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Abstract: Adequate zinc stores in the body are extremely important during periods of accelerated
growth. However, zinc deficiency is common in developing countries and low maternal circulating
zinc concentrations have previously been associated with pregnancy complications. We reviewed
current literature assessing circulating zinc and dietary zinc intake during pregnancy and the
associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW);
and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified
639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with
respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who
gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate
zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive
disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure
≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen;
however; direct comparisons between the studies was difficult. Furthermore; only a small number
of studies were based on women from populations where there is a high risk of zinc deficiency.
Therefore; the link between maternal zinc status and pregnancy success in these populations cannot
be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary
zinc intake as a measure of zinc status.
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1. Introduction

Adequate maternal nutrition, particularly before and during pregnancy, is imperative to the health
of both the mother and child [1,2]. Poor nutrition in pregnancy may lead to inappropriate nutrient
partitioning between the mother and fetus, which can be deleterious to the health of both [3]. Each
year, 3.5 million deaths in women and children are attributed to undernutrition [4]. Zinc deficiency is
predicted to be responsible for 1% of all deaths globally and 4.4% of deaths in children aged 6 months
to 5 years [5]. The World Health Organization (WHO) prioritized minimizing zinc deficiency in
developing nations as part of the Millennium Development Goal 1: to eradicate extreme poverty and
hunger [6]. Therefore, understanding the effects of zinc deficiency on pregnancy and fetal growth is
very important.

Zinc is an essential component of over 1000 proteins including antioxidant enzymes,
metalloenzymes, zinc-binding factors and zinc transporters. These are required for a variety of biological
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processes including carbohydrate and protein metabolism, DNA and RNA synthesis, cellular replication
and differentiation, and hormone regulation [7–10]. The importance of zinc to the growth of the fetus is
demonstrated by the active transport of zinc across the placenta into the fetal circulation resulting in
higher cord blood concentrations compared to those in the maternal circulation [11–14]. Rodent models
of severe maternal zinc deficiency show increased rates of fetal loss and congenital malformations in the
surviving fetuses [15] as well as reduced fetal growth [16–18], lower implantation rates and impaired
placental growth [19], all highlighting the teratogenic effects of zinc deficiency in pregnancy.

Diet is the main factor that determines zinc status [20]. In the United States and Australia,
an additional 2–4 mg zinc per day is recommended for pregnant women compared to non-pregnant
women [21,22]. It is widely acknowledged that many pregnant women do not meet this
recommendation [23–25], particularly in developing countries where diets are often plant-based. Grains
and legumes contain a significant amount of phytic acid and phytate binding of zinc limits its absorption
in the small intestine, contributing to zinc deficiency [22]. Estimates based on bioavailability of zinc,
physiological requirements and predicted zinc absorption suggest the prevalence of zinc deficiency to
range from 4% (European countries including the United Kingdom, Sweden, Germany and France)
to 73% in Bangladesh, India and Nepal [26]. A more recent evaluation, based on similar estimates,
also predicted inadequate zinc intakes in over 25% in populations in Southeast Asia and Africa [27].

A recent Cochrane review assessed the effects of zinc supplementation versus no supplementation
(with or without placebo) on the success of pregnancy in 21 randomized controlled trials (RCTs) [28].
It was concluded that zinc supplementation reduced the risk of spontaneous preterm birth (sPTB)
by 14% (RR: 0.86, 95% CI: 0.76–0.97; 16 RCTs) but there was no effect on other outcomes such as
stillbirth/neonatal death, birthweight and pregnancy-induced hypertension [28]. However, this
review did not include the effects of zinc supplementation on reducing the risk of gestational diabetes
(GDM) and analysis of maternal circulating zinc concentrations provides evidence that low maternal
zinc may be associated with GDM, as well as preeclampsia (PE), gestational hypertension (GH),
sPTB and infant birthweight [24,29]. The association between serum zinc and PE has been reviewed
recently [30] but there has been no extensive review that has assessed maternal zinc concentrations
with respect to a range of pregnancy complications. Here, we review the current literature based
on observational studies assessing the association between maternal zinc status and a number of
pregnancy complications in order to determine whether maternal circulating zinc or dietary zinc intake
are important factors associated with pregnancy outcome.

2. Materials and Methods

2.1. Eligibility Criteria

Studies included human prospective cohorts, case-control, longitudinal and cross-sectional
studies assessing maternal circulating zinc concentrations and pregnancy complications including
PE, eclampsia, GH, GDM, small for gestational age (SGA), intrauterine growth restriction (IUGR;
<10th percentile), low-birthweight (LBW; ≤2500 g) and sPTB. Only studies that measured maternal
circulating zinc during pregnancy or at delivery and/or dietary zinc intake at these times were included.
Studies that assessed zinc concentrations in placenta, amniotic fluid, in offspring (post-natally), cord
blood only and breast milk were excluded. There were no restrictions imposed on age of women
included in the studies or on any other population characteristic such as race or body mass index
(BMI). Given the heterogeneity of the observational strategies, a meta-analysis was not possible.

2.2. Information Sources and Search

The search strategy and procedure was guided by the PRISMA statement [31]. Potential studies
were located through electronic databases (Ovid Medline (1946–present), CINAHL (1937–present)
and Scopus (1995–present)), as well as manual searches of references in review articles and relevant
articles known by the authors. Limits included full text articles written in English and published
in academic journals. The last search was performed on 25 August 2016. Search terms and MeSH
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headings in the title, abstract, and index terms, were initially identified in Medline and subsequent
key words were used for the remaining databases (Appendix B). Briefly, the search included the
following: zinc; dietary zinc; zinc intake; plasma zinc; serum zinc; preeclampsia; eclampsia; gestational
hypertension; gestational diabetes mellitus; fetal macrosomia; small for gestational age; intrauterine
growth restriction; low birthweight; preterm birth.

2.3. Data Collection

An independent search of the literature was performed in April 2015 and again in August 2016.
Titles and abstracts were examined independently by two of the authors who documented reasons for
excluding full text articles. Any differences between the two reviewers were clarified; a third reviewer
resolved any disagreements. If an article appeared in duplicate from two or three of the databases, only
the search containing the most relevant and useful information was included. For each eligible study,
the following data was extracted: author, year and country of publication; inclusion/exclusion criteria;
sample size; zinc measure including sample type, collection time during pregnancy and method of
analysis and pregnancy outcome. Most studies did not report on exclusion/inclusion criteria; these
were therefore not included in the results table. Values determining zinc status were all converted to
µg/L for easier comparisons between studies (Appendix B).

3. Results

Figure 1 outlines the literature search and selection of studies. We identified 635 citations after
searching Medline (OVID), CINAHL and Scopus databases. A further seven were added by the
authors. After screening the title and abstract, 116 full text papers were read. Of these, 67 studies met
the inclusion criteria, including 29 on SGA/LBW (Table 1), 34 on hypertensive disorders of pregnancy
(Table 4), 11 on sPTB (Table 3) and 9 on GDM (Table 4). Eleven studies assessed multiple pregnancy
outcomes and are included in the relevant pregnancy outcome tables. Table 5 summarizes all included
studies and whether there was a positive, negative or no association between zinc status and the
pregnancy complication. The included studies were tabulated based on those that measured dietary
zinc intake, then those that measured serum/plasma zinc. Globally, the average percentage of people
affected by inadequate zinc intake is estimated to be 17.3% [27]. As dietary consumption of zinc is
most influential on zinc status, studies that measured circulating zinc were further categorized based
on whether they sampled from countries where inadequate zinc intake has been predicted to affect
<17% or ≥17% of the population. We did not limit the studies to a specific period during gestation
when zinc was measured and this information was not provided in eight studies [32–39]. However,
zinc concentrations decline across gestation due to a combination of factors including hemodilution
and increased fetal demand [40,41] and this made direct comparison of the studies difficult.

3.1. Infant Birthweight

There were four studies that assessed dietary zinc intake and birthweight with three based
on women from countries where the estimated prevalence of low dietary zinc intake is <17%
(Table 1) [42–45]. Lower zinc intake was reported in women from the United Kingdom (UK) who
gave birth to an SGA infant compared to those who gave birth to an appropriate-for-gestational-age
(AGA) infant (SGA: mean (SEM) 11.3 (0.5) vs. AGA 13.0 (0.6) mg/day, p < 0.05) [45]. This was similar
to another study of Indian women that reported lower zinc intakes in women who delivered an infant
weighing <2500 g compared to those who delivered an infant that was ≥2500 g [42]. Logistic regression
analysis in one study from the United States reported daily zinc intake <6 mg/day to be associated with
a 2-fold increase in the risk of delivering a LBW infant (aOR: 2.01, 95% CI: 1.11–3.66) [44] although dietary
zinc intakes <median were not found to be associated with LBW in another study of American women
(OR: 1.4, 95% CI: 0.9–2.1) [43]. While both studies used a 24 h recall questionnaire to determine zinc
intakes, there were differences in ethnicity of the women studied as Neggers et al., [43] predominantly
studied African-American women as opposed to Scholl et al. who studied Caucasian women [44].
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Table 1. Included studies assessing maternal zinc status and birthweight.

Author, Country Sample Size

Zinc Measure

Outcome of the Study
(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[42] Simmer,
United Kingdom a

28 SGA
29 uncomplicated

Dietary zinc intake
Third trimester of pregnancy
7 day dietary recall

↓mean (SEM) dietary intake in the SGA mothers compared to the
women with uncomplicated pregnancies.
SGA: 11.3 (0.5) vs. uncomplicated: 13.0 (0.6) mg/day, p < 0.05

[43] Negandhi, India b 144 LBW
240 uncomplicated

Dietary zinc intake
26–30 weeks
24 h dietary recall

↓ mean dietary zinc intake in women with a LBW infant compared
to those with an uncomplicated pregnancy.
LBW: 5.39 mg/day vs. uncomplicated 6.77 mg/day, p < 0.001

[44] Scholl,
United States c

115 with zinc intake ≤6 mg/day
699 with zinc intake >6 mg/day

Dietary zinc intake
28 and 36 weeks
24 h dietary recall

2-fold ↓ risk of delivering a LBW infant with dietary zinc intake
>6 mg/day.
OR: 2.01, 95% CI: 1.11–3.66

[45] Neggers,
United States d

180 LBW
1218 uncomplicated

Dietary zinc intake
18 and 30 weeks
24 h dietary recall using the nutrient data base
developed by the University of Minnesota

NS association between low dietary zinc intake (less than median)
and risk of LBW.
OR: 1.4, 95% CI: 0.9–2.1

Inadequate dietary zinc intake estimated to affect <17% of the studied population

[46] Wang, China b 247 with serum zinc <560 µg/L
2940 with serum zinc ≥560 µg/L

Fasting serum zinc
Across gestation
Flame AAS

↑ incidence of LBW in the mothers with serum zinc <560 µg/L
compared to those with serum zinc ≥560 µg/L.
Adjusted RR: 3.41, 95% CI: 1.97, 5.91

[47] Voss Jepsen,
Denmark a

10 SGA
30 uncomplicated

Heparin plasma zinc
Collected at 35–41 weeks
AAS

↑mean (SD) plasma zinc between SGA mothers and those with
uncomplicated pregnancies.
SGA: 732 (85) vs. uncomplicated: 654 (78) µg/L, p = 0.03

[48] Borella, Italy a 16 SGA
35 uncomplicated

Heparin plasma zinc
Collected in the third trimester
Flame AAS

↑ mean (SD) plasma zinc in SGA women compared to women with
uncomplicated pregnancies.
SGA: 685.6 (119.6) vs. uncomplicated: 627.5 (150) µg/L, p < 0.001

[49] Neggers, USA e 39 LBW
437 uncomplicated

Serum zinc
Collected across gestation
Flame AAS

8-fold ↑ prevalence of LBW with serum zinc in the lowest quartile
(457.5–797.4 µg/L) compared to the highest (1039.2–1660.1 µg/L).
OR: 8.2, 95% CI:2.4–27.5

[50] Bro, Denmark a 47 SGA and 34 preterm
220 uncomplicated

Serum zinc
Collected at delivery
Flame AAS

NS mean (SD) serum zinc levels between SGA and women with
uncomplicated pregnancies.
SGA: 764.7 (119.6) vs. uncomplicated: 679.7 (98) µg/L
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Table 1. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study
(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[38] Hyvonen-Dabek,
Finland f

4 SGA
10 uncomplicated

Serum zinc
Collection time not specified
Particle induced X-ray emission

NS mean (SD) serum zinc in SGA women compared to those with
uncomplicated pregnancies.
SGA: 1270 (320) vs. uncomplicated: 1150 (220) µg/L

[51] Mistry, UK a* 19 SGA
107 uncomplicated

Heparin plasma zinc
Collected at 28–32 weeks
Inductively coupled plasma
mass spectrometry

NS in mean (95% CI) plasma zinc between SGA women and those
with uncomplicated pregnancies.
SGA: 708.1 (510.4–905.8) vs. uncomplicated: 634.4
(580.5–688.2) µg/L

[52] Tamura, USA g 80 SGA
80 uncomplicated

Serum zinc
Collected at 18 weeks and 30 weeks
Flame AAS

NS in mean (SD) plasma zinc between SGA and women with
uncomplicated pregnancies at 18 weeks.
SGA: 627 (118) vs. uncomplicated: 667 (98) µg/L
NS in mean (SD) plasma zinc between SGA and women with
uncomplicated pregnancies at 30 weeks.
SGA: 562 (92) vs. uncomplicated: 575 (92) µg/L

[53] Tamura, USA a 139 SGA
2038 uncomplicated

Non-fasting heparin plasma zinc
Collected at first prenatal visit (6 to 34 weeks)
Flame AAS

NS in the prevalence (n (%)) of SGA measured between the lowest
quartile and upper 3 quartiles of zinc.
Highest: 103 (4.4) vs. lowest: 36 (4.8)

[54] Ghosh, China a 22 SGA
38 uncomplicated

Serum zinc
Collected within 24 h of delivery
AAS

NS in mean (SD) serum zinc levels between SGA and women with
uncomplicated pregnancies.
SGA: 508.1 (185.9) vs. uncomplicated: 542.3 (162.8) µg/L

[55] Cherry, USA b 29 LBW
230 uncomplicated

Heparin plasma zinc
Collected across gestation
AAS

NS mean (SEM) plasma zinc in mothers with a LBW infant
compared to mothers with uncomplicated pregnancies.
LBW: 604.9 (22.4) vs. uncomplicated: 577.2 (7.7) µg/L

[56] Bogden, USA h 22 LBW
50 uncomplicated

EDTA plasma zinc
Collected at delivery
Flame AAS

NS mean (SEM) plasma zinc in women with a LBW infant
compared to women with uncomplicated pregnancies.
LBW: 640 (20) vs. uncomplicated: 620 (20) µg/L

Inadequate dietary zinc intake estimated to affect ≥17% of the studied population

[57] Atinmo, Nigeria h 20 LBW
30 uncomplicated

Heparin plasma zinc
Collected at delivery
AAS

↓ mean (SD) serum zinc in women with a LBW infant compared to
those with uncomplicated pregnancies.
LBW: 663.1 (144.6) vs. uncomplicated: 731.5 (235.6) µg/L, p < 0.05



Nutrients 2016, 8, 641 6 of 28

Table 1. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study
(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[58] Abass, Sudan b 50 LBW
50 uncomplicated

Serum zinc
AAS
Atomic absorption spectrometry

↓median (IQR) serum zinc in women with a LBW infant compared to
those with uncomplicated pregnancies.
LBW: 629 (363–968) vs. uncomplicated 962 (846–1257) µg/L, p < 0.001

[59] Rwebembera,
Tanzania c

81 LBW
84 uncomplicated

EDTA plasma zinc
Collected at delivery
Flame AAS

3-fold ↓ risk of delivering a LBW infant with serum zinc ≥ 392.2 µg/L
OR: 3.07, 95% CI: 1.07–8.97

[60] Bahl, India c 19 LBW
56 uncomplicated

Serum zinc
Collected at delivery
Flame AAS

↓mean (SD) serum zinc in women with a LBW infant compared to
those with uncomplicated pregnancies.
LBW: 553 (43) vs. 692 (95) µg/L, p < 0.001

[61] Singh, India e 47 LBW
45 uncomplicated

Serum zinc
Collected at delivery
AAS

↓mean (SD) serum zinc in women with a LBW infant compared to
those with uncomplicated pregnancies.
LBW: 623 (330) vs. uncomplicated: 895 (514) µg/L, p < 0.001

[62] Prema, India e 23 LBW
208 uncomplicated

Serum zinc
Collected at delivery between 9–11.30 a.m.
Flame AAS

↑mean (SD) serum zinc in mothers with a LBW infant compared to
mothers with an uncomplicated pregnancy.
LBW: 660 (162) vs. uncomplicated: 620 (146) µg/L, p < 0.01

[63] Badakhsh, Iran b 30 LBW
110 uncomplicated

Serum zinc
Collected at delivery
AAS

↑mean (SD) serum zinc in mothers with a LBW infant compared to
mothers with an uncomplicated pregnancy.
LBW: 686.2 (204.8) vs. uncomplicated: 514.3 (138.8) µg/L, p < 0.001

[64] Goel, India a 20 LBW
25 uncomplicated

Heparin plasma zinc
Collected at delivery
AAS

NS mean (SD) plasma zinc in women with a LBW infant compared to
those with an uncomplicated pregnancy.
LBW: 726 (61) vs. uncomplicated: 763 (56) µg/L

[65] Srivastava,
India b

26 LBW
25 uncomplicated

Heparin plasma zinc
Collected at delivery
Flame AAS

NS mean (SD) plasma zinc between mothers with a LBW infant and
mothers with uncomplicated pregnancies.
LBW: 6470 (4860) vs. uncomplicated: 5670 (2490) µg/L

[66] Jeswani, India a 10 SGA
25 uncomplicated

Serum zinc
Collected at 28–40 weeks
AAS

NS mean (SD) serum zinc in SGA women compared to those with
uncomplicated pregnancies.
SGA: 938 (76.2) vs. uncomplicated: 962.8 (194.8) µg/L
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Table 1. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study
(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[67] George, India a 65 SGA
51 uncomplicated

Heparin plasma zinc
Collected before labor between 8–10 a.m.
AAS

NS in mean (SD) plasma zinc between SGA and women with
uncomplicated pregnancies.
SGA: 675 (90) vs. uncomplicated: 706.7 (139) µg/L

[68] Akman, Turkey f 22 SGA
34 uncomplicated

Serum zinc
Collected at delivery
AAS

NS mean (SD) serum zinc between SGA women and women with
uncomplicated pregnancies.
SGA: 1218 (543) vs. uncomplicated 1038 (343) µg/L

[69] Ozdemir, Turkey b 16 LBW
59 uncomplicated

Serum zinc
Collected at 38–42 weeks
Flame AAS

NS mean (SD) serum zinc between mothers with a LBW infant and
mothers with uncomplicated pregnancies.
Data represented on graphs

a SGA defined as <10th percentile; b LBW defined as <2500 g; c LBW defined as ≤2000 g; d LBW defined as <2750 g; e LBW defined as <2000; f SGA not defined; a* SGA defined
as <10th percentile based on customised centiles; g SGA defined as <15th percentile; h LBW defined as ≤2500 g. Bold print signifies results that were significantly different.
Abbreviations: AAS: atomic absorption spectrometry; CI: confidence interval; IQR: interquartile range; LBW: low birth weight; NS: non-significant; OR: odds ratio; SD: standard
deviation; SEM: standard error of the mean; SGA: small for gestational age.

Table 2. Included studies assessing maternal zinc status and hypertensive disorders of pregnancy.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[70] Tande,
United States a,b

13 hypertensive (11 PE + 2 GH)
44 uncomplicated

Dietary and supplement intake
First 3 months of pregnancy
Harvard food frequency questionnaire

NS in mean (SEM) dietary zinc intake between those with and
without gestational hypertension.
Hypertensive: 16.9 (1.56) vs. uncomplicated: 15.4 (1.03) mg/day

Inadequate dietary zinc intake estimated to affect <17% of the studied population

[71] Lazebnik,
United States a,b

17 PE and 14 hypertensive
31 uncomplicated

Plasma zinc
Collected within 1 h of delivery
AAS

↓mean (SD) serum zinc in women with PE when compared to
women with uncomplicated pregnancies.
PE: 420 (100) vs. uncomplicated: 520 (130) µg/L, p < 0.05
NS mean (SD) plasma zinc in hypertensive women compared to
those whose pregnancies remained uncomplicated.
Hypertensive: 530 (110) vs. uncomplicated: 520 (110) µg/L
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Table 2. Cont.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[55] Cherry,
United States a

48 toxemic/ hypertensive
207 uncomplicated

Heparin plasma zinc
Collected across gestation
AAS

↓mean (SEM) plasma zinc in women with toxemia/ hypertension
compared to women with uncomplicated pregnancies.
Toxemic: 541.5 (16.8) vs. uncomplicated: 590.7 (8) µg/L, p < 0.009

[72] Kim, Korea a 29 PE
30 uncomplicated

Serum zinc
Collected at delivery
Instrumental neutron activation analysis

↓ mean (SEM) serum zinc in mothers with PE compared to women
with uncomplicated pregnancies.
PE: 700 (200) vs. uncomplicated: 1900 (500) µg/L, p < 0.0001

[73] Kiilholma,
Finland c,d

10 mild PE and 10 severe PE
20 uncomplicated

Serum zinc
Collected at delivery
Particle induced X-ray emission

↓mean (SD) serum zinc in women with mild and severe PE
compared to women with uncomplicated pregnancies.
Mild PE: 510 (70) and severe PE: 370 (10) vs. uncomplicated:
630 (90) µg/L, p < 0.001 for both, respectively
↓mean (SD) serum zinc in women with severe PE compared to
those with mild PE.
Severe PE: 370 (10) vs. mild PE: 510 (70) µg/L, p < 0.005

[74] Araujo Brito,
Brazil e

20 mild PE and 24 severe PE
50 uncomplicated

Fasting sodium citrate plasma zinc
Collected before delivery
Flame AAS

↓mean (SD) plasma zinc in mothers with severe PE compared to
mothers with uncomplicated pregnancies.
Severe PE: 388 (82) vs. uncomplicated: (483 (83) µg/L, p < 0.05
NS mean (SD) plasma zinc in women with mild PE compared to
women with uncomplicated pregnancies.
Mild PE: 500 (94) vs. uncomplicated: (483 (83) µg/L

[75] Magri, Malta b 33 GH
110 uncomplicated

Serum zinc
Collected in third trimester
Electro-thermal AAS

NS in mean (SD) serum zinc between women with GH and women
with uncomplicated pregnancies.
PE: 606 (80) vs. uncomplicated: 636 (100) µg/L

[76] Fenzl, Croatia a,b 30 PE and 30 GH
37 uncomplicated

Fasting serum zinc
Collected at the time of diagnosis
Flame AAS

NS in mean (SD) serum zinc between both women with PE or GH
women and women with uncomplicated pregnancies.
PE: 603 (93) and GH: 599 (83) vs. uncomplicated: 578 (93) µg/L

[77] Katz, Israel d 43 severe PE
80 uncomplicated

Plasma zinc
Collected immediately after delivery
Inductively coupled plasma mass
spectrometry

NS mean (SD) plasma zinc in mothers with severe PE vs. mothers
with uncomplicated pregnancies.
Severe PE: 685 (875) vs. uncomplicated: 534 (139) µg/L
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Table 2. Cont.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[38] Hyvonen-Dabek,
Finland f

10 hypertensive
10 uncomplicated

Serum zinc
Collection time not specified
Particle induced X-ray emission

NS mean (SD) serum zinc in women with PE compared to women with an
uncomplicated pregnancy.
PE: 1070 (320) and hypertensive: 1090 (170) vs. uncomplicated: 1150 (220)

[48] Borella, Italy a 24 hypertensive
35 uncomplicated

Heparin plasma zinc
Collected in the third trimester
Flame AAS

NS mean (SD) plasma zinc in the hypertensive women compared to those
who remained uncomplicated.
Hypertensive: 685.6 (149) vs. uncomplicated: 627.5 (150) µg/L

[78] Mistry,
United Kingdom a

244 PE
472 uncomplicated

Non-fasting heparin plasma zinc
Collected at 15 weeks gestation
Inductively coupled plasma mass
spectrometry

NS median (interquartile range) plasma zinc in women with PE women
compared to those with uncomplicated pregnancies.
PE: 579.6 (521.1–638.6) vs. uncomplicated: 575.7 (515.6–641.7) µg/L

[53] Tamura,
United States a

271 hypertensive
2038 uncomplicated

Non-fasting heparin plasma zinc
Collected at first prenatal visit (6 to 34 weeks)
Flame AAS

NS in the prevalence (n (%)) of hypertension measured between the lowest
quartile and upper 3 quartiles of zinc.
Highest: 205 (7.9) vs. Lowest: 66 (7.7)

[79] Lao TT, China a 28 PE
28 uncomplicated

Heparin plasma zinc
Collected after diagnosis, before delivery
Flame AAS

NS mean (SD) plasma zinc in women with PE compared to women with
uncomplicated pregnancies.
PE: 641 (163) vs. uncomplicated: 647 (111) µg/L

Inadequate dietary zinc intake estimated to affect ≥17% of the studied population

[80] Sarwar,
Bangladesh a

50 PE
58 uncomplicated

Fasting serum zinc
Collected >20 weeks gestation
Flame AAS

↓mean (SEM) serum zinc in mothers with PE compared to mothers with
uncomplicated pregnancies.
PE: 770 (50) vs. uncomplicated: 980 (30) µg/L, p < 0.001

[34] Kumru, Turkey a 30 PE
30 uncomplicated

Serum zinc
Collection time not specified
AAS

↓mean serum zinc in women with PE when compared to women with
uncomplicated pregnancies.
Data represented on graphs, p < 0.001

[81] IIhan, Turkey a 21 PE
20 uncomplicated

Serum zinc
Collected at 31–38 weeks
Flame AAS

↓mean (SD) serum zinc in women with PE when compared to those with
an uncomplicated pregnancy.
PE: 829.4 (289.3) vs. uncomplicated: 1251.9 (242.3) µg/L, p < 0.001

[82] Bakacak, Turkey a 38 PE
40 uncomplicated

Fasting serum zinc
32–38 weeks
Flame AAS

↓median (max-min) serum zinc in women with PE when compared to
those with an uncomplicated pregnancy.
PE: 812.4 (1106.5–624) vs. uncomplicated: 1084.5 (1385.5–881.2) µg/L,
p < 0.001
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Table 2. Cont.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[36] Farzin, Iran a 60 PE
60 uncomplicated

Fasting heparin plasma zinc
Collection time not specified
Flame AAS

↓mean (SEM) serum zinc in mothers with PE compared to
mothers with uncomplicated pregnancies.
PE: 764.9 (176.2) vs. uncomplicated: 1006.1 (201.2) µg/L, p < 0.001

[83] Al-Jameil,
Saudi Arabia a

40 PE
40 uncomplicated

Serum zinc
Collected in the third trimester
Inductively coupled plasma optical emission
spectrometry

↓mean (SD) serum zinc in mothers with PE compared to mothers
with uncomplicated pregnancies.
PE: 670 (590) vs. uncomplicated: 1300 (830) µg/L, p < 0.05

[33] Akinloye,
Nigeria a

49 PE
40 uncomplicated

Serum zinc
Collection time not specified
Flame AAS

↓ mean (SD) serum zinc between women with PE and women with
uncomplicated pregnancies.
PE: 562 (92) vs. uncomplicated: 614 (52) µg/L, p < 0.05

[39] Jain, India e 25 mild PE and 25 severe PE
50 uncomplicated

Serum zinc
Collection time not specified
AAS

↓mean (SD) serum zinc between women with mild PE and those
with uncomplicated pregnancies.
Mild PE: 831 (111) vs. uncomplicated: 1022 (157) µg/L, p < 0.05
↓mean (SD) serum zinc between women with severe PE and
women with uncomplicated pregnancies.
Severe PE: 787 (92) vs. uncomplicated: 1022 (157) µg/L, p < 0.05

[37] Gupta, India b,e
47 mild PE and. 18 severe PE and
10 eclamptic
74 uncomplicated

Non-fasting heparin plasma zinc
Collection time not specified
AAS

↓mean (SD) serum zinc in mothers with severe PE and eclampsia
compared to mothers with uncomplicated pregnancies.
Severe PE: 607 (107) and eclampsia: 607 (171) vs. uncomplicated:
695 (119) µg/L, p < 0.01
NS in mean (SD) serum zinc between women with mild PE and
women with uncomplicated pregnancies.
Mild PE: 684 (134) vs. uncomplicated: 695 (119) µg/L

[84] Bassiouni,
Egypt g,d

52 PE (28 mild and 24 severe)
20 uncomplicated

Heparin plasma zinc
Collected at delivery
AAS

NS in mean (SD) plasma zinc in women with mild PE compared to
women with uncomplicated pregnancies.
Mild PE: 604.2 (162.7) vs. uncomplicated: 646 (173.7) µg/L
↓mean (SD) plasma zinc in women with severe PE compared to
the women with uncomplicated pregnancies.
Severe PE: 410.8 (116.5) vs. uncomplicated: 646.0 (173.7 µg/L,
p < 0.001
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Table 2. Cont.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[85] Harma, Turkey a 24 PE
44 uncomplicated

Heparin plasma zinc
Collected just during the latent phase of labor
AAS

↑ mean (SD) plasma zinc levels in women with PE when compared
to women with uncomplicated pregnancies.
PE: 15.53 (4.92) vs. uncomplicated: 11.93 (3.11) µg/g protein,
p = 0.003

[86] Rafeeinia, Iran h 35 PE and 15 severe PE
50 uncomplicated

Fasting serum zinc
Collected in the third trimester
AAS

NS mean (SD) serum zinc in mothers with PE or severe PE and
uncomplicated pregnancies.
Mild PE: 690 (40) and severe PE: 780 (80) vs. uncomplicated:
720 (40) µg/L

[87] Vafaei, Iran e 20 mild PE and 20 severe PE
40 uncomplicated

Serum zinc
Collected at 28–40 weeks
Auto-analyser

NS mean (SD) serum zinc in either the mild or severe PE women
compared to women with uncomplicated pregnancies.
Data represented on graphs

[88] Ahsan,
Bangladesh a,i

44 PE and 33 eclampsia
27 uncomplicated

Serum zinc
Collected at 28–42 weeks
Flame AAS

NS mean (SD) serum zinc in PE or eclamptic women compared to
women with uncomplicated pregnancies. PE: 1045.8 (131) and
eclampsia: 915 (131) vs. uncomplicated: 980.4 (131) µg/L

[89] Rathore, India a 14 PE
47 uncomplicated

Serum zinc
Collected at delivery
Flame AAS

NS mean (SD) serum zinc between women with PE and those with
uncomplicated pregnancies.
PE: 492 (178) vs. uncomplicated: 575 (216) µg/L

[90] Kolusari, Turkey a 47 PE
48 uncomplicated

Serum zinc
Collected between 29 and 38 weeks
AAS

NS mean (SD) serum zinc between women with PE women and
those with uncomplicated pregnancies.
PE: 10.6 (4.4) vs. uncomplicated: 12.7 (4.1) µg/L

[91] Atamer, Turkey a 32 PE
28 uncomplicated

Fasting serum zinc
Collected at 28–29 weeks
Flame AAS

NS in mean (SD) serum zinc between women with PE and women
with uncomplicated pregnancies.
PE: 792 (180) vs. uncomplicated: 1086 (199) µg/L

[92] Adam, Turkey a 20 PE
20 uncomplicated

Plasma zinc
Collected before the onset of labor
Flame AAS

NS mean (SD) plasma zinc in women with PE compared to women
with an uncomplicated pregnancy.
PE: 313 (47) vs. uncomplicated: 341 (44) µg/L
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Table 2. Cont.

Author, Country SAMPLE SIZE

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was Assessed
or Sample Collected
(3) Method of Analysis

[93] Vigeh, Iran a 31 PE
365 uncomplicated

Heparin plasma zinc
Collected at delivery
Inductively coupled plasma mass spectrometry

NS mean (SD) plasma zinc between women with PE women and
women with uncomplicated pregnancies.
PE: 5200 (1444) vs. uncomplicated: 5561 (1057) µg/L

[32] Adeniyi, Nigeria a 55 pregnant women
Plasma zinc
Collection time not specified
AAS

NS mean (SD) plasma zinc in women with PE compared to women
with uncomplicated pregnancies.
PE: 940 (270) vs. uncomplicated: 970 (230) µg/L

a PE defined as high blood pressure (≤140/90 mmHg) after 20 weeks gestation and proteinuria (≥300 mg/24 h); b GH defined as high blood pressure (≤140/90 mmHg) after 20 weeks
gestation without proteinuria; c PE not defined; d Severe PE not defined; e Mild PE defined as blood pressure ≥140/90 but less than 160/110 mmHg and severe PE defined as
≥160/110 mmHg; f PE defined as blood pressure >130/85 and proteinuria ≥1 by dipstick, severe PE defined as blood pressure >160/110; g PE defined by the classification proposed
by the Paris meeting of the Gestosis Organisation, 1970; h PE defined as blood pressure > 130/85 and proteinuria ≥1 by dipstick, severe PE defined as blood pressure >160/110;
i eclampsia defined as women diagnosed with PE whom also suffer seizures that cannot be attributed to other causes. Bold print signifies results that were significantly different.
Abbreviations: AAS: atomic absorption spectrometry; GH: gestational hypertension; PE: preeclampsia; SD: standard deviation; SEM: standard error of the mean.

Table 3. Included studies assessing maternal zinc status and sPTB.

Author, Country Sample Size

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[44] Scholl,
United States a

115 with zinc intake ≤6 mg/day
699 with zinc intake >6 mg/day

Dietary zinc intake
28 and 36 weeks
24 h dietary recall

2-fold ↓ risk of delivering a preterm infant with dietary zinc intake
>6 mg/day.
OR (LMP): 1.85, 95% CI: 1.09–3.12, OR (OE): 2.13,
95% CI: 1.20–3.79
2.75 to 3.44-fold ↓ risk of delivering a very preterm infant with
dietary zinc intake >9 mg/day.
OR (LMP): 2.75, 95% Cl: 1.31–5.77, OR (OE): 3.44,
95% Cl: 1.39–8.55

[94] Carmichael,
United States a,b

413 preterm and
58 early preterm
5267 term

Dietary zinc intake
Harvard food frequency questionnaires

2-fold ↓ for preterm birth <32 weeks with zinc intake > 8.0 mg/day
compared to 8.0–14.2 mg/day.
OR: 2.3, 95% CI: 1.2–4.5
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Table 3. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[45] Neggers,
United States a

238 preterm
1160 term

Dietary zinc intake
18 and 30 weeks
24 h dietary recall using the nutrient database
developed by the University of Minnesota

NS association between low dietary zinc intake (less than median)
and risk of PTB.
OR: 1.1, 95% CI: 0.7–1.7

[95] Hsu, Taiwan c 28 preterm
423 term

Dietary zinc intake
Each trimester
24 h dietary recall

NS in dietary zinc intake between each of the trimesters and in
those who delivered preterm versus term.
Preterm: 9.6–10.8 mg/day vs. term: 8.90–10.9 mg/day

Inadequate dietary zinc intake estimated to affect <17% of the studied population

[96] Wang, China a 169 preterm
2912 uncomplicated

Fasting serum zinc
First and second trimester
Flame AAS

↑ risk of preterm birth with serum zinc <767 µg/L and serum zinc
between 767 and 996 µg/L.
aOR: 2.41, 95% CI: 1.57, 3.70; aOR: 1.97, 95% CI: 1.27, 3.05,
p < 0.001 for both, respectively

[50] Bro, Denmark c 34 preterm
220 uncomplicated

Serum zinc
Collected at delivery
Flame AAS

NS mean (SD) serum zinc levels in women who delivered preterm
compared to term women.
Preterm: 666.7 (104.6) vs. term: 679.7 (98) µg/L

[54] Tamura,
United States c

505 preterm and 136 early
preterm
2038 uncomplicated

Non-fasting heparin plasma zinc
Collected at first prenatal visit (6 to 34 weeks)
Flame AAS

NS in the prevalence or n (%) of PTB measured between the lowest
quartile and upper three quartiles of zinc.
Highest: 373 (14.5) vs. lowest: 132 (15.3)
NS in the prevalence (n (%)) of early PTB measured between the
lowest quartile and upper three quartiles of zinc.
Highest: 107 (4.2) vs. lowest: 29 (3.4)

Inadequate dietary zinc intake estimated to affect ≥17% of the studied population

[66] Jeswani, India c 25 preterm
25 term

Serum zinc
Collected at 28–40 weeks
AAS

↑mean (SD) serum zinc in women who delivered preterm women
compared to term.
Preterm: 1154.4 (154.1) vs. uncomplicated: 962.8 (194.8) µg/L,
p < 0.01

[64] Goel, India d 20 preterm
25 term

Heparin plasma zinc
Collected at delivery
AAS

↑mean (SD) plasma zinc in mothers who delivered preterm
compared to term mothers.
Preterm: 842 (43) vs. term: 744 (51) µg/L, p < 0.001
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Table 3. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[60] Bahl, India a 10 preterm
97 term

Serum zinc
Collected at delivery
Flame AAS

NS mean (SD) in women who delivered Preterm that were an
appropriate weight for date compared to uncomplicated. Preterm:
627 (212) vs. uncomplicated: 670 (96) µg/L

[65] Srivastava, India c 26 preterm
23 term

Heparin plasma zinc
Collected at delivery
Flame AAS

NS mean (SD) plasma zinc between preterm and term mothers.
Preterm: 6350 (2640) vs. term: 6310 (5090) µg/L

a PTB defined as <37 weeks gestation; b Early PTB defined as <32 weeks gestation; c PTB defined as ≤37 weeks gestation; d PTB not defined. Bold print signifies results that were
significantly different. Abbreviations: AAS: atomic absorption spectrometry; aOR: adjusted odds ratio; CI: confidence interval; LMP: last menstrual period; OE: obstetric estimate;
PTB: preterm birth; SD: standard deviation.

Table 4. Included studies assessing maternal zinc status and GDM.

Author, Country Sample Size

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

[97] Bo, Italy a,b 126 GDM and 84 aOGTT
294 uncomplicated

Dietary zinc intake
24–28 weeks
Food frequency questionnaire

↓mean (SD) daily zinc intake between GDM and aOGTT women
and women with uncomplicated pregnancies.
GDM: 8.5 (2.4) and aOGTT: 8.7 (2.5) vs. uncomplicated:
9.4 (2.8) mg/day, p = 0.007

[98]
Behboudi-Gandevani S,
Iran a

72 with GDM
961 uncomplicated

Dietary zinc intake
14–20 weeks
Semi-quantitative food frequency
questionnaire

NS in mean (SD) daily zinc intake between GDM and those with
uncomplicated pregnancies.
GDM: 6.91 (3.42) vs. uncomplicated: 10.1 (7.45) mg/day
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Table 4. Cont.

Author, Country Sample Size

Zinc Measure

Outcome of the Study(1) Sample Type
(2) Time at Which Gestation Diet Was
Assessed or Sample Collected
(3) Method of Analysis

Inadequate dietary zinc intake estimated to affect <17% of the studied population

[48] Borella, Italy a 18 GDM
35 uncomplicated

Heparin plasma zinc
Collected in the third trimester
Flame AAS

↑mean (SD) plasma zinc in GDM women compared to women
with uncomplicated pregnancies.
GDM: 766.6 (117.6) vs. uncomplicated: 627.5 (150) µg/L, p <0.001

[35] Wang, China a,c 46 GDM and 98 IGT
90 uncomplicated

Plasma zinc
Collection time not specified
Inductively coupled plasma atomic emission
spectroscopy

NS in mean (SD) plasma zinc between women with IGT and
women with uncomplicated pregnancies.
IGT: 1080 (270) vs. uncomplicated: 1130 (330) µg/L
NS mean (SD) plasma zinc between women with GDM and those
with uncomplicated pregnancies.
GDM:1020 (190) vs. uncomplicated: 1130 (330) µg/L

[38] Hyvonen-Dabek,
Finland d

5 GDM
10 uncomplicated

Serum zinc
Collection time not specified
Particle induced X-ray emission

NS mean (SD) serum zinc in women with GDM compared to
women with uncomplicated pregnancies.
GDM: 1070 (190) vs. uncomplicated: 1150 (220) µg/L

[99] Wibell, Sweden d 20 GDM
13 uncomplicated

Serum zinc
Collected across gestation
AAS

NS mean (SD) serum zinc between women with GDM and those
with uncomplicated pregnancies.
GDM: 700 (100) vs. uncomplicated: 700 (80) µg/L

Inadequate dietary zinc intake estimated to affect ≥17% of the studied population

[98]
Behboudi-Gandevani,
Iran a

72 with GDM
961 uncomplicated

Serum zinc
Collected 14–20 weeks
Flame AAS

NS mean serum zinc between GDM and women with
uncomplicated pregnancies.
GDM: 844 (440) vs. uncomplicated: 835 (444) µg/L

[100] Al-Saleh,
Kuwait a

30 GDM
30 uncomplicated

Serum zinc
Collected at delivery
Furnace AAS

NS mean (SEM) serum zinc in women with GDM compared to
women with uncomplicated pregnancies.
GDM: 610.3 (60.1) vs. uncomplicated: 656.2 (241.4) µg/L

a GDM defined as high blood glucose levels in pregnant women who have not previously been diagnosed with diabetes which over a 3 h oral glucose tolerance test provided at least
two values over the criteria of Carpenter and Coustan; b aOGTT defined as high blood glucose levels in pregnant women who have not previously been diagnosed with diabetes
which over a 3 h oral glucose tolerance test provided one abnormal value over the criteria of Carpenter and Coustan; c IGT defined as women with blood glucose consistently higher
than 7.8 mmol/L; d GDM diagnosed with an intravenous glucose tolerance test at 30 weeks gestation. Bold print signifies results that were significantly different. Abbreviations
AAS: atomic absorption spectrometry; aOGTT: abnormal oral glucose tolerance test; BMI: body mass index; GDM: gestational diabetes mellitus; IGT: impaired glucose tolerance;
OGTT: oral glucose tolerance test; SD: standard deviation.
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Table 5. Summary of all the studies reviewed and whether zinc status was positively, negatively or not associated with the studied pregnancy complication.

Dietary Zinc Intake

Total No.
Reference LBW/SGA Hypertensive Disorders of Pregnancy sPTB GDM

9 4 1 4 2
3 reported a negative association [42–44] Reported no association [70] 2 reported a negative association [44,93] 1 reported a negative association [96]
1 reported no association [45] 2 reported no association [45,94] 1 reported no association [97]

Serum/Plasma Zinc

Total No.
Reference LBW/SGA Hypertensive Disorders of Pregnancy sPTB GDM

58 26 33 7 6

No. where inadequate zinc intake affects <17% of the population

12 13 3 4
2 reported a negative association [46,49] 5 reported a negative association [55,71–74] 1 reported a positive association [95] 1 reported a positive association [48]
2 reported a positive association [47,48] 8 reported no association [38,48,53,75–79] 2 reported no association [50,53] 3 reported no association [35,38,98]
8 reported no association [38,50–56]

No. where inadequate zinc intake affects ≥17% of the population

14 20 4 2

5 reported a negative association [57–61] 10 reported a negative
association [33,34,36,37,39,80–83,100] 2 reported a positive association [64,66] 2 reported no association [97,99]

2 reported a positive association [63,101] 1 reported a positive association [84] 2 reported no association [60,65]
6 reported no association [64–69] 9 reported no association [32,85–92]

Abbreviations: GDM: gestational diabetes mellitus; LBW: low birth weight; SGA: small for gestational age; sPTB: spontaneous preterm birth.
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Figure 1. Flow diagram of the search strategy used in this review including the relevant number of
papers at each point.

Twelve studies were identified that measured maternal circulating zinc in countries where
inadequate zinc intake is predicted to be <17%, and looked at the association with birthweight
(Table 1) [38,46–56]. Only one study, based on 3817 women in China, reported a 3.4-fold increase in the
risk of delivering a LBW infant with serum zinc <560 µg/L (adjusted RR: 3.41, 95% CI: 1.97, 5.91) [56].
This is in contrary to two studies that reported significantly higher zinc concentrations in women with
an SGA infant in the third trimester [47,55]. However, these findings were based on a relatively small
number of women: 40–51 pregnant women including 10–16 women with SGA. Conversely, another
study, which followed 476 women of whom 39 gave birth to an SGA infant, found the incidence of LBW
to be 8 times higher in women with serum zinc in the lowest quartile (457.5–797.4 µg/L) compared
to the highest (1039.2–1660.1 µg/L) (8.2, 95% CI: 2.4–27.5) [52]. The remaining eight studies found
no differences in maternal zinc concentrations between women with a SGA infant and those with an
uncomplicated pregnancy. However, one study found a positive correlation between maternal zinc
status and birthweight (r = 0.632, p < 0.001) [50].

The association between maternal circulating zinc and birthweight was assessed in 14 studies
based on women where inadequate dietary zinc intake was predicted to affect ≥17% of the
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population [57–69], of which 7 reported a significant association (Table 1) [57,59–61,66–68]. All three of
the studies based on women from Africa reported serum/plasma zinc on average 72–333 µg/L lower
in women who gave birth to a LBW infant compared to those who gave birth to an appropriate weight
infant [57,59,67]. In another study, the risk of delivering a LBW infant was also reported to be 3-fold
greater in women with serum zinc levels ≤392.2 µg/L compared to those with levels above this figure
(3.07, 95% CI: 1.07–8.97) [67]. Conversely, two other studies reported serum zinc to be 40–172 µg/L
higher in women who gave birth to a LBW infant compared to those who gave birth to an appropriate
weight infant [60,66]. A further four studies, also based on women from India, reported no association
between circulating zinc levels and birthweight [62–64,69] and this was also reported in two studies of
Turkish women [58,65]. However, univariate analysis and small sample size in these studies may not
provide an accurate assessment of the effects of maternal circulating zinc and birthweight.

3.2. Hypertensive Disorders of Pregnancy

Only one study assessed dietary zinc intake and the association with hypertensive disorders
(Table 4) and found no significant differences in dietary zinc intake between 13 women who developed
a hypertensive disorder in pregnancy and 44 whose pregnancies remained uncomplicated [70].

Thirteen studies analyzed serum/plasma zinc in women who developed a hypertensive disorder
of pregnancy in women residing in countries where inadequate zinc intake is estimated to be low (<17%)
(Table 4). Three studies reported mean serum/plasma zinc to be on average 120–1200 µg/L lower in
women who developed PE compared to women whose pregnancies remained uncomplicated [49,71,72]
and included one study that reported a reduction in risk of PE with serum levels above 1360 µg/L after
adjusting for maternal age, height and weight before pregnancy (aOR: 0.005, 95% CI: 0.001–0.07) [71].
A further two studies reported circulating zinc to be lower in women who developed severe PE (blood
pressure BP ≥ 160/110) compared to women whose pregnancies remained uncomplicated [73,74].
The remaining eight studies, whose sample sizes ranged from 10–271 women with PE/GH and
10–2038 women with an uncomplicated pregnancy, reported no difference in maternal zinc status
between women with a hypertensive disorder of pregnancy and those without [38,47,54,75–79].

There were twenty studies that analyzed circulating zinc in women with a hypertensive
disorder of pregnancy in populations where inadequate zinc intake is estimated to be ≥17%
(Table 4) [32–34,36,37,39,80–93]. Ten studies reported mean serum/plasma zinc to be significantly
lower in women who developed PE and/or GH [33,34,36,37,39,80–83,93] however, one reported plasma
zinc to be higher in women with PE compared to those whose pregnancies remained uncomplicated
when measured during the latent phase of labor; with (PE mean (SD): 15.53 (4.92) vs. uncomplicated:
11.93 (3.11) µg/g protein, p = 0.003) [89]. These studies also included three which found circulating
zinc to be 80–260 µg/L lower in women who developed severe PE when compared to women whose
pregnancies remained uncomplicated [37,39,83]. A further nine studies reported no difference in
circulating zinc between women with PE/GH and those whose pregnancies remained uncomplicated.

3.3. Spontaneous Preterm Birth

The literature search identified four studies which measured dietary zinc intakes during pregnancy
and sPTB with varying conclusions (Table 3) [43,44,94,95]. Two of these studies, which analyzed
5738 and 818 women respectively, determined that low zinc intake (≤6 mg/day which is ≤54% of
the recommended 11 mg/day [21]) was associated with a more than 2-fold increase in the risk
of delivering preterm (aOR: 2.3, 95% CI: 1.2–4.5 and aOR: 1.85 95% CI: 1.09–3.12, respectively),
after adjusting for factors such as ethnicity, pre-pregnancy BMI, smoking, alcohol and multivitamin
consumption [44,94]. If delivery date was calculated by last menstrual period (LMP), zinc intake below
9 mg/day was associated with a 2.75-fold increased risk in delivering <32 weeks gestation (aOR: 2.75,
95% CI: 1.31–5.77) [44]. However, another study reported no association between low dietary zinc
intake (less than the median) and the risk of sPTB (OR: 1.1, 95% CI: 0.7–1.7) [43] but mean zinc intake
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of the women in this study was 14 mg/day, higher than the recommended 11 mg/day, indicating that
low zinc intake was not prevalent within this studied population.

When separated based on estimates of inadequate zinc intake, there were three studies which
assessed whether there was an association between circulating zinc and sPTB in low-risk populations
(Table 3). While two showed no significant difference between serum/plasma zinc levels during
gestation in women who gave birth preterm and those who gave birth at term [48,54], one study which
recruited 3081 women in China found a 2.4-fold increase risk of PTB with serum levels <767 µg/L
(aOR: 2.41, 95% CI: 1.57, 3.70) [96].

The association between maternal circulating zinc and sPTB was determined in four studies
on populations with inadequate zinc intake ≥17%, all of which sampled women in India
(Table 4) [61,63,64,69]. Two of the studies reported serum/plasma zinc to be higher in women who
delivered preterm compared to those who delivered at term (average 98–1991 µg/L increase) [63,64].
However, no difference in circulating zinc measured at delivery was reported in the remaining two
studies [61,69].

3.4. Gestational Diabetes Mellitus

Two studies looked at the association between dietary zinc intake and GDM (Table 4) [97,98].
One collected data at 24–28 weeks gestation, and found an 11% reduction in the risk of gestational
hyperglycaemia with every 1 mg/day increase in dietary zinc intake (aOR: 0.89, 95% CI: 0.82–0.96) [97].
The second, which sampled women at 14–20 weeks’ gestation, found no association between
maternal dietary zinc intakes below 50% of the recommended daily allowance and GDM (OR: 1.4,
95% CI: 0.6–2.9) [98]. Differences between the studies included when dietary zinc was measured
(early versus late second trimester) as well as ethnicity (Italian versus Iranian in which, genetic and
cultural differences are likely).

Of the five studies which assessed the association between circulating zinc and GDM in countries
where inadequate zinc intake is estimated to be <17%, two, both studying Italian women, reported
a significant difference in serum/plasma zinc in women who developed GDM compared to women
whose pregnancies remained uncomplicated (Table 4) [47,97]. However, while one study reported
that serum zinc was negatively associated with the risk of hyperglycemia in pregnancy (aOR: 0.94,
95% CI: 0.91–0.96) [97], the other found that there was in increase in serum zinc in women with GDM
compared to women whose pregnancy remained uncomplicated (GDM mean (SD): 766.6 (117.6) vs.
uncomplicated: 627.5 (150) µg/L, p < 0.001) [47]. Both studies sampled women at similar times during
pregnancy and used atomic absorption spectrometry to quantitate zinc. The remaining three studies
found no difference in circulating zinc [35,38,99] however, given the small sample size of women with
GDM in these studies (n = 5–46), it is likely they were underpowered and not suitable for the chosen
statistical tests.

There were two studies that sampled women from countries where inadequate zinc intake was
estimated to be ≥17% and assessed the association between maternal circulating zinc and GDM
(Table 4) [98,100]. Neither study reported a difference in serum zinc in early pregnancy or at delivery
in women with GDM compared to those whose pregnancies remained uncomplicated.

4. Discussion

This systematic review assessed whether maternal circulating zinc levels and/or dietary zinc
intake were associated with a number of pregnancy complications. Overall, the evidence regarding
the association between maternal zinc status and PE/GH, LBW/SGA, sPTB and GDM is weak and
heterogeneity between the studies made comparisons difficult. However, systematic analysis of the
available literature indicated some trends between maternal zinc status and infant birthweight as well
as the development of severe PE (BP ≥160/110 mmHg).

There is consistent evidence in animal models that maternal dietary zinc deficiency during
pregnancy reduces fetal growth [16–19]. From the studies that measured maternal zinc intake during
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pregnancy reviewed here, a possible relationship between low zinc intake (≤54% of the recommended
11 mg/day) and decreased infant birthweight may exist in human populations. Both food frequency
questionnaires and 24 h recalls are limited by the preparedness of the participants to accurately
record their diets, the food composition tables used and their ability to capture variations within
diets [102]. This may explain the conflicting results between studies which assessed dietary zinc intake
and the association with infant birthweight, sPTB and GDM. However, three of the four studies that
measured dietary zinc intake in pregnancy and recorded infant birthweight reported a significant
reduction in maternal zinc status in those who delivered a LBW/SGA infant [42,44,45]. The relationship
between infant birthweight and maternal serum/plasma zinc is less clear. Plasma measures of zinc are
considered preferable over serum as erythrocytes can be a source of zinc contamination within serum
samples [22]. However, plasma zinc only accounts for approximately 0.1% of total body zinc [103],
is heavily influenced by confounding factors like stress, infection and hormones [101,104–107] and does
not directly correlate with dietary zinc intake [108]. This limits how useful measuring circulating zinc is
as a biomarker for health and disease. When studies on LBW/SGA that measured maternal circulating
zinc were separated based on populations where inadequate zinc intake is predicted to be ≥17%, 7 of
the 13 studies reported a difference in serum/plasma zinc between women who delivered LBW/SGA
infant and those whose infants were of an appropriate weight. Given the lack of suitable alternatives,
particularly in studies of pregnant women, determining zinc status by measuring serum/plasma
zinc can still be informative about the importance of zinc to pregnancy, especially if measured in
conjunction with dietary zinc intakes.

Other maternal factors such as age, BMI, smoking status and alcohol consumption in pregnancy
not only influence pregnancy outcome but also circulating zinc [109,110]. BMI is a significant factor
in influencing the risk for developing PE and GH [111,112]. However, only 11 of the 32 studies on
PE/GH [33,36,54,71,75,79,80,82,84,88,92] reported on BMI, making it difficult to comment on whether
differences in BMI may be influencing the outcomes of the studies included in this review. Despite
this, there may be a relationship between maternal circulating zinc levels and the severity of PE. Mean
maternal zinc concentrations in women with severe PE (ranging from 388 to 410 µg/L) [73,74,83]
were well below 562.1 µg/L, which is the defined zinc deficiency cut-off [26,113]. In women with
mild PE and those with uncomplicated pregnancies, mean maternal zinc concentrations ranged
between 684–831 µg/L [37,39,83] and 630–1022 µg/L [37,39,74,83] respectively. A current leading
hypothesis relating to the development of PE is increased placental oxidative stress [114]. Zinc itself
has antioxidant capabilities and is an integral structural component of superoxide dismutase, a first
line defense antioxidant [115] which has reduced activity in cell lines, animal models and human
studies of zinc deficiency [116–120]. Hence, it is possible in pregnancies complicated by PE, that low
maternal zinc concentration (<562.1 µg/L) may reduce the potential to combat rises in free radical
production and increase the severity of the complication.

Zinc levels in maternal circulation decrease across gestation; this is thought to be due to a
combination of increased maternal blood volume and fetal demands [40,121–123], and therefore
comparisons between studies which measured zinc in maternal serum or plasma early in pregnancy
versus late should be interpreted with caution. Overall, regardless of pregnancy outcome, the majority
(31 out of 59 studies which measured maternal circulating zinc) collected samples during labor or
at delivery. Physiologically, parturition results in huge changes to maternal hormonal profile with
rises in estrogen, oxytocin and prostaglandin required to initiate labor [124]. Furthermore, there is an
increase in the production of inflammatory cytokines and a withdrawal of anti-inflammatory cytokines
within the gestational tissues [125]. Infection and inflammation decrease plasma zinc [104] and use
of the contraceptive pill, which raises estrogen and progesterone levels, also decreases circulating
zinc [101,105]. Given that pregnancy itself is likely to confound zinc status, this has implications for
interpreting studies that have measured serum/plasma zinc at delivery. In addition, how zinc may
be associated with a pregnancy outcome needs to be measured before the pregnancy complication
has manifested. Only five studies of 6795 pregnant women in total measured either circulating zinc or
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dietary zinc intake prior to 20 weeks gestation [44,53,54,79,98]. All found no significant difference in
maternal zinc status during this time period between women who developed a pregnancy complication
and those who did not, indicating that zinc status in early pregnancy may not be associated with
adverse pregnancy outcomes.

Due to the additional demands associated with pregnancy and fetal growth, pregnant women are
more vulnerable to multiple nutrient deficiencies [126] and this is potentially another cofounding factor
when assessing the association between maternal zinc status and pregnancy outcome. This is because
nutrients can interact with each other in both a positive (e.g., vitamin A and zinc [127]) and negative
manner (e.g., calcium or iron and zinc [128,129]). A number of studies reviewed here measured
serum/plasma concentrations of other nutrients as well as zinc, including copper [35,97], iron [75,98],
selenium [51,88], magnesium [95,99] and lead [78]. While circulating zinc levels were not different for
the pregnancy outcomes studied in these articles, those of other micronutrients were. Serum copper
concentrations were found to be higher in women with GDM or those who delivered an SGA infant
when compared to women with an uncomplicated pregnancy in two studies [35,97]. Furthermore,
serum iron was higher in women with PE and GDM compared to women whose pregnancies were
uncomplicated [75,98]. Two other studies found selenium to be lower in the serum of women with PE
or those who delivered an SGA infant compared to women with an uncomplicated pregnancy [51,88].
Therefore, it is important to consider other nutritional factors that may influence pregnancy outcome
as well as micronutrient ratios in order to fully understand the importance of micronutrient status on
pregnancy success.

Finally, the lack of studies identified in this review analyzing truly zinc deficient women,
nor those in populations at high risk of zinc deficiency, is a major limitation in determining the
effects of zinc on pregnancy outcome. Only 8 of the 64 studies reported mean circulating zinc
below 562.1 µg/L [49,50,60,72,74,83,87,91] and there were very few studies based on women in
countries where inadequate zinc intake is predicted to be prevalent like South-East Asia and parts of
Africa [26,27]. The majority of studies were based on populations in the United States and Europe
where zinc deficiency is estimated to only affect 3.9%–12.7% of the population [26]. Therefore, there is
the potential that the results from this review may be skewed given the lack of evidence based on
women living in areas predicted to be at high risk of zinc deficiency.

5. Conclusions

The current review has explored the connection between maternal zinc status and pregnancy
complications including hypertensive disorders of pregnancy, infant birthweight, spontaneous preterm
birth (sPTB) and gestational diabetes mellitus (GDM). While it appears that there may be a relationship
between maternal dietary zinc intake and infant birthweight and the development of severe PE, there is
little evidence to suggest an association between zinc and sPTB or GDM. However, heterogeneity in
the studies identified in this review reflects real uncertainty in the evidence linking zinc deficiency
and pregnancy complications and therefore this warrants further study, particularly in developing
countries whose populations are at increased risk of zinc deficiency. If we are to continue to reduce
preventable deaths of newborns and children under the age of five [6], understanding the importance of
micronutrients like zinc in child development, particularly in utero, will greatly increase the likelihood
of success. Future studies need to focus on women more vulnerable to zinc deficiency in pregnancy in
order to fully determine the effects of zinc status on pregnancy outcome.
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Appendix A

Outline of the search terms and MeSH headings identified in the Medline search and used for the
remaining database searches.

Search strategy: MEDLINE (OVID).

Searches Results

1 exp Zinc/ or zinc.mp. 108,695
2 plasma zinc.mp. 1365
3 zinc intake.mp. 679
4 dietary zinc.mp. 1158
5 serum zinc.mp. 2083
6 1 or 2 or 3 or 4 or 5 108,695
7 preterm birth.mp. or exp Premature Birth/ 14,642
8 premature birth.mp. or Premature Birth/ 11,131
9 small for gestational age.mp. 9255

10 exp Infant, Small for Gestational Age/ 5977
11 gestational hypertension.mp. or exp Hypertension, Pregnancy-Induced/ 32,078
12 pre?eclampsia.mp. or exp Pre-Eclampsia/ 30,863
13 exp Pre-Eclampsia/ or exp Eclampsia/ or eclampsia.mp. 32,471
14 exp HELLP Syndrome/ or HELPP syndrome.mp. 1613
15 gestational diabetes.mp. or exp Diabetes, Gestational/ 11,382
16 fetal macrosomia.mp. or exp Fetal Macrosomia/ 2369
17 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 69,148
18 infant, low birth weight.mp. or Infant, Low Birth Weight/ 16,571
19 infant, very low birth weight.mp. or exp Infant, Very Low Birth Weight/ 8491
20 17 or 18 or 19 89,771
21 6 and 20 380
22 limit 21 to (english language and full text and humans) 165

Appendix B

List of conversion factors used to convert all measures of zinc to µg/L.

Units Conversion

µg/100 mL or µg/dL Multiply 10
µmol/L or µM Divide 0.153

mg/L Multiply 1000
µg/mL Multiply 1000
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