets of rank-one projectors forming a SIC. However, it is 
also interesting to consider a closely related entity, namely, a SIC-
POVM, which is obtained simply by normalizing these projectors, 
so that they can be collectively interpreted as arising from a single 
measurement. That is, a SIC-POVM on ℂd is a measurement ​​{​E​ a​​}​a=1​ ​d​​ 2​ ​​  in 
which every measurement operator can be written as ​​E​ a​​ = ​ 1 _ d​∣​​ a​​⟩⟨​​ a​​∣​, 
where the set of rank-one projectors { ∣ a⟩⟨a ∣ }a forms a SIC. Be-
cause of the simple relation between SICs and SIC-POVMs, we 
can extend the Bell inequalities for SICs proposed above such that 
they are optimally implemented with both a SIC (as before) and a 
SIC-POVM.

It is clear that to make SIC-POVMs relevant to the Bell experi-
ment, it must involve at least one setting that corresponds to a 
d2-outcome measurement. For the Bell scenario previously considered 
for SICs (see Fig. 3), no such measurement is present. Therefore, we 
supplement the original Bell scenario by introducing a single addi-
tional measurement setting of Alice, labeled by povm, which has d2 
outcomes labeled by a′ ∈ [d2]. The modified Bell scenario is illus-
trated in Fig. 4. We construct the Bell functional ​​T ​d​ SIC​​ for this scenario 
by modifying the previously considered Bell functional ​​S​d​ SIC​​

	​​ T ​d​ SIC​  = ​ S​d​ SIC​ − ​ ​ 
y=1

​ 
​d​​ 

2
​
 ​p(​a ′ ​  =  y, b  = ⊥  ∣  povm, y)​	 (41)

Hence, whenever Bob outputs “⊥” and the outcome associated to 
the setting povm coincides with the input of Bob, a point is lost. 
Evidently, the largest quantum value of ​​T ​d​ SIC​​ is no greater than the 
largest quantum value of ​​S​d​ SIC​​. For the former to equal the latter, we 
require that (i) ​​S​d​ SIC​​ reaches its maximal quantum value (which is 
given in Eq. 36) and (ii) that (a′ = y, b = ⊥∣povm, y) = 0 ∀y. We 
have already seen that by sharing a maximally entangled state and 
Bob’s outcome-one projectors {By}y forming a SIC, the condition (i) 
can be satisfied. By normalization, we have that Bob’s outcome-⊥ 
projectors are ​​B​y​ ⊥​ = >𝟙 − ​B​ y​​​. Again, noting that for any linear operator 
O we have ​O ⊗ 𝟙∣​​d​ max​⟩ = 𝟙 ⊗ ​O​​ T​∣​​d​ max​⟩​, observe that if Bob applies 
​​B​y​ ⊥​​, then Alice’s local state is orthogonal to By. Hence, if Alice chooses 
her POVM {Ea′}, corresponding to the setting povm, as the SIC-POVM 
defined by ​​E​ ​a ′ ​​​ = ​  1 _ d​ ​B​​a ′ ​​ 

T ​​, the probability of finding a′ = y vanishes. 
This satisfies condition (ii). Hence, we conclude that in a general 
quantum model

	​​ T ​d​ SIC​ ​≤​​ 
Q

 ​ ​ d + 2 ​​ d,2​​
 ─ 2  ​ ​√ 
_

 d(d + 1) ​​	 (42)

Fig. 4. Bell scenario for SICs and SIC-POVMs of dimension d. This scenario mod-
ifies the original Bell scenario for SICs (see Fig. 3) by supplying Alice with an extra 
setting labeled by povm, which has d2 possible outcomes.
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and that the bound can be saturated by supplementing the previous 
optimal realization with a SIC-POVM on Alice’s side.

Application: Device-independent quantum random  
number generation
The fact that the Bell functionals ​​S ​d​ SIC​​ and ​​T ​d​ SIC​​ achieve their maxi-
mal quantum values with a SIC and a SIC-POVM, respectively, opens 
up the possibility for device-independent quantum information pro-
tocols for tasks in which SICs and SIC-POVMs are desirable. We 
focus on one such application, namely, that of device-independent 
quantum random number generation (87). This is the task of certi-
fying that the data generated by a party cannot be predicted by a 
malicious eavesdropper. In the device-independent setting, both the 
amount of randomness and its security are derived from the viola-
tion of a Bell inequality.

Nonprojective measurements, such as SIC-POVMs, are useful for 
this task. The reason is that a Bell experiment implemented with 
entangled systems of local dimension d and standard projective mea-
surements cannot have more than d outcomes. Consequently, one 
cannot hope to certify more than log d bits of local randomness. 
However, Bell experiment relying on d-dimensional entanglement 
implemented with (extremal) nonprojective measurements can have 
up to d2 outcomes (88). This opens the possibility of generating up 
to 2 log d bits of local randomness without increasing the dimen-
sion of the shared entangled state. Notably, for the case of d = 2, such 
optimal quantum random number generation has been shown using 
a qubit SIC-POVM (42).

Here, we use our Bell inequalities for SIC-POVMs to significantly 
outperform standard protocols relying on projective measurements 
on d-dimensional entangled states. To this end, we briefly summarize 
the scenario for randomness generation. Alice and Bob perform 
many rounds of the Bell experiment illustrated in Figure 4. Alice 
will attempt to generate local randomness from the outcomes of her 
setting labeled by povm. In most rounds of the Bell experiment, 
Alice performs povm and records the outcome a′. In a smaller num-
ber of rounds, she randomly chooses her measurement setting, and 
the data are used toward estimating the value of the Bell functional 
​​T ​d​ SIC​​ defined in Eq. 41. A malicious eavesdropper may attempt to 
guess Alice’s relevant outcome a′. To this end, the eavesdropper may 
entangle her system with that of Alice and Bob and perform a 
well-chosen POVM {Ec}c to enhance her guess. In analogy to Eq. 20, 
the eavesdropper’s guessing probability reads

	​​​ P​g​ ​ ≡ sup​{​​​ ​ 
 c=1

​ 
​d​​ 

2
​
 ​⟨​​ ABE​​∣​A​povm​ c  ​ ⊗ 𝟙 ⊗ ​E​ c​​∣​​ ABE​​⟩​}​​​​	 (43)

where ​​{​E​ c​​}​c=1​ ​d​​ 2​ ​​  is the measurement used by the eavesdropper to pro-
duce her guess, the expression inside the curly braces is the proba-
bility that her outcome is the same as Alice’s outcome for the setting 
povm for a particular realization, and the supremum is taken over 
all quantum realizations (the tripartite state and measurements of 
all three parties) compatible with the observed Bell inequality viola-
tion ​  = ​ T ​d​ SIC​​.

We quantify the randomness generated by Alice using the con-
ditional min-entropy ​​H​ min​​(​A​ povm​​ ∣  E ) = − log (​P​g​ ​)​. To obtain a 
device-independent lower bound on the randomness, we must eval-
uate an upper bound on ​​P​g​ ​​ for a given observed value of the Bell 
functional. We saw in the “Application: Device-independent quan-
tum key distribution” section that if the eavesdropper is only trying 

to guess the outcome of a single measurement setting, we can, without 
loss of generality, assume that they are only classically correlated 
with the systems of Alice and Bob. As before, we restrict ourselves 
to the asymptotic limit of many rounds, in which fluctuations due 
to finite statistics can be neglected.

To bound the randomness for some given value of ​​T​  d​ SIC​​, we use 
the hierarchy of quantum correlations (81). We restrict ourselves 
to the cases of d = 2 and d = 3. For the case of d = 2, we construct 
a moment matrix with the operators ​{(𝟙, ​A​ x​​) ⊗ (𝟙, ​B​ y​​) ⊗ (𝟙, E )}∪ 
{​A​ povm​​ ⊗ (𝟙, ​B​ y​​, E)}​, neglecting the ⊥ outcome. The matrix is of size 
361 × 361 with 10,116 variables. Again, we can make use of symmetry 
to simplify the semidefinite program. In this case, the following per-
mutation leaves the problem invariant: x1 → (x1), x2 → (x2), a → 
f(a, x1, x2), a′ → (a′), y → (y), and c → (c), where

	​​ ​f​ ​​(a, ​x​ 1​​, ​x​ 2​​ ) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

a

​ 

(​x​ 1​​ ) <  (​x​ 2​​)

​  2​  (​x​ 1​​ ) ≥  (​x​ 2​​) and a  =  1​   
1

​ 
(​x​ 1​​ ) ≥  (​x​ 2​​) and a  =  2

​   

⊥

​ 

(​x​ 1​​ ) ≥  (​x​ 2​​) and a  =  ⊥

​​​	 (44)

and  ∈ S4. Using this symmetry reduces the number of free vari-
ables to 477. The trade-off between the amount of certified random-
ness and the nonlocality is illustrated in Fig. 5. We find that for 
sufficiently large values of ​​T ​2​ SIC​​ (roughly ​​T ​2​ SIC​  ≥  4.8718​), we out-
perform the one-bit limitation associated to projective measurements 
on entangled qubits. Notably, for even larger values of ​​T ​2​ SIC​​, we also 
outperform the restriction of log 3 bits associated to projective mea-
surements on entangled systems of local dimension three. For the 
optimal value of ​​T ​2​ SIC​​ we find Hmin(Apovm ∣ E) ≳ 1.999, which is 
compatible up to numerical precision with the largest possible 
amount of randomness obtainable from qubit systems under general 
measurements, namely, two bits. This two-bit limit stems from the 
fact that every qubit measurement with more than four outcomes 
can be stochastically simulated with measurements of at most four 
outcomes (88).

For the case of d = 3, we bound the guessing probability follow-
ing the method of (87). This has the advantage of requiring only a 
bipartite, and hence smaller, moment matrix than the tripartite for-
mulation. However, the amount of symmetry leaving the problem 
invariant is reduced because the objective function only involves one 
outcome. Concretely, we construct a moment matrix of size 820 × 
820 with 263,549 variables. We then write the guessing probability 

Fig. 5. Lower bound on the amount of device-independent randomness versus 
the value of ​​T ​2​ SIC​​. 
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as P(a′ = 1∣povm) and identify the following group of permuta-
tions, leaving the problem invariant: x1 → (x1), x2 → (x2), a → 
f(a, x1, x2), a′ → (a′), and y → (y), where  ∈ S9 leaves element 1 
invariant and permutes elements 2, …,9 in all possible ways. Taking 
this symmetry into account reduces the number of free variables to 
460. To further simplify the problem, we make use of RepLAB, a 
recently developed tool that decomposes representations of finite 
groups into irreducible representations (89, 90). This allows us to 
write the moment matrix in a preferred basis in which it is block 
diagonal. The semidefinite constraint can then be imposed on each 
block independently, with the largest block size 28 × 28 instead of 
820 × 820. Solving one semidefinite program with SeDuMi (84) then 
takes 0.7 s with <0.1 gigabytes of memory instead of 162 s/0.2 gigabytes 
without block diagonalization and fails because of lack of memory 
without any symmetrization (>400 gigabytes required).

Using entangled states of dimension 3 and corresponding SIC-
POVMs, one can attain the full range of values for ​​T ​3​ SIC​​. The guessing 
probability is independent of the outcome guessed by the eaves-
dropper, and we can verify that the bound that we obtain is convex, 
hence guaranteeing that no mixture of strategy by the eavesdropper 
must be considered (87). The randomness is then given in Fig. 6, 
which indicates that by increasing the value of ​​T ​3​ SIC​​, we can obtain 
more randomness than the best possible schemes relying on stan-
dard projective measurements and entangled systems of dimensions 
3,4,5,6, and 7. In particular, in the case of ​​T ​3​ SIC​​ being maximal, we 
find that Hmin(Apovm∣E) ≈ 3.03 bits. This is larger than what can 
be obtained by performing projective measurements on eight dimen-
sional systems (since log 8 = 3 bits). It is, however, worth noting that 
this last value is obtained at the boundary of the set of quantum 
correlations where the precision of the solver is significantly reduced 
(in particular, the DIMACS errors at this point are of the order of 
10−4). It is not straightforward to estimate the extent to which this 
reduced precision may influence the guessing probability, so it would 
be interesting to reproduce this computation with a more precise 
solver such as SDPA (91).

DISCUSSION
MUBs and SICs are conceptually elegant, fundamentally important, 
and practically useful features of quantum theory. We investigated 
their role in quantum nonlocality. For both MUBs and SICs (of any 
Hilbert space dimension), we presented families of Bell inequalities 
for which they produce the maximal quantum violations. Moreover, 

we showed that these maximal quantum violations certify natural 
operational notions of mutual unbiasedness and symmetric in-
formational completeness. Then, we considered applications of 
both families of Bell inequalities in practically relevant tasks. The 
Bell inequalities for MUBs turn out to be useful for the task of 
device-independent quantum key distribution and give the optimal 
key rate for measurements with d outcomes. Moreover, for the 
case of qutrit systems, we investigated the noise robustness of the 
protocol. For the Bell inequalities for SICs, we considered device-
independent random number generation for qubits and qutrits 
based on SIC-POVMs. We showed (up to numerical precision) 
optimal randomness generation for qubit systems. For qutrit sys-
tems, we showed that more randomness can be generated than in 
any scheme using standard projective measurements and entangle-
ment of up to dimension 7. These results were obtained using the 
RepLAB package, which helped to significantly reduce the complexity 
of the corresponding semidefinite programs by taking advantage of 
their symmetry.

This work opens many new research directions, so let us mention 
just a few of them. We showed that a maximal quantum violation of 
the Bell inequality for MUBs self-tests a maximally entangled state 
of local dimension d. In the case of the Bell inequality for SICs, we 
have managed to certify the measurements of Bob, but we do not 
have a self-testing result for the state. If a self-test of the state is possible, 
what are the implications for the device-independent certification 
of the SIC-POVM setting? This may prove helpful toward solving 
another interesting question, namely, that of proving optimal local 
randomness generation (i.e., 2 log d bits) for any d based on the Bell 
inequality for SIC-POVMs. Another avenue of exploration regards 
the concept of MUMs. In this work, we have shown some of their 
basic properties with regard to MUBs and examples of how they are 
relevant in quantum information theory. However, a more system-
atic exploration of MUMs would be desirable. Similarly, a general 
exploration of OP-SICs in quantum information theory, as well as 
their relation to SICs, would be of similar interest. Last, we note that 
our noise-robust results for quantum key distribution and quantum 
random number generation may be relevant for experimental 
implementations.

MATERIALS AND METHODS
The method used for the construction of Bell inequalities for MUBs 
and SICs is based on tailoring these respective geometries to the 
framework of nonlocal games. Furthermore, to device-independently 
certify such structures, we relied on establishing operational general-
izations of MUBs and SICs that rest solely on algebraic relationships 
whose validity is independent of Hilbert space dimension. We 
applied the Bell inequalities for MUBs and SICs, respectively, to the 
task of device-independent quantum key distribution and random 
number generation. To make possible the analysis of the key rate 
and the randomness rate in the presence of noise, we used semi
definite programming (92), which is an essential tool in established 
methods to bound the quantum set of correlations (81). To make 
the semidefinite programs efficiently computable, we used so-called 
symmetrization methods [see, e.g., (93)].

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/7/eabc3847/DC1

Fig. 6. Lower bound on the amount of device-independent randomness versus 
the value of ​​T ​3​ SIC​​. 
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