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Abstract

Superspreading is a ubiquitous feature of SARS-CoV-2 transmission dynam-
ics, with a few primary infectors leading to a large proportion of secondary
infections. Despite the superspreading events observed in previous coronavirus
outbreaks, the mechanisms behind the phenomenon are still poorly understood.
Here, we show that superspreading is largely driven by heterogeneity in contact
behavior rather than heterogeneity in susceptibility or infectivity caused by bi-
ological factors. We find that highly heterogeneous contact behavior is required
to produce the extreme superspreading estimated from recent COVID-19 out-
breaks. However, we show that superspreading estimates are noisy and subject
to biases in data collection and public health capacity, potentially leading to
an overestimation of superspreading. These results suggest that superspreading
for COVID-19 is substantial, but less than previously estimated. Our findings
highlight the complexity inherent to quantitative measurement of epidemic dy-
namics and the necessity of robust theory to guide public health intervention.

Introduction

Heterogeneity in individual transmission is a critical feature of infectious disease
dynamics, enabling explosive superspreading events. Although superspreading
was identified during the HIV pandemic [1], it is since the SARS-CoV-1 out-
break in 2002-2003 that superspreading has become a central focus of inves-
tigation; its large transmission clusters were not well-explained by traditional
epidemic theory [2, 3] and the public health response to curtail spread required
a novel approach [4, 5]. In the twenty years after the SARS-CoV-1 outbreak,
advances in theory have enabled quantitative description of superspreading po-
tential, but disentangling the behavioral and biological mechanisms driving su-
perspreading remains elusive and little attention has been paid to potential
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biases in superspreading measurement. Superspreading has been identified as
key to SARS-CoV-2 transmission and understanding and accurately measuring
superspreading are crucial for an informed public health response.

A key insight in the theory of superspreading has been the definition of the
offspring distribution as a negative binomial random variable [6]. The offspring
distribution, describing the probability that an infected case will transmit to a
given number of secondary cases, is quantified by a mean, R0, and a disper-
sion statistic, k. Accurate measurement of the offspring distribution enables
quantitative description of the rate and manner of a pathogen’s spread. High
values of the offspring distribution’s dispersion statistic (k > 5) suggest rela-
tively homogeneous transmission. On the other hand, low values of k describe
high variability in transmission, with most primary infections leading to few
new cases and a few rare primary cases producing many secondary cases. This
dispersion statistic has become widely used as a measure of superspreading po-
tential, with values of k less than one indicating substantial superspreading [7].

Accurate computation and measurement of this dispersion statistic provides
critical insight into the nature of pathogen transmission, informing actions as
disparate as predictive modeling and public health control measures [7, 8]. Off-
spring distributions well-explained by low values of k correspond to the 80-20
rule, which posits that 80% of new infections are attributable to 20% of individ-
uals [9, 10]. Proposed control measures take advantage of this heterogeneity by
preferentially targeting these individuals, for example by preventing public con-
gregations and thereby preventing superspreading events [10, 9]. Estimation of
k (and empirical adherence to the 80-20 rule) can also guide resource allocation,
with low values of k suggesting greater return on investment from contact tracing
– limiting transmission by preventing superspreading events before they occur
[11]. Models and simulation studies endorse the utility of targeting this high-
transmission group, but emphasize the challenge presented by pre-symptomatic
transmission; isolation of symptomatic individuals and robust contact tracing
may not be enough to control an outbreak if substantial transmission occurs
before cases can be identified [12].

Superspreading is a function of heterogeneity in behavior and transmissibil-
ity [6, 13]. Human behavior can be variable across a population which can create
disproportionate skews in disease transmission [14, 15, 16]. Similarly, between-
individual variability in transmissibility, due to differences in susceptibility or
shedding, can contribute to superspreading [17, 3]. Here, we encapsulate these
many sources of heterogeneity into two factors, behavior and biology. Behavior
is driven by contact between individuals, with heterogeneity arising from varia-
tion in age, occupation, social practices, environment, and the interaction type
necessary for transmission, and leads to differences in numbers of contacts. We
use “biology” to refer to differences in individual transmission competence (i.e.
transmissibility), with heterogeneity arising from variation in human physiology
(e.g. shedding or susceptibility), viral competence, and contact environment,
among other factors. While these mechanisms contribute in complex ways to
disease transmission dynamics, the relative contributions of behavior and biol-
ogy to superspreading behavior are still largely unexamined, which limits the
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targeting and implementation of control measures.
During the SARS-CoV-2 pandemic there has been substantial interest in ac-

curate measurement of the k statistic, quantifying the pathogen’s superspread-
ing capability [18, 19, 20, 15]. Large clusters of infections have been identified
as a key feature of SARS-CoV-2 transmission, characteristic of superspreading
behavior [21, 22, 23, 19, 24]. Matching these reports, many empirical estimates
find k to be quite low (∼0.1-0.4), suggesting substantial heterogeneity in the
SARS-CoV-2 offspring distribution [19, 20, 25, 15]. Proposed control strategies
take this heterogeneity into account, allowing for a potentially more efficient
public health response [26, 13, 20, 27].

Here, we use a simple mechanistic model with behavior and transmissibil-
ity parameterized at the individual level to understand how heterogeneity in
transmission is affected by variation in behavior versus transmissibility. Our
results suggest that existing theory on the behavior that underlies the transmis-
sion of respiratory infections, like SARS-CoV-2, cannot explain many empirical
measurements of superspreading potential (i.e. the k statistic). However, we
show that methodological limitations and sampling errors could reduce the mea-
sured value of the k statistic, resolving this discrepancy. We apply these results
to SARS-CoV-2 transmission, re-examining several publicly available contact
tracing datasets to estimate the superspreading potential of COVID-19, and
demonstrate that superspreading occurs substantially, but at a lower rate than
many empirical estimates (i.e. higher k), consistent with theoretical results.

Results

Superspreading is driven by contact heterogeneity

To clarify the independent role of behavior versus biology in superspreading,
we consider how heterogeneity in either factor impacts the k statistic, while
controlling R0. As expected, variation in contact structure (as measured by
the degree distribution) or variation in shedding or susceptibility (as measured
by the transmissibility) generates increased variation in transmission (as mea-
sured by the k statistic of the offspring distribution) (Figure 1A). When there
is heterogeneity in behavior alone, superspreading is observed but still not pro-
nounced (k ≥ 1), with no observations at the extreme end of the empirically
observed range (k < 0.5). Furthermore, equivalent levels of heterogeneity in
transmissibility alone are not sufficient to produce superspreading (k > 2). (See
Appendix Figure S1 for univariate sensitivity analysis).

When we consider the more realistic scenario of simultaneous heterogeneity
in the degree distribution and transmissibility (and allowing R0 to vary), we
find that variation in the offspring distribution is largely governed by varia-
tion in contact rather than in transmissibility (Figure 1B). This relationship is
only weakly sensitive to the mean transmissibility or degree, while other epi-
demic statistics, like the R0, are more sensitive to the means. The synergy of
heterogeneity produced by both factors can result in moderate superspreading

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20246082doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20246082
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Superspreading is governed more by behavior (degree variance) than
transmissibility a) Heterogeneity in behavior (green) or transmissibility (pur-
ple) alone produces moderate amounts of superspreading. Variation in contact
structure alone (i.e. behavior) produces substantially more offspring dispersion
than variation in transmissibility alone. However, neither process alone can
account for k < 1. b) When combined, heterogeneity in behavior and biol-
ogy can produce superspreading in the range 0.5 ≤ k ≤ 1, more than either
process can alone. This superspreading behavior is largely governed by social
contact patterns, with transmissibility only weakly modifying k. A power law
degree distribution (extreme contact variation; dashed line) is needed to produce
k < 0.5.
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Figure 2: A k value of 0.3 corresponds to the 80/20 rule. Simultaneous het-
erogeneity in behavior and transmissibility produce k values that correspond to
substantial variation in per-individual rates of transmission. Values of k close to
1 correspond to 50% of secondary cases caused by 20% of primary cases. Values
of k in the range of 0.3 are consistent with 80% of secondary cases caused by
20% of primary cases – adherence to the 80/20 rule. Dashed line indicates 80/20
rule adherence.
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Figure 3: Point estimates and confidence intervals of k can be substantially
inaccurate. a) Even assuming perfect random sampling, point estimates of k
are noisy. With 100 observed primary infections (corresponding to 250-350 sec-
ondary infections), point estimates have only a 50% chance of being within 15%
of the true mean. b) Confidence interval coverage guarantees depend strongly
on the confidence interval method. The Wald interval does not match its cov-
erage guarantees when the true k is small, even at large sample sizes. The
non-parametric bootstrap method produces intervals that match the coverage
guarantees regardless of sample size or true population k value. Dashed line
indicates nominal 95% coverage.

(0.5 ≤ k ≤ 1) beyond what either factor produces separately, but only ex-
treme contact heterogeneity (a scale-free degree distribution) achieves extreme
superspreading (k ≤ 0.5). (See Appendix S2 and S3 for bivariate sensitivity
analysis).

Our analysis also produces a functional relationship between the k statistic
and the 80%/20% rule (Figure 2), and we find that values of k between 0.5
and 1 largely underestimate this proportion, instead leading to 60-70% of sec-
ondary infections caused by 20% of primary cases. Indeed, we find that the
80%/20% rule is satisfied only with extreme variability in the offspring distribu-
tion (k ≈ 0.3). Past empirical results have found 80%/20% rule adherence across

a range of k̂ estimates, both higher and lower than the theoretical relationships
we demonstrate. We hypothesize that this discrepancy may be explained by
variability in measurement and selection bias, and investigate this below.
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Superspreading measurement is noisy and biased

Quantitative estimation of superspreading is methodologically challenging. We
find that even with true random samples at reasonably large sample sizes (200
primary cases, corresponding to roughly 500-1000 observed secondary cases),

the point estimate of the k statistic (k̂) is often imprecise, with approximately
50% of estimates not within 10% of the true mean (Figure 3A). Additionally,

we find that k̂ is equally dispersed around the true population parameter, with
standard error increasing with the magnitude of the true population k (see
Appendix Figure S4). Therefore, larger population values of k can often produce

small values of k̂, leading to overestimates of superspreading purely due to
sampling variation. While confidence intervals can ameliorate issues presented
by noisy point estimates, the quality of confidence interval coverage guarantees
depends strongly on the method of estimation. In Figure 3B, we show that Wald
confidence intervals (which assume convergence to normality) perform poorly
when the true k value is small – the scenario of interest for superspreading
pathogens. Larger sample sizes improve the convergence rate, but when the true
value of k is below 0.5 the coverage probability is still well below the nominal
level. On the other hand, the non-parametric bootstrap method performs well
across all the scenarios, with coverage closely approximating the nominal level.
These results rely on the assumption of random sampling; k̂ can be biased
downwards with respect to the true k (i.e. overestimate superspreading) if
datasets demonstrating superspreading behavior are selectively used to quantify
k, a bias magnified by imperfect case observation (like the data produced by
contact tracing; Appendix Figure S5, Table S1).

We reanalyze publicly available contact tracing data from recent COVID-19
contact tracing studies ([19, 29, 30, 28]), and find that k̂ estimates are sub-
stantially above the consensus range of 0.1-0.3 (Figure 4). There is substantial

variation across the k̂ estimates, which vary in location, data collection prac-
tices, and local stage of the epidemic, among other differences. Despite this
variation, the majority of the estimates are in the range 0.5 ≤ k̂ ≤ 1. While the
true bias in these estimates is unknowable, we also perform a minimal bias cor-
rection (Appendix Figure S5, Table S1), demonstrating that some of the most
extreme estimates of k could overestimate superspreading. This bias correction
is ad hoc and approximate – it should only be taken as an example of the po-
tential magnitude of bias in the estimates. Even after the bias correction, the
calculated range corresponds to substantial superspreading.

Discussion

The transmission of infectious agents within host populations is influenced by a
number of sources of heterogeneity, including variation in behavior, immunology,
physiology, and genetics. A consequence of such heterogeneity is disproportion-
ate transmission dynamics in which a few hosts propagate pathogen efficiently,
while the majority transmit inefficiently. In this work, we generate a mech-
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Figure 4: Reanalysis of contact tracing datasets shows k̂ higher than conven-
tional range of 0.1−0.3. Raw estimates (black) are based on maximum likelihood
estimation with confidence intervals using a non-parametric bootstrap. Ad hoc
bias corrected values are also shown (red). Data on Andhra Pradesh and Tamil
Nadu are both from [28], on Jakarta and Batam are from [29], on Hong Kong
are from [19], and on Vo’ are from [30]. The upper bound of the Vo’ confidence
interval is truncated at 10 because for practical purposes k ≥ 10 produces a
Poisson offspring distribution. The number of primary infections observed in
contact tracing is listed below each study location.
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anistic understanding of superspreading, uncovering that an extreme level of
variation in underlying behavioral or biological processes is needed to achieve
recent empirical estimates of superspreading potential. Such extreme levels of
variation are not, however, supported by available behavioral or biological data.
To explain this discrepancy, we consider how measurement biases may affect the
quantification of superspreading potential from epidemiological data.

Our mechanistic approach shows that superspreading can be reproduced
through the combination of heterogeneity in social contact and heterogeneity in
transmissibility across the population. While the combination of these simple
phenomena is important to produce superspreading, the process is largely gov-
erned by the amount of variation in social connectivity present in the population.
The relationship between social contact and superspreading is remarkably ro-
bust; the relationship between transmissibility and superspreading is much more
fragile. While variation in these factors is critical, superspreading (estimation
of k) is largely robust to the transmissibility and degree means. However, as is
well known, these means are key elements of epidemic spread, affecting R0 and
the probability of an epidemic, among other important metrics.

Our results indicate that variation in transmissibility alone, even when ex-
treme variation, may fail to accurately describe superspreading. When rely-
ing solely on variation in transmissibility, these descriptions are extraordinarily
sensitive to the exact transmissibility parameterization and can easily produce
unstable and unrealistic estimates (for example: k > 5). A population with
variability in transmissibility but not behavior is analogous to a homogeneous-
mixing compartmental model ([14]), and superspreading inference from these
homogeneous-mixing models should be treated with caution – their attempts
to reproduce superspreading may be overly idealized. Indeed, careful empiri-
cal modeling of SARS-CoV-2 superspreading has emphasized the importance of
social contact to accurate description [31, 32, 33].

The robust qualitative relationship between k and the amount of social con-
tact variability in the population suggests empirical estimates of k can pro-
vide information about the social contact network along which the pathogen
spreads. Pathogens that exhibit little to no superspreading behavior theoreti-
cally correspond to a population with little degree heterogeneity (e.g. a Poisson
degree distribution). A pathogen exhibiting minimal superspreading events (i.e.
1 ≤ k ≤ 1.5) corresponds to a over-dispersed degree distribution, while one with
substantial superspreading (0.5 < k < 1) corresponds to substantial degree vari-
ability. We argue that extreme superspreading (k ≤ 0.3) strongly supports a
scale-free degree distribution.

Past work has suggested that highly variable degree distributions may de-
scribe the contact networks of sexually transmitted diseases, but may not be
representative of respiratory disease contact networks [14]. Contact networks for
respiratory transmission based on a contact definition of a face-to-face conver-
sation of three or more words or physical contact are described by relatively ho-
mogeneous degree distributions [34, 35]. However, the ubiquity of superspread-
ing behavior in the dynamics of respiratory-transmitted coronaviruses such as
SARS-CoV-1, MERS, and SARS-CoV-2 ([2, 36, 19, 37, 24]), suggests that the
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behavior underlying transmission for these pathogens may display more popu-
lation variability than can be explained by existing contact definitions. Such
variability may result from complexity in contact definitions (e.g. varying dura-
tion of contact or cumulative contact periods) or multiple transmission modes
(e.g. droplet and airborne) driving transmission. The strong relationship be-
tween population contact variability and superspreading points to unexplained
mechanisms of transmission for coronaviruses. Future work to address this ques-
tion is critical.

As first demonstrated in [6], there is a robust relationship between quanti-
tative estimates of superspreading (the k statistic) and adherence to the 80/20
rule, a scenario in which 80% of all infections are caused by 20% of infected
individuals. Our first-principles model is able to reproduce this relationship,
demonstrating that adherence to the 80/20 rule implies quantification of k ≈ 0.3.
These results imply that when datasets “satisfy” the 80/20 rule, they should
likely produce estimates of k in the vicinity of 0.3, as occurs empirically in [15].
The opposite is also true – estimates of k above 0.3, while overdispersed, should
not adhere to the 80/20 rule.

The theory of the negative binomial offspring distribution makes the prac-
tice of quantifying superspreading potential from a dataset quite feasible, but
the method itself is noisy and subject to bias – results should be interpreted
with care. There are inherent methodological challenges in estimating a vari-
ance parameter as it approaches an extremum; the negative binomial dispersion
parameter has been the subject of particular attention because of its relatively
flat likelihood, which makes accurate estimation and computation substantially
more challenging [38, 39]. The combination of noisy point estimates, poor con-
fidence interval coverage, and non-random sampling can produce overconfident
underestimates of the k dispersion parameter. For this reason, sources of bias
and the full range of the bootstrap confidence interval must be considered with
care. Empirical estimation of k also suffers from inherent selection bias, with
datasets chosen for analysis because they demonstrate superspreading events.
This process, while well-intentioned, induces statistical flaws, especially for small
or only partially observed samples. The combination of several superspreading
events into one larger dataset only compounds the issue (Appendix Figure S6).
While ad hoc bias correction can help mitigate this source of bias, the best way
to produce accurate estimates is to use large, rigorous samples as in [28].

In our empirical reanalysis, we find k in the range of 0.5 to 1 for COVID-
19, which indicates substantial superspreading, and agrees with some thorough
empirical estimates [31]. However, there is notable variability in estimates of
k, both across settings and within studies across multiple sites. This variation
is to be expected; at the time of observation, the municipality of Vo’ had a
large portion of the population already infected and implemented strict social
distancing procedures, likely altering estimates of k [30]. On the other hand,
estimates of k in Indonesia are much lower, but should be interpreted with
extreme caution. While the Indonesian study was conducted in the middle of
uncontrolled epidemic growth, the naive R0 estimates associated with the k esti-
mation procedure were below 1 and tests to confirm cases were scarce, especially
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in Jakarta, which both point to substantial under-reporting and potential bi-
ases in data collection [29]. In addition, both [28] and [29] exhibit within-study
heterogeneity in k estimates across geographic region and while these estimates
are certainly influenced by variation in local public heath capacity, this hetero-
geneity also suggests that local differences in population structure could alter
superspreading rates (as implied by [40] and [31]). Similarly, there were sub-
stantial differences in numbers of tests and test positivity rate between Tamil
Nadu and Andhra Pradesh, potentially leading to biases in linelist inclusion [28].
Differences in factors such as public health interventions (i.e. NPIs, social dis-
tancing), local epidemic scale and spread, and linelist inclusion criteria, among
others, could all contribute to the substantial unexplained differences between
empirical superspreading estimates. These limitations point to the need for
public availability of large-scale contact tracing datasets and a more thorough
examination of biases in k estimation.

Our results suggest that public health interventions meant to decrease the
rate of superspreading events (e.g. social distancing, bar closures) may not
materially alter measurements of superspreading (i.e. k) even though they are
effective at decreasing infection rates. These interventions are undoubtedly im-
portant techniques in the public health arsenal, reducing rates of spread and
total disease burden, and should be diligently applied and followed. However,
a superspreading pathogen (k < 1) is dependent on substantial contact het-
erogeneity and even large reductions in contact heterogeneity are unlikely to
decrease k by more than 0.1-0.3 when the initial k is less than 1; rapid decrease
of k only occurs at smaller values of contact heterogeneity which do not produce
much superspreading. For this reason, interventions such as social distancing
may not meaningfully decrease measurements of k in superspreading diseases,
even though they provide substantial benefit through reduction in R0. Inter-
ventions to decrease transmissibility (e.g. mask wearing) may also have limited
impact on superspreading quantification due to the insensitivity of k to trans-
missibility. However, even though these interventions may not decrease k, they
may decrease superspreading – because R0 and k are dependent on each other,
descriptors of the offspring distribution, a reduction in R0 even without a reduc-
tion in k corresponds to smaller superspreading events. Indeed, superspreading
pathogens are sensitive to mitigation strategies that preferentially prevent su-
perspreading events, with reductions in behavioral variability providing superior
reduction in R0 [41, 42, 27]. Research on the impact of superspreading diseases
to public health interventions is still an emerging field, with substantial uncer-
tainty remaining in how to best implement interventions.

These results, based on theory and mathematical modeling, build upon on
an extensive and rapidly growing literature on epidemic spread in complex sys-
tems – an area of immediate public health concern. A strong understanding
of heterogeneity in disease transmission dynamics is not only vital to the pub-
lic health response to SARS-CoV-2, but also critical to the response to future
epidemics. Disease spread is influenced by many different sources of real-world
heterogeneity; understanding and accurately quantifying disease dynamics is
impossible without robust development of epidemic theory.
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Methods

Epidemic network model

To model disease transmission in a population with behavioral and/or biologi-
cal variability, we consider a network-based epidemiological model. In the net-
work, nodes represent individuals, and edges between nodes represent potential
disease-causing interaction (e.g. shaking hands, a conversation in close proxim-
ity).

We represent the population as a random network with a specified degree
distribution. Most of our analysis involves (static) random networks with a
negative binomial degree distribution, parameterized with a mean and variance
parameter which can be tuned to a specified index of dispersion (i.e. variance
to mean ratio). To understand edge cases, we also consider regular random
networks (in which all nodes have the same degree) and scale-free random net-
works (in which the degree distribution is a power law). We generate random
graphs of size N = 5000 in Python using the package “networkx”. All degree
distributions are shifted such that the minimum degree is 1, and all networks
are constrained to be simple (no self loops).

We simulate disease transmission in a population based on the percolation
Susceptible-Infectious-Recovered (SIR) model. Disease spreads on each network
edge with a transmissibility, T , which is a probability of transmission between
an infected and susceptible individuals [43]. We seed one index patient and al-
low the infection to propagate until there are no infected individuals remaining.
We classify an outbreak as an epidemic if a minimum of 5% of the popula-
tion is infected. We report the outcomes as an average across 1000 Monte
Carlo simulations. We use the simpler SIR model over the more complicated
Susceptible-Exposed-Infectious-Recovered structure because the Exposed class
alters the time to infectiousness for an individual but does not change the num-
ber of infections per infector, which is the metric used for estimation of R0 and
k. For each set of Monte Carlo simulations, we record the offspring distribu-
tion at the second generation, and fit a negative binomial distribution to the
aggregated offspring distribution of the epidemics using maximum likelihood
estimation to get the mean (R0) and the dispersion statistic (k) of the distri-
bution [38]. We also calculate the proportion of total infections due to the 20%
of individuals with the most realized infections in the offspring distribution and
the per-introduction probability of an epidemic.

We consider two sets of experiments to understand the role of behavioral vs
biological factors in generating superspreading. First, we alternatively assume
variability in either behavior (degree) or biology (transmissibility). To achieve
this, we either assume negative binomial distributions for degree with a fixed
mean of 8 and a varying index of dispersion, and a constant transmissibility with
E[R0] = 3. Alternatively, we assume a homogeneous degree of 8, and a heteroge-
neous transmissibility parameterized by scaled negative binomial distributions
so that the support is in [0, 1]. Second, we simultaneously assume variability in
degree and transmissibility, while allowing R0 to vary within R0 ∈ [1, 5].
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Maximum likelihood estimation and confidence intervals
for k

To examine the accuracy of maximum likelihood point estimates and confi-
dence interval coverage for the k statistic, we consider a negative binomial
offspring distribution across a range relevant biological scenarios and examine
the accuracy of the fit and associated error. For every combination of nega-
tive binomial dispersion statistic, k ∈ {.1, .2, ..., .9, 1}, negative binomial mean,
R0 ∈ {2, 2.5, ..., 4.5, 5}, and sample size, N ∈ {25, 50, 75, 100, 200}, we draw neg-
ative binomial samples, use maximum likelihood to estimate the parameters, R̂0

and k̂, and generate the associated Wald and naive non-parametric bootstrap
confidence intervals for 100 Monte Carlo simulations. We follow the method
employed in [38], calculating the likelihood and associated statistics about k on
the k−1 scale.

We also explore the effect of non-random sampling and imperfect observa-
tion on estimation of k. We simulate the impact of sample selection (i.e. the
practice of only choosing datasets exhibiting superspreading to estimate k) in
the presence of imperfect contact tracing. We generate samples from a negative
binomial offspring distribution with R0 = 3 and k ∈ {0.5, ..., 1} with a binomial
observation process with probability of observation pobs ∈ {0.15, 0.25, 0.5, 0.75}.
The resulting generative structure is:

νN ∼ NB(µ, k)

YN ∼ Bin(νN , pobs)

We use this structure to compute the average bias caused by selection (i.e.
non-random selection of samples) if the true offspring distribution k were in
the range [0.5, 1], corresponding to substantial but not extreme superspreading.
This average effect is not evidence for bias; rather, it is an estimation of the
direction and magnitude of this potential bias if it were occurring.

Analysis of contact tracing datasets

Using publicly released COVID contact tracing datasets [19, 29, 30, 28], we
calculate the dispersion parameter k using maximum likelihood estimation and
associated 95% confidence intervals using the non-parametric bootstrap. We
apply the ad hoc bias correction for pobs = 0.15 from the previous section to
the estimates. We process and analyze the datasets in R using the package
‘fitdistrplus’.

Code availability

All simulation code, analysis code, and data are made available at https://

github.com/zsusswein/COVID_superspreading.
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Supplementary Information

Figure S1: The mean of the degree distribution alters the convergence rate to
the asymptote but does not change the minimum k statistic in the univariate
case. a) A degree distribution with mean of 16 has k decrease more slowly with
behavior heterogeneity than for mean degree of 8. b) A degree distribution with
mean of 4 has k decrease more quickly than a degree distribution with mean of
8. Despite the more rapid decrease the k statistic does not decrease below the
asymptote of k = 1.
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Figure S2: The k statistic is only weakly affected by the transmissibility mean.
Increases in the mean transmission probability lead to faster convergence to the
asymptotic regime (k ≈ 0.5), but do not lead to k below 0.5.

Figure S3: Superspreading estimates are invariant to the distributional form of
transmissibility. Using beta distributions with shape parameter a = 1 and vary-
ing shape parameter b, k declines exponentially with behavior heterogeneity.
Superspreading dynamics are governed by asymptote, k = 0.5, as when trans-
missibility represented by scaled negative binomial distributions. A scale-free
degree distribution (grey dashed line) produces k ≈ 0.3.
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Figure S4: Estimates of k drawn from random samples are noisy and symmetric.
The variability of k estimates increases with true value of k. When the true k is
small (k ≤ 0.5), estimates are tightly concentrated around the true value, even
at smaller sample sizes. When the true k is moderately larger (0.5 < k ≤ 1),
the estimates of k are much more variable and can produce smaller values of k
through sampling variability alone.
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Figure S5: Sampling bias can lead to substantial underestimates of k, com-
pounded by imperfect observation. When cases are under-reported, estimates of
superspreading using only datasets that include a superspreading event (greater
than 8 infections [6]) are substantially biased to overestimate superspreading.
This bias is magnified by the proportion of cases observed (right axis) and the
true k value (top axis). This bias persists even at larger sample sizes.

22

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20246082doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20246082
http://creativecommons.org/licenses/by-nc/4.0/


Table S1: The mean bias from sample selection can lead to substantial under-
estimates of k. As described in the methods, samples from a negative binomial
offspring distribution with k ∈ [0.5, 1] produce biased estimates if only samples
with superspreading events are analyzed. This bias is magnified by small sample
sizes and under-reporting.
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Figure S6: Sampling bias is magnified by the combination of two observed super-
spreading events. The combination of two selected datasets does not mitigate
the bias induced by the selection procedure. As in the case with one observed
event, this bias is magnified at small sample sizes, at larger true vales of k (top
axis), and at lower proportions of cases observed by contact tracing (right axis)
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