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Introduction

Stem cells versus dedifferentiation
The number of cells of a specific type is tightly 
regulated by functional demand by growth-con-
trolling signal substances from other, regulatory 
cells and by direct or indirect negative feedback of 
specific substances released from the particular cell 
type. At present, the prevailing theory is that 
tumours develop from stem cells that stop differ-
entiating at a certain level.1 Benign tumours are 
composed of well-differentiated cells, but the ‘set 
point’ is changed allowing an increased cell num-
ber. According to the stem cell theory of carcino-
genesis, the malignant process stops tumour cell 
differentiation at an earlier stage. Stem cells have 

the ability to divide as well as to differentiate. In 
addition, the partly differentiated daughter cells 
have both these capabilities, but during the further 
differentiation process the ability to divide may be 
lost. Neoplasia may develop when mutations affect 
the normal growth regulation. The malignancy of 
the resulting tumour depends on the degree of dif-
ferentiation of the mutated cell, and the impor-
tance of the mutated gene in growth regulation. 
The belief that stem cells are the sole origin of neo-
plasia seems partly based on the concept that only 
stem cells have the ability to proliferate. Knowledge 
of the receptors on the mutated cell and the ligands 
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regulating their proliferation will accordingly be 
crucial in understanding the carcinogenesis and for 
the prevention and treatment of tumours. The 
stem cell origin of for example, colorectal cancer 
has recently been challenged.2 Moreover, there are 
multiple examples of transformation of a certain 
cell type via hyperplasia and a rather benign 
tumour into a highly malignant tumour.3,4

An alternative to the theory of stem cells giving rise 
to all tumours, is the concept that all cells with the 
ability to divide may develop into tumours by dedi-
fferentiation. The dedifferentiation theory of car-
cinogenesis prevailed in a period before the stem 
cell was suggested as the cell of origin (Sell S, stem 
cells and cancer, Springer Science, LCC 2009). 
According to the dedifferentiation theory, tumours 
become more malignant as cells lose their ability to 
differentiate through accumulation of mutations. 
Most mutations result in an altered amount of dys-
functional proteins, which in turn alter the cellular 
phenotype but seldom result in gain of new prop-
erties. The occurrence of common neuroendocrine 
(NE) markers in normal NE cells, in well-differen-
tiated neuroendocrine tumours (NETs), and also 
to a lesser degree in NE carcinomas (NECs), is 
compatible with tumour development from mature 
NE cells.5–7 The general mechanism of tumouri-
genesis is similar in stem cells and dividing differ-
entiated cells; mutations occur during cell division. 
Rapidly dividing cells are accordingly more prone 
to develop into tumours. Therefore, stimulation of 
proliferation either due to destruction of the cell by 
inflammation or due to an increased concentration 
of hormones having a positive trophic effect on 
that particular cell type, will increase the tumour 
risk. The consequence of the mutations occurring 
by chance depends on the gene affected and 
whether an inherent allelic mutation in the particu-
lar gene is already present. Alternatively, direct 
genotoxic agents may induce tumours. Whatever 
the cause of mutations of the mature cells of origin, 
the process of carcinogenesis will change the cells 
towards a dedifferentiated phenotype. In this pro-
cess, it is pivotal to understand growth regulation 
of mature cells, which is then important for both 
the prevention and treatment of tumours. The 
question of stem cells versus dedifferentiated 
mature cells as the origin of neoplasia in general, 
was recently discussed in depth8 focusing on  
possible reprogramming of differentiated cells  
and the role of dedifferentiated cells (which were 
also named, reserve stem cells) in metaplasia and 

carcinogenesis as well. With respect to gastric can-
cer, the chief cells were discussed in particular, and 
dedifferentiation of the chief cells was claimed to 
be a consequence of parietal cell atrophy. We con-
sider this a weakness in the theory, as it is not clear 
why the parietal cells should undergo a specific 
atrophy, or how the parietal cells control the dif-
ferentiation of the chief cells.8 Very recently 
Hayakawa and co-workers published a review on 
the origin of gastric cancer mainly based on mice 
studies, concluding that most probably, cancers 
including gastric cancers, develop from stem cells.9 
They, however, dismissed the theory of the so-
called SPEM cells derived from chief cells, as the 
cells developing into gastric cancer. There is, how-
ever, accumulated knowledge about the NETs, 
suggesting that such tumours develop from mature 
cells. A NET may be defined as a tumour originat-
ing from NE cells where the growth regulation is 
only moderately disturbed, and thus these tumours 
are growing slowly, but nevertheless have the abil-
ity to metastasize.

NE cells and replication
The NE cells share many properties with neurons 
and endocrine cells (Figure 1), such as small vesi-
cles containing the marker protein synaptophy-
sin,10 as well as secretory granules with their 
specific proteins, the chromogranins.11 NE cells 
also have protrusions12,13 resembling axons, medi-
ating signals to neurons as well as other effector 
cells.13 Together with neurons and endocrine 
cells, the NE cells represent a system for regula-
tion in a multicellular organism. Based upon sim-
ilarities in phenotype as well as signalling function, 
it was proposed that all these cell types in fetal life 
could originate from the neural crest of the neu-
roectoderm.14 In chimeric studies, however, Le 
Douarin and Teillet found that enteric ganglion 
cells originated from the neural crest, in contrast 
with enterochromaffin cells of the digestive 
tract.15 On the other hand, the very similar C cells 
of the thyroid may have their origin in the neural 
crest,16 although a more recent study suggests an 
endodermal origin.17 From studies describing dif-
ferentiation of all cells in a crypt from a common 
stem cell, an endodermal origin of gastric endo-
crine cells has been suggested.18 Whatever the 
embryological origin, the NE cells of the digestive 
organs can replicate, as demonstrated in pancre-
atic beta-cells19 and gastric enterochromaffin-like 
(ECL) cells in the stomach.20 The function and 
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proliferation of the ECL cells in the oxyntic gas-
tric mucosa of rodents20 as well as man21 are regu-
lated by gastrin. Since the ECL cells of the 
stomach have been extensively studied in animals 
as well as man, this knowledge will be used to dis-
cuss the cellular origin of NETs of the lungs and 
pancreas as well as the small intestine.

The stomach
The ECL cell produces and releases histamine 
taking part in the regulation of gastric acid secre-
tion.22,23 It is the only cell of the gastric mucosa 
definitely possessing the gastrin receptor,24–26 and 
gastrin is the main regulator of its function as well 
as proliferation.18,20,27 Although gastrin is the 
most important regulator, pituitary adenylate 
cyclase-activating polypeptides (PACAPs)28 and 
the vagal nerves29 also play a role in the regulation 
of ECL cell proliferation. Chronic hypergastri-
naemia induces a sequence of ECL cell hyperpla-
sia through increasing dysplasia to ECL cell 
neoplasia.30,31 The ECL cell hyperplasia in condi-
tions with hypergastrinaemia is a direct conse-
quence of the long-term stimulation of that 
particular cell. Each cell division is accompanied 
by a certain risk of mutation, and it is even likely 
that accelerated proliferation will increase the 
mutation risk due to the reduced time of repair. 
Although some mutations may result in improved 

function, and thus contribute to evolution, most 
mutations cause a reduction or even loss of func-
tion. When mutations only affect genes involved 
in the regulation of replication, tumours of appar-
ently normal ECL cells develop, that is gastric 
NETs (gNETs). Over time, these gNETs gain 
more mutations changing their phenotype and 
further increasing the proliferation rate; and thus, 
become more malignant. When a mutation by 
chance affects a crucial regulator of replication, a 
malignant tumour may emerge at an early stage. 
Such a mutation would be expected to occur 
more often in cells with accelerated proliferation 
(ECL cell hyperplasia or ECL cell gNETs), but 
may also occur in normal ECL cells at normogas-
trinaemia and thus cause gNETs type III32 or gas-
tric neuroendocrine carcinoma (gNEC). 
Independently of its cause, long-term hypergas-
trinaemia induces ECL cell NETs in all species 
studied.33–37 ECL cell NETs most often show a 
rather benign behavior, but are nevertheless 
malignant as they can metastasize and in some 
cases develop into highly malignant neoplasms.5 
A parallel may be seen in EC cell tumours of the 
small intestine, which for years may remain indo-
lent, but sooner or later become highly malignant 
tumours with increased proliferation rates.38 
During the indolent phase, NETs may appear 
dormant. However, the apparent dormancy most 
probably just reflects the extremely slow 

Figure 1.  The regulatory systems (the neural system, the NE cell system, and the endocrine organs) show 
morphological similarities and expression of secretory granules and small vesicles.
NE, neuroendocrine.
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proliferation rate of well-differentiated NET cells 
since, to our knowledge, a complete lack of divid-
ing tumour cells at any stage of NETs has never 
been described. The slow replication rate of nor-
mal NE cells is also reflected by the late accept-
ance of their ability to divide.39

ECL cell-derived tumours are considered rare, 
the dominating malignant tumour type of the 
stomach being gastric carcinomas. These tumours 
are all considered to be adenocarcinomas, and are 
divided according to Laurén into those growing 
with a glandular pattern, called the intestinal 
type, and those without such a pattern, called  
the diffuse type.40 However, dedifferentiation of 

neoplastic cells may change their histological 
appearance, making it difficult to establish their 
cellular origin. Tumour cells in carcinomas of the 
diffuse type often have NE and, more specifically, 
ECL cell differentiation.41 In-situ hybridization 
showed no expression of mucin mRNAs contra-
dicting exocrine cell origin,42 but chromogranin A 
mRNA expression indicating NE origin. In fact, 
gastric carcinomas occurring in patients with per-
nicious anemia are found in the oxyntic area,43 
similar to ECL cell carcinoids, and virtually all 
show NE/ECL cell differentiation.44 NE expres-
sion is also observed in intestinal-type adenocar-
cinomas. There is a recent description of a 
Spanish family where all individuals were 
homozygous for a mutation in the gene encoding 
the α-subunit of the gastric proton pump, devel-
oped ECL cell gNETs (five persons) from the age 
of 23 years, and one person also developed a more 
malignant tumour classified as an adenocarci-
noma.7 Further histological analysis revealed a 
combined ECL gNET and carcinoma.45 It is 
therefore reasonable to believe that there is a con-
tinuous process starting with mature NE cells 
exposed to long-term overstimulation, developing 
via hyperplasia to neoplasia of variable malig-
nancy (Figure 2).

Mitoses represent a small, but definitive risk of 
mutation, which may be increased when prolifera-
tion is over-stimulated, reducing the time for repair. 
Patients with long-term hypergastrinaemia due to 
atrophic gastritis often develop multiple ECL cell 
NETs, which regress upon treatment with the gas-
trin receptor antagonist, netazepide.47 We recently 
showed that netazepide also reduced the density of 
ECL cells in the flat mucosa.48 Moreover, the rea-
son why gastric carcinomas of the diffuse type 
according to Laurén40 were classified as adenocar-
cinomas, was Periodic acid–Schiff (PAS)-positivity 
believed to reflect mucin. However, PAS-positivity 
is not specific for mucin since PAS binds to glyco-
proteins/peptides in general.49 Furthermore, anti-
bodies directed against glycoproteins/peptides are 
probably less specific than those raised against pro-
teins/peptides, and for mucins in particular, there 
seems to be a great problem with antibody specific-
ity,50 since it is difficult to purify the molecule for 
the use as antigen.51 Accordingly, in-situ hybridiza-
tion seems to be a more specific method available 
for the detection of mucin-producing cells, and as 
noted above,42 mucin mRNA expression was not  
detected in gastric signet ring cell carcinoma. We 
have recently asked why the classification system 

Figure 2.  Gradual dedifferentiation of the ECL 
cell may result in the cancer cell of diffuse gastric 
carcinoma (Waldum and colleagues46).
ECL, enterochromaffin-like; NET, neuroendocrine tumour.
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relies on unspecific histochemistry, dismissing 
more specific methods.52 Rather recently, gastric 
adenocarcinomas were characterized molecularly 
by their mutations.53 However, mutations found in 
advanced carcinomas probably do not provide 
much information about the cell of origin, which is 
a crucial factor in the understanding of carcinogen-
esis. A molecular comparison between cancer cells 
and the normal mucosal cells with the ability to 
divide would be more adequate. Moreover, addi-
tional limitations of the classification of gastric can-
cers based upon mutation analysis have been 
addressed by others.54

A tumour apparently consisting of two different 
entities, an adenocarcinoma and another of a  
NE nature, has been described as mixed adeno-
neuroendocrine carcinoma (MANEC). This  
term has recently been changed to mixed neuroen-
docrine-non-neuroendocrine neoplasms (MINEN). 
The two types of tumour cells may occur in a mixed 
pattern or they may be found partly separated, sug-
gesting that two different tumours have merged.55 

However, the two components in the same tumour 
have been reported to be monoclonal,56 and since 
the adenocarcinoma is more malignant, it is reason-
able to suppose that this part has developed from 
the NE component and not vice versa. In a case 
report from Japan, a patient with long-term hyper-
gastrinaemia secondary to treatment with a proton 
pump inhibitor, was reported to develop a MINEN 
with a NE component and a signet ring cell compo-
nent.57 The NE component was, in contrast with 
the signet ring cells, reported to be positive for gen-
eral NE markers like synaptophysin and chromogra-
nin A.57 However, we have previously reported that 
the signet ring tumour cells of gastric carcinomas 
are positive for NE markers when applying methods 
with increased sensitivity,42,58 which may indicate a 
direct transition from a NE cell (probably of ECL 
cell origin in a hypergastrinaemic patient) to a carci-
noma showing signet ring phenotype (Figure 3). 
Accordingly, not only the rather benign ECL cell 
NETs and the highly malignant gastric NECs,59,60 
but also a considerable proportion of gastric carci-
nomas hitherto classified as adenocarcinomas, may 

Figure 3.  Mixed adenoneuroendocrine carcinoma (MANEC, now called MINEN) consisting of equal amounts 
of signet ring cells and neuroendocrine carcinoma cells, as illustrated by (A) Hematoxylin and eosin, × 40, (B) 
Chromogranin A, × 40, (C) Synaptophysin, × 40, and (D) Ki67, × 40.
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origin from the ECL cells based upon numerous 
studies showing NE cell differentiation in tumour 
cells.6,41,42,44,58,61–65 A stem cell origin of these 
tumour cells would imply that the NE differentia-
tion was due to re-differentiation, which seems 
unlikely given that mutations often lead to loss and 
not gain of function. In fact, the NE cancer cells of 
these tumours are the most differentiated tumour 
cells, and generally, tumours are classified accord-
ing to the most differentiated tumour cells. The dis-
tinction between adenocarcinomas and NECs has 
for long been acknowledged to be difficult, as exem-
plified by reclassification from adenocarcinomas to 
NECs in human gastric tumours,66–69 as well as 
those occurring in rodents.69,70 Accordingly, the 
ECL cell seems to be crucial in gastric carcinogen-
esis, and therefore, the regulation of ECL cell prolif-
eration is of great importance in gastric carcinogenesis 
and consequently in the prevention and treatment 
of such tumours at early stages. By its regulation of 
ECL cell proliferation, gastrin becomes important 
in gastric carcinogenesis and may even mediate the 
carcinogenic effect of gastric Helicobacter pylori (Hp) 
infection.71 It has been known for many decades 
that gastric carcinomas seldom develop in a stom-
ach without gastritis.72 Hp was soon realized to be a 
major gastric carcinogen.73 However, in spite of 
intensive research for more than two decades, the 
mechanism by which Hp infection induces gastric 
cancer is unknown. Moreover, Hp infection itself 
does not seem to be a direct carcinogen, as Hp infec-
tion confined to the antral mucosa predisposes to 
duodenal ulcer disease74 but protects against gastric 
cancer.75 Even though it was recently demonstrated 
that Hp infection could reach the area of the stem 
cells (proliferation zone)76 there is hitherto no exam-
ple of bacterial carcinogenesis due to internaliza-
tion. On the other hand, there is convincing evidence 
that Hp infection has carcinogenic potential only 
after inducing atrophic gastritis in the oxyntic 
mucosa.77,78 Patients with Hp infection have 
reduced gastric acid secretion, reduced gastric acid-
ity, and secondary hypergastrinaemia,77,78 which 
may be marked in contrast with the slight gastrin 
elevation in those with duodenal ulcer,79 which nev-
ertheless is sufficient to induce hypersecretion of 
acid due to extreme sensitivity for gastrin.80  
The increased gastric acidity, on the other hand, 
inhibits further gastrin release,81 thus preventing 
marked hypergastrinaemia.81,82 Furthermore, auto-
immune gastritis may result in total atrophy of the 
oxyntic mucosa, resulting in anacidity and hyper-
gastrinaemia, and predisposing to gNETs as well as 
gastric carcinomas.77 Thus, hypergastrinaemia is a 

common factor of the two major conditions predis-
posing to gastric cancer, Hp gastritis and autoim-
mune gastritis.82 In fact, hypergastrinaemia in 
patients with gastric carcinomas has been described 
already many years ago.83,84 Very recently we 
detected gastrin receptors by immunohistochemis-
try and by in-situ hybridization in normal, hyper-
plastic and neoplastic (NETs, NECs and 
adenocarcinoma) NE cells,85 suggesting that even 
malignant gastric carcinomas could respond to anti-
gastrin therapy. In many ways, the role of gastrin in 
the oxyntic mucosa of the stomach may be com-
pared to the role of estrogens in the mammary 
glands in terms of regulation of function (acid secre-
tion and lactation, respectively), as well as growth 
affecting the development of neoplasia. This is 
partly based on the fact that gastric cancer seldom 
occurs in patients with duodenal ulcer, who very 
rarely have hypergastrinaemia, only an inappropri-
ately increased gastrin levels, as well as the scarcity 
of breast cancer in males. We are well aware of the 
many reports on the role of cancer stem cells in car-
cinogenesis in general,86,87 including gastric carcino-
genesis88 as well as the development of NE 
tumours.89 On the other hand, Quante and co-
workers reported that a gastric progenitor cell from 
the oxyntic mucosa developed into mucus neck 
cells, parietal cells, and chief cells, but not NE 
cells.90 This finding indicates that there is a NE cell, 
progenitor or mature, being able to proliferate inde-
pendently of the other cells in the oxyntic mucosa. 
The concept of a cancer stem cell being present 
already at an early stage is difficult to conceive, since 
it does not explain how the tumours become 
increasingly malignant over time.

Interestingly, NE cells of the upper gastrointestinal 
tract lack E-cadherin91 that may predispose these 
cells to become invasive and metastasize. Another 
feature of NE cells that may be important for their 
carcinogenic potential is their production of signal 
substances affecting the function and growth of 
neighboring cells and tissues. Thus, the ECL cell 
of the stomach produces histamine, and the EC 
cell of the small intestine produces serotonin, both 
substances having profound vascular effects such 
as increasing vascular permeability and stimulating 
angiogenesis,92 that conceivably could promote 
metastases. The discrepancy between a rather nor-
mal cellular appearance93 and the biological malig-
nancy of NE tumours, which often tend to 
metastasize when the tumour is still small, may be 
explained by these properties of normal NE cells. 
Although there are many and strong indications of 
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an important role of the ECL cell in subgroups of 
gastric carcinomas, their origin has still not been 
completely established. Nevertheless, given the 
very limited treatment options, this should not fur-
ther delay clinical trials in patients with gastric car-
cinoma positive for the gastrin receptor.

NE cells and tumours outside the stomach
The small intestine. The EC cell gives rise to the 
classical NETs of the small intestine. The growth 
regulation of normal EC cells has been indirectly 
studied in the EC cell-derived tumour cell line 
KRJ-I,94 but no in vivo study has been performed. 
The regulation of EC cell function or growth is not 
fully understood. The EC cell produces serotonin, 
causing the classical carcinoid syndrome, as well as 
fibrosis of the heart valves as found in patients with 
EC cell NETs.95 The EC cell NETs are growing 
slowly, but over time they develop into more malig-
nant tumours. This process has not been well stud-
ied, presumably because this would require 
repetitive tissue sampling, and since there may be 
heterogeneity between different metastases.96 
However, a subset of small intestine NETs has 
somatic mutations in the CDKNB1 gene encoding 
p27.97 A subset of mature enteroendocrine  
cells has recently been shown to have stem cell  
properties.98 Karpathakis and colleagues recently  
performed integrated DNA-sequencing, DNA-
methylation, and gene expression analysis on 97 
small intestinal NETs from a cohort of 85 
patients.99 The authors identified three subgroups 
of small intestine neuroendocrine tumours (SI-
NETs) distinguished by molecular profiling, with 
different outcomes and progression-free survival 
(PFS) rates. The largest group (57%) was defined 
by chromosome 18 loss of heterozygosity.100 This 
group was associated with the presence of 
CDKN1B mutations and CpG island methylator 
phenotype (CIMP) negativity. These patients had 
the most favorable PFS, endpoint not reached at 
10 years of follow up after resection, and an older 
age at diagnosis of 67 years. The second group 
(18%) was characterized by a high degree of CIMP 
positivity and the absence of arm-level copy-num-
ber changes.101 This group was associated with an 
intermediate PFS (56 months) and a younger age 
at diagnosis of 60 years. The third group was 26% 
and was characterized by the presence of multiple 
copy-number changes, a significantly poor PFS 
(21 months), and younger age at diagnosis of 54 
years, suggesting a more aggressive clinical pheno-
type. These new data are in line with clinical 

observations that not all SI-NETs demonstrate 
slow benign growth with long PFS. Most recently, 
a study from the Uppsala group revealed that the 
mutY homologue (MUTYH)-DNA glycosylated 
gene was significantly enriched in SI-NET 
patients.102 MUTYH is involved in the protection 
of DNA exposed to oxidative stress, and has been 
shown to be involved in various cancers in humans 
and experimental animals. It has been suggested 
that this mutation, in the DNA-excision/repair 
pathway, might be involved in driving the tumouri-
genesis, thus causing both familial and sporadic SI-
NETs. The occurrence of similar mutations in 
MUTYH has recently been published for pancre-
atic NETs. Interestingly, the multiple tumours 
occurring in patients with familial small intestinal 
NETs, were found to be polyclonal and originate 
from a subset of EC cells expressing intestinal stem 
cell genes.103 It is reasonable to presume that not 
only the enteroendocrine cells but also NE cells 
located in other parts of the gastrointestinal tract, 
including the stomach, have stem cell properties. 
Accordingly, it is conceivable that also tumours 
developing from NE cells in general may show 
variable phenotypes. The discrepancy between 
NETs in the small intestine and the appendix 
(both midgut and serotonin producing), in their 
ability to metastasize,104 may be related to the ana-
tomical localization of the appendix.

Pancreas. The pancreas is composed of exocrine 
glands producing enzyme precursors, and duct 
cells secreting bicarbonate, as well as the endo-
crine islets of Langerhans with cells producing 
hormones, including insulin, glucagon, and soma-
tostatin. The large majority of pancreatic neo-
plasms are thought to arise from acinar cells, 
whereas only 3–5% of the tumours are typically 
classified as NETs. The cellular origin of pancre-
atic NETs (pNETs) should be investigated based 
on knowledge on the replication and proliferation 
of normal NE cells. Furthermore, many adenocar-
cinomas contain NE cells, where NE cells have an 
uncertain role and prognostic importance. It has 
been questioned whether these cells could be nor-
mal NE cells trapped in a malignant tumour. 
Alternatively, they could be the most differenti-
ated part of an otherwise dedifferentiated NET.

It has previously been debated how new pancreatic 
endocrine cells are formed.105 However, there is 
evidence from older 3H-thymidine incorporation 
studies,106 and from more recent genetic linage 
tracing studies, that adult pancreatic β-cells are 
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formed by self-duplication rather than stem cell 
differentiation.19

The regulation of mature β-cell proliferation is 
thus of interest in the understanding of carcino-
genesis. In patients with type 2 diabetes, the phe-
nomenon of compensatory islet hyperplasia in 
response to insulin resistance107 is well known, 
but the underlying mechanisms of hyperplasia 
have until recently been obscure. Although the 
exact mechanisms in a liver–pancreas endocrine 
axis are not fully understood, there is evidence 
from mice models that liver-specific deficiency of 
the insulin receptor (IR) causes β-cell hyperpla-
sia.108,109 More recently, the protein serpinB1,110 
found to be abundantly expressed in the liver of 
mice with liver-specific IR deficiency, stimulates 
proliferation of pancreatic β-cells.

Similarly, mechanisms for the regulation of α-cell 
mass have been elucidated. Mice deficient of the 
glucagon receptor, develop hyperplasia of the 
α-cell,111 and in man, homozygous mutations of 
the glucagon receptor lead not only to hyperplasia, 
but also neoplasia of the glucagon-producing cell. 
Liver-specific deficiency of the glucagon receptor 
results in hypertrophy of the α-cell mass, suggest-
ing that a liver-derived circulating growth factor 
may stimulate α-cell proliferation.112 Furthermore, 
mice lacking all proglucagon-derived peptides, 
including glucagon and glucagon-like peptide 
(GLP)-1, develop pancreatic NETs.113 It therefore 
seems plausible that one or several factors released 
from the liver cause α-cell proliferation and possi-
bly also pNETs. An alternative hypothesis is that 
the α-cells themselves harbor a glucagon receptor 
with a negative trophic effect.

There is evidence that pNETs seem to be more 
prevalent due to increased use and better quality 
of abdominal imaging.114 A larger proportion of 
pNETs are nonfunctional,115,116 constituting the 
majority of tumours.117 The most common func-
tional tumours are insulinomas, and while most 
are sporadic, some are associated with the multi-
ple endocrine neoplasia type 1 (MEN1) syn-
drome.118 Patients with diabetes have a 
theoretically increased risk of insulinoma due to 
prolonged stimulation of β-cell proliferation, and 
this has been reported in some patients with dia-
betes.119–121 In a recent meta-analysis of epidemi-
ological studies, diabetes is one of few risk factors 
found to be associated with pNETs,122 the others 
being heavy alcohol consumption, and a family 

history of cancer. Studies of mice with β-cell-
specific MEN1 deletion have shown development 
of insulin expressing pancreatic tumours,123 
which is a further demonstration of the islet cells 
as the origin of insulinomas.

In the fetal and neonatal pancreas there are gas-
trin-positive cells which disappear soon after birth 
and are not present in the adult normal pancreas.124 
Gastrinomas are present in both the pancreas and 
the duodenum, and are the second most common 
functional pNET.117 Cell lineage studies of the 
transiently pancreatic gastrin-expressing cells have 
demonstrated that pancreatic gastrin-positive 
tumours derive from islet cells, and some of these 
co-express glucagon or insulin.125 Duodenal gas-
trinomas in patients with MEN1 are thought to 
develop from the mucosa of the small intestine, 
with diffuse and nodular hyperplasia of G-cells and 
microtumours of G-cells, and D-cells are fre-
quently found.126 In the pancreas, microadenoma-
tosis defined as multiple tumours up to 5 mm in 
diameter, is a feature of MEN1.127 These lesions 
frequently express glucagon and pancreatic poly-
peptide. Glucagonomas are exceedingly rare, and 
little is known about the risk factors for sporadic 
tumours in humans. However, α-cell hyperplasia is 
seen in patients with MEN1 and von Hippel–
Lindau disease,128 and these patients also have an 
increased risk of developing glucagonomas. Studies 
of glucagon receptor deficient mice have demon-
strated that these mice develop α-cell hyperplasia 
and eventually islet cell neoplasia.129 α-cell specific 
deletion of MEN1 also causes glucagonomas,130 
but also some insulinomas and mixed type NETs.

The mutational landscape in human pancreatic 
NETs has recently been described.131,132 Among 
the somatic mutations most frequently found, 
were MEN1 mutations, but also mutations in 
genes related to mammalian target of rapamycin 
(mTOR) signalling (PTEN, DEPDC5, TSC1 
and TSC2), DNA damage repair (MUTYH, 
CHEK2 and BRACA2), chromatin modification 
(SETD2 and MLL3), as well as altered telomere 
length (DAXX and ATRX) were frequently 
found. Finally, findings of hyperplasia preceding 
neoplasia in numerous murine models of pNETs 
have been reviewed,133 and it was suggested that 
primary alterations, such as MEN1 mutations or 
glucagon signalling inhibition, may be followed 
by the accumulation of mutations in hyperplastic 
endocrine cells, causing progression towards dys-
plasia and neoplasia. The evidence strongly 
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supports a sequence from hyperplasia to benign 
and malignant NE neoplasia also in the pancreas, 
similar to what has been shown above for ECL 
cells in the stomach.

Evidence that neuroendocrine cells play a role in 
the development of pancreas adenocarcinoma is 
limited, as adenocarcinomas appear to originate 
from the exocrine pancreas and NETs from islet 
cells. The observation of tumours with mixed dif-
ferentiation complicates this view. The mutational 
profile of mixed tumours has only been investigated 
in single cases, but was found to be common for 
both tumour compartments.134 It has been sug-
gested that islet cells contribute to the development 
of ductal cancers. After studying the localization of 
the stem cell markers LGR5 and Nanog in the nor-
mal pancreas and adenocarcinomas, it was con-
cluded that islet β-cells expressing LGR5 and 
Nanog markers are the initiating cells of pancreas 
cancer, and that these cells migrate from the islets 
to form the ductal cancerous tissue after mutation 
and de-differentiation.135 Experimental studies on 
tumour origin, supporting a role of islet cells in 
adenocarcinoma development, are few, but implan-
tation of Kras and p16-mutated islet culture cells 
formed pancreatic duct adenocarcinomas in a ham-
ster model. However, the majority of studies on the 
evolution of pancreatic adenocarcinomas suggest 
that adenocarcinomas derive from a non-neuroen-
docrine cell.136

The lungs.  Pulmonary tumours are frequent, and 
tobacco smoking is the main etiological factor in 
lung carcinogenesis. Lung cancers are traditionally 
divided into small cell carcinomas (SCCs) and 
non-small cell carcinomas. The latter group is sub-
divided into adenocarcinomas, squamous cell car-
cinomas, and large cell carcinomas. SCCs are 
accepted to be NE tumours,137 and also large cell 
carcinomas show NE differentiation,138 while ade-
nocarcinomas and squamous cell carcinomas are 
believed not to be related to NE cells. However, 
even squamous cell carcinomas and adenocarcino-
mas may express NE markers,139–141 and after treat-
ment of adenocarcinomas with a tyrosine kinase 
inhibitor, small cell differentiation may occur.142 
The cell of origin of the different types of pulmo-
nary carcinomas has been disputed, and has still 
not been settled. There is consensus on the pres-
ence of an endodermal derived stem cell in the 
bronchial mucosa, which may be the origin of most 
cell types, and possibly also the NE cells. However, 
it is also clear that the NE cells of different organs 

have striking similarities, and that they in contrast 
to other cells may proliferate.19,20 This is also the 
case for NE cells of the lungs.143 Furthermore, NE 
cells of the bronchial tree often produce the same 
signal substances as NE cells of the stomach, for 
instance histamine.144 We have previously focused 
on the similarities between lung and gastric NE 
cells, and the contrast between the acceptance of 
NE cancers in the lungs and the reluctance to 
accept such tumours in the stomach.145 On the 
other hand, in contrast with the gastrointestinal 
tract, where the knowledge of stem cell location and 
regulation of proliferation has been greatly improved 
during the last decade,146 such information is more 
incomplete for the lungs. However, in multiple 
endocrine neoplasia I (MEN I), bronchial tree car-
cinoids (NETs) develop on the basis of NE cells.147 
According to the World Health Organization, NETs 
of the lungs are termed carcinoids (typical and 
atypical). In order to prevent confusion, they are 
called carcinoids, with NETs in parenthesis, in this 
manuscript. There is also experimental evidence for 
a NE origin of SCCs.148 Based upon studies in 
mice, where key tumour suppressor genes were 
inactivated in different labelled pulmonary cell 
types, NE cells were speculated to be the most 
probable origin of SCCs. Recently, an immunohis-
tochemical study indicated that SCCs originated 
from a NE progenitor cell, whereas more differenti-
ated NE tumours could develop from more differ-
entiated NE cells.149

Lung NE cells either occur as single cells in the 
mucosa or in clusters in so-called NE bodies. NE 
cells of the lungs have a receptor monitoring oxy-
gen tension,150 and by release of regulatory sub-
stances they adjust ventilation and circulation to 
optimize oxygenation. Like NE cells of other 
organs, lung NE cells express secretory granules, 
which may be identified by chromogranins and 
also markers of synaptic vesicles like synaptophy-
sin. Besides histamine, lung NE cells produce cal-
citonin gene related peptide (CGRP)151 and 
gastrin-releasing peptide.152 Furthermore, lung 
NE cells show neuron-like extensions137 similar to 
NE cells in the gastrointestinal tract.13,153

In the lungs, NE neoplasms make up an important 
proportion of the total pulmonary carcinomas with 
the phenotype of either small or large cell carci-
noma. Smoking is an important cause of such can-
cers, but seems unrelated to nicotine since exposure 
by inhalation over a 2-year period did not affect 
NE growth in rats.154 Carcinoids (NETs) also 
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occur in the airways, but a link between these car-
cinoids (NETs) and lung cancers has not been 
established,137,155 and pulmonary carcinoids do 
not seem to be induced by smoking.137,155 
Nevertheless, mutational analysis has shown com-
mon molecular factors in pulmonary carcinoids 
(NETs) and NECs,156 and bronchial carcinoids 
(NETs) appear to develop from NE cell hyperpla-
sia.157 We also studied the effect of long-term CO 
exposure in rats for 2 years, but did not detect any 
increase in NE cells or tumours in the lungs.158 
The study hypothesis was that CO, by blocking O2 

receptors on NE cells regulating the flow of air and 
blood locally, would stimulate the function and 
proliferation of that particular NE cell type. 
Presently, it must be acknowledged that the most 
important factors of tobacco smoke causing pul-
monary cancer is still unknown, although many 
carcinogens have been identified.159

To summarize, there are indications on an impor-
tant role of differentiated NE cells in the develop-
ment of neoplasia of all organs, but particularly 
the stomach, as covered in this review (Table 1).

Table 1.  The role of NE cells in tumourigenesis in the organs discussed above.

Organ and tumour type Evidence for NE origin References

 Lung

  NETs +++  

  Carcinomas  

    Small cell +++ Bensch and colleagues137

    Large cell +++ Jiang and colleagues138

    Squamous cell (+) Linnoila and colleagues139

    Adenocarcinoma (+) Fresvig and colleagues,140 Sorhaug 
and colleagues141

Stomach

  NETs (ECL cell-derived) +++  

  Gastric adenocarcinomas  

    Diffuse type ++ Waldum and colleagues,41 Sørdal 
and colleagues,42 Bakkelund 
and colleagues,58 Qvigstad and 
colleagues,61 Rogers and Murphy62

    Intestinal type + Waldum and colleagues, 6 Mjønes 
and colleagues85

Pancreas

  NETs (islet cell-derived) +++  

  Adenocarcinoma (+) Pelosi and colleagues136

Small intestine  

  NETs (EC cell-derived) +++  

  Adenocarcinomas -  

+++ clarified ++ firm evidence + some evidence (+) faint evidence - no indication.
NETs (previously called carcinoids).
ECL, enterochromaffin-like; NE, neuroendocrine; NET, neuroendocrine tumour.
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Conclusion
To conclude, based upon studies of the stomach, 
but also other organs derived from the primitive 
gut, it has been established that NE cells are able 
to divide. Furthermore, continuous activation of 
their function also stimulates proliferation, which 
in the long term, through a sequence of hyperpla-
sia, leads to neoplasia with variable degrees of 
malignancy. Knowledge on the regulation of pro-
liferation of the specific NE cells may give infor-
mation on how to prevent and treat tumours 
originating in that particular cell type. In early 
phases of tumourigenesis, antagonists of domi-
nating trophic hormones may reverse tumour 
development. In the future, the stage of malig-
nancy at which the tumour cells become inde-
pendent of growth factors may be determined and 
tumour treatment tailored accordingly.
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