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Abstract

Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus
bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The
song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps.
Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically
determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of
behavioral data that measured females’ phonotactic behavior under systematic variation of artificially generated song
patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The
model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the
integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with
an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature
sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size
two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus
additional information from the long time scale.

Citation: Meckenhäuser G, Hennig RM, Nawrot MP (2013) Critical Song Features for Auditory Pattern Recognition in Crickets. PLoS ONE 8(2): e55349. doi:10.1371/
journal.pone.0055349

Editor: Jan M. Hemmi, University of Western Australia, Australia

Received August 15, 2012; Accepted December 31, 2012; Published February 20, 2013
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Introduction

Acoustic communication plays a key role for mating behavior in

many different species, most prominently in birds [1], fish [2],

amphibians [3], and insects [4–6]. In the cricket species Gryllus

bimaculatus males produce calling songs by rubbing their wings and

females use these songs to localize the potential partner. If females

recognize the conspecific song and rate it as attractive they

approach the singing male, a behavior called phonotaxis (for an

overview see [4] and [7]). The natural pattern of a calling song

consists of repetitive pulses that are grouped into pulse trains called

chirps [8]. The attractiveness of different patterns can be easily

tested under laboratory conditions by monitoring the phonotactic

behavior of females toward artificial signals [9,10]. Extensive

phonotaxis experiments suggested that the brain processes the

patterns in the temporal domain [9,11] rather than in the spectral

domain as has been proposed earlier [12]. Schneider and Hennig

[13] provided evidence that females evaluate only the coarse

temporal structure of a pattern. Consequently, the abstract song

pattern of Gryllus bimaculatus can be described with four in-

dependent parameters [14], for example the pulse duration, pulse

pause, chirp duration, and chirp pause (see Figure 1). However, it

is not clear whether these four cues are analyzed independently in

the cricket brain. The period, that is the sum of duration and

pause, as well as the duty cycle, that is the ratio of duration and

period, for both pulses and chirps have also been implicated as

relevant descriptors [9,11,14]. Behavioral experiments [9] show

that a pulse period of 40 ms at a pulse duty cycle of 0.5 elicits

highest phonotactic scores. For the organization of the chirps

Grobe et al. [11] observed optimal ranges between 200 and 500

ms for the chirp period, provided that the chirp duty cycle lies

between 0.3 and 0.7. However, the relative importance of each of

these song features is as yet unclear.

Here, we employ artificial neural networks, which are also

known as multilayer perceptrons, to analyze a large body of

behavioral data obtained in phonotaxis experiments. We provide

a detailed investigation of the relevance of individual song

parameters on a quantitative measure that rates phonotactic

behavior. Our models provide quantitative predictions for the

attractiveness of hitherto untested song parameters, which helps

guiding future phonotaxis experiments. Finally, we carefully

interpret our results with respect to the underlying neural

processing employed for acoustic pattern evaluation in the cricket

brain.

Materials and Methods

Behavioral Experiments and Data
We used behavioral tests to measure the phonotactic score of

the cricket Gryllus bimaculatus as explained in detail in [9]. In brief,

female crickets were placed on top of a trackball system that

records their 2D walking trace. The females were presented with

song patterns that mimic natural calling songs. These were

constructed by amplitude modulated sinusoidal signals with
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a carrier frequency of 4.5 kHz. The amplitude was modulated to

construct a periodical series of rectangular sound pulses that are

grouped into chirps (see Figure 1). As a measure for the

attractiveness of a particular song pattern, we computed the

phonotactic score according to the formula in Schul [15]. The

phonotactic score is an integral measure that involves the walking

length, the accuracy of the course maintenance, and the

orientation of the female. It assumes values between 21 and 1,

whereat a value close to one indicates a high level of attractiveness

of the tested song pattern. For this study, we grouped data from

experiments of 218 song patterns differing in their temporal

parameters each of which was presented to several female crickets

(mean: 31, range: 8–225). For each song the phonotactic score was

averaged across individual animals.

The data set was preprocessed as follows. First, we examined the

distribution of the response values of the song patterns: 35% of the

patterns were unattractive with a phonotactic score smaller than

0.2, 48% were intermediate between 0.2 and 0.6, and 17% were

attractive with a value greater than 0.6 [9,11]. Then we split the

data set into a training data set and a test data set of 200 and 18

data points, stratified according to the above allocation of

unattractive, intermediate and attractive songs. This method is

known as stratified sampling and was applied whenever data sets

were divided into subsets. Then, we whitened the temporal calling

song features of the training data set and applied the obtained

transformation to the features of the test data set as well. In the

whitening process, the features are first projected onto their

principal components which removes linear correlations across

features and then each feature is normalized to zero mean and unit

variance. This linear coordinate transformation is widely used to

preprocess the data before applying regression methods such as

artificial neural networks [16].

Model
Artificial neural networks. Artificial neural networks are

commonly employed for regression tasks [16], that is in our case to

predict the phonotactic score from untested patterns. Figure 2A

shows an example of a network diagram with four input variables

that represent the features of a calling song, ten neurons in the

hidden layer and one output neuron that represents the

corresponding phonotactic score. In detail, the information about

the features is forward propagated as follows: input variables xi
that represent calling song features are linearly combined to

activations aj~
P

wjixi of hidden neuron j, where wji denotes the

synaptic weight between input neuron i and hidden neuron j.

Then, the activations of each hidden neuron are transformed with

a nonlinear sigmoidal function f (aj)~
1

1zexp({aj )
. Finally, the

output variable y~ 1
2

P
wout,j f (aj) is computed, where wout,j

indicates the synaptic weight between hidden neuron j and the

output neuron. Thus, in artificial neural networks the temporal

calling song features are nonlinearly processed to predict the

phonotactic score. We implemented artificial neural networks in

the Python programming language, using the Fast Artificial

Neural Network Library [17].

Training and validation. For training the synaptic weights,

we chose the RProp algorithm which is a well-established

supervised learning technique for multilayer feed-forward net-

works [18]. The algorithm uses a training data set to update the

randomly initialized weights in each training cycle such that the

mean squared error between the model’s prediction and the

experimentally observed phonotactic score is minimized. We used

the whitened training data set to perform a stratified 5-fold cross

validation for training and validating networks. The training was

stopped after 10,000 cycles. This stopping criterion enabled us to

compare the performance of networks with different architectures.

To produce a single error estimation, the mean squared errors for

validation (MSEval) and training (MSEtrain) were averaged over

folds. In order to account for random initialization of the weights,

the 5-fold cross validation was repeated for 100 times and we

calculated the mean and standard deviation of the MSEval and

MSEtrain.

Model selection. In a first step we determined the appro-

priate number of neurons in the hidden layer by comparing the

validation errors of networks with n~1 to n~20 hidden neurons.

In detail, for each nw1, we calculated the percent change of the

validation error with respect to the network consisting of n~1
neuron. Then, we chose the smallest n such that networks with

nz1 hidden neurons lead to an improved performance of no

more than 1% as compared to networks with n neurons. This

criterion ensured to select a network with high predictive power on

the one hand and a simple model architecture on the other hand.

Performance. To obtain an unbiased estimate of a network’s

ability to generalize we used the test data set of 18 song patterns to

test the network’s performance. Therefore, we trained a network

with the whitened training data for 10,000 cycles and ran it with

the test data set. Again, we repeated this for 100 times and

averaged the network’s prediction. Then we calculated the mean

squared test error (MSEtest) as well as the linear Pearson

correlation coefficient between the averaged network’s predictions

and the mean phonotactic scores averaged over females.

Prediction. To predict the phonotactic score of an untested

song pattern, we first trained a chosen network over 10,000 cycles

with whitened features and the corresponding phonotactic score of

the initial feature set of 218 data points. Then, we transformed the

features of the untested song pattern with the transformation

obtained in the whitening process of the features belonging to the

initial data set. Next, we run the trained model with the

transformed features of the untested song pattern. Finally, we

repeated this training and prediction procedure for 100 times and

averaged the phonotactic scores across the repetitions.

Feature selection. We considered in total eight different

temporal features of a song pattern that have been previously used

as descriptors. This is a redundant set of descriptors as four

features, two on the short and two on the long time scale, are

sufficient to fully define the song pattern. However, it is not a priori

known, which set of features will best describe the behavioral data.

Thus, we investigated all 255 feature sets, each one consisting of

a different combination of the eight temporal features. For each

feature set, we trained and validated models for a different number

Figure 1. Artificial song pattern of the cricket Gryllus bimacu-
latus and its temporal features. Typically, a calling song consists of
repetitive pulses that are grouped into chirps. The temporal structure of
an artificial song pattern is fully determined by four descriptors, e.g. the
duration and pause for both pulses and chirps. Four additional
descriptors are frequently used to characterize cricket songs, namely
the period (the sum of duration and pause), and the duty cycle (the
ratio of duration and period) for both, the short and the long time scale.
doi:10.1371/journal.pone.0055349.g001
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of hidden neurons followed by the selection of the appropriate

model, as described above.

Results

Our analyses comprised a large body of behavioral data from

experiments in which artificial calling songs were presented to

female crickets under systematic variation of the song parameters.

The phonotactic behavior was monitored with a single quantity,

the phonotactic score. The acoustic pattern of an artificial song is

shown in Figure 1. We trained artificial neural networks that

receive as input the values of a particular set of song features to

predict the phonotactic score. First, we considered feature sets

made up by two features on the short pulse time scale and two on

the long chirp time scale and analyzed how well an artificial neural

network trained on parts of the experimental data can predict the

phonotactic score on the remaining test data. In order to

investigate the interplay of pulse and chirp information with

respect to the phonotactic score we systematically varied pulse

period and chirp period. Finally, we compared feature sets, each

one consisting of a different combination of temporal features, in

order to determine those features that are most efficient in

correctly predicting average phonotactic behavior.

Predictive Performance of Models Using Full Temporal
Pattern Information
How well can we predict the behavioral outcome in an

experimental trial based on the particular song pattern that was

presented? To answer this question we trained and validated

different artificial neural networks on non-redundant input

features using a cross-validation procedure. From a total of eight

potential features we investigated all combinations made up by

two features on the short pulse time scale and two on the long

chirp time scale that together fully determine the temporal song

structure (see Figure 1). The best performing 4-feature model was

selected based on the validation error. It used pulse duration, pulse

pause, chirp duration, and chirp period as input features and

comprised n~10 hidden neurons. The network diagram is shown

in Figure 2A.

The average performance of this 4-feature model was quantified

on the test data set as shown in Figure 2B, where each point

corresponds to one song pattern and the model prediction is

plotted against the average phonotactic score computed from the

animals’ behavior. The predicted response values for the test data

set were highly correlated with the experimentally measured

responses, that is with a linear correlation coefficient of r~0:93.
The mean squared error between the predictions and the

experimental measurements was MSEtest~0:017. The vertical

errorbars indicate standard deviation, indicating the prediction

variability of the best 4-feature model that was simulated for 100

times toward the same calling song. The main source for this

variability is that before training the weights were initialized

randomly, which resulted in slightly different predictions for one

song pattern. The horizontal errorbars indicate inter-individual

response variability of different females toward the same song.

Fusion of the Short and Long Time Scale
Female crickets use information from both, the pulse pattern

and the chirp pattern to recognize and evaluate the conspecific

song. How is this information on the short pulse and the long chirp

time scales combined by female crickets during auditory proces-

sing? We hypothesize two basic models as sketched in Figure 3A:

in case of a logical AND-operation only an attractive pulse

structure in combination with an attractive chirp structure

generates highest phonotactic scores. This would indicate a syner-

gistic processing. In contrast, a logical OR-operation requires

either a suitable pulse or an attractive chirp structure to drive high

phonotactic scores, thus optimal parameters for both time scales

Figure 2. Network diagram and predictive performance of the best 4-feature model. (A) The network diagram consists of four input
neurons representing temporal calling song features, which project to input-evaluating neurons in the hidden layer. These in turn project to the
output neuron mimicking the relative phonotactic score; abbreviations: Pdur - pulse duration, Ppau - pulse pause, Cdur - chirp duration, Cper - chirp
period. (B) Correlation between the phonotactic score of 18 test samples predicted by the best 4-feature model and the experimentally measured
scores. Each dot shows the mean phonotactic score for a given song pattern that was presented to on average 31 females and tested for 100 times
with the model. The errorbars indicate standard deviation across individual females (horizontal) and across 100 repeated model simulations (vertical).
The solid regression line has a slope of 0.73. The performance: MSEtest~0:017 and r~0:93.
doi:10.1371/journal.pone.0055349.g002
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do not transmit extra information. The latter behavior is known as

hypo-additive effect [19]. We evaluated the best 4-feature model

(pulse duration, pulse pause, chirp duration, and chirp period) for

different patterns by systematic variation of chirp and pulse

periods. While varying the periods we fixed the duty cycles at 0.5,

which ensured that one parameter of each time scale was in an

attractive range [9,11]. The plane spanned by the chirp period

and the pulse period in Figure 3B shows highest response values

for patterns with a chirp period between 250 and 500 ms and pulse

periods from 35 to 45 ms. The maximal response value was

obtained for a pattern with a pulse period of 40 ms and a chirp

period of 340 ms. The dominant circular shape of highest

responses suggested that the model approximates a logical AND-

operation for high phonotactic scores.

Selection of the Most Informative Song Features
Which are the critical temporal song features that carry the

most information for phonotaxis? A number of different song

parameters have previously been tested experimentally and several

have been suggested to be of particular importance. We

considered a total of eight temporal features, namely duration,

pause, period, and duty cycle for both pulses and chirps, as

introduced in Figure 1. Above we already presented a model that

uses two features from the short time scale (pulse duration and

pulse pause) and two features from the long time scale (chirp

duration and chirp period). However, it is not clear, which set of

features will best describe the behavioral data. Thus, we

investigated all possible feature sets, each one consisting of

a different combination of the eight temporal features and

compared the prediction accuracy of the corresponding models.

Figure 4 shows the ten best models. The overall best performance

with respect to the validation error was obtained for the 3-feature

model that uses pulse period, chirp duration, and chirp duty cycle

as input and n~10 neurons in the hidden layer. All models using

the pulse period plus two features from the long time scale were

among the ten best performing networks that use three features as

input. Surprisingly, the best 2-feature model that only uses pulse

period and chirp pause and n~7 hidden neurons did not perform

significantly different from the best 3-feature model

(p-value~0:028 for a two-sided Wilcoxon rank-sums test;

significance level of 0.01). The feature combinations of pulse

period plus one chirp feature are the four best in the class of

models that only use two features as input. In contrast, the best 4-

feature model that uses pulse duration, pulse pause, chirp

duration, and chirp period as input and n~10 hidden neurons

performed significantly worse than the best 3-feature model

(p{value~0:005 for a two-sided Wilcoxon rank-sums test;

significance level of 0.01). Models with only one or more than

four features as input were not ranked top ten.

Model Predictions for Pulse and Chirp Response Fields
We investigated pulse and chirp response fields predicted by the

best 4-feature, 3-feature, and 2-feature models. Pulse response

fields describe two-dimensional subspaces spanned by the pulse

duration and pulse pause of the eight dimensional feature space in

which the attractiveness is color coded. To this end, we trained the

models using all data of 218 songs and their phonotactic scores.

For the best 4-feature model, we predicted the phonotactic scores

for patterns with different pulse durations and pulse pauses but

with a fixed chirp duration of 200 ms and a fixed chirp period of

333 ms that construct an attractive chirp structure [9]. The pulse

response field of this model, as shown in Figure 5A, reveals an oval

structure: song patterns with high phonotactic scores are displayed

in an area bounded by pulse periods of 30 and 45 ms and pulse

duty cycles of 0.4 and 0.7. For the best 3-feature and best 2-feature

model we predicted responses toward patterns with different pulse

periods but with a fixed chirp duration of 200 ms and a chirp duty

cycle of 0.6 (best 3-feature model), and a fixed chirp pause of 133

ms (best 2-feature model). The pulse response fields of the best 3-

feature model (Figure 5B) and the best 2-feature model (Figure 5C)

were highly similar: due to the fact that only a single parameter on

the short time scale was used we obtained a 1-dimensional

structure where the phonotactic score varied along the diagonal

defined by the pulse period. Particularly, the phonotactic scores

were invariant under different pulse duty cycles. Higher phono-

tactic scores were in the range of 40+10 ms pulse period, which

was consistent with predictions of the best 4-feature model.

Figure 3. Interaction of the short and long time scale. (A) Sketch
of a logical AND-operation (central square) and an OR-operation (gray
shading). (B) Chirp period - pulse period response field predicted by the
best 4-feature model (pulse duration, pulse pause, chirp duration, chirp
period). The dominant circular area of highest response values suggests
an AND-operation. Circles indicate experimentally measured phonotac-
tic scores.
doi:10.1371/journal.pone.0055349.g003

Figure 4. Ten best performing models. Model of size four (light
gray), three (dark gray), and two (black edging) are ranked top ten. The
overall best performing model uses the pulse period, chirp duration,
and chirp duty cycle. The best 2-feature model (pulse period and chirp
pause) did not perform significantly different (p-value~0:028 for a two-
sided Wilcoxon rank-sums test; significance level of 0.01). The best 4-
feature model (pulse duration, pulse pause, chirp duration, and chirp
period) performed significantly worse than the best 3-feature model
(p-valuev0:01 for a two-sided Wilcoxon rank-sums test). Abbreviations:
Pdur - pulse duration, Ppau - pulse pause, Pper - pulse period, Pdc -
pulse duty cycle, Cdur - chirp duration, Cpau - chirp pause, Cper - chirp
period, Cdc - chirp duty cycle. The models were validated 100 times and
errorbars indicate standard deviation.
doi:10.1371/journal.pone.0055349.g004
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Next, we analyzed the chirp response fields. We predicted the

response values for song patterns with different chirp durations

and chirp periods but a fixed pulse duration of 20 ms and a fixed

pulse pause of 20 ms for the best 4-feature model. In case of the 3-

feature model we predicted responses toward patterns with

different chirp durations and chirp duty cycles but a fixed pulse

period of 40 ms. The response fields of the best 4-feature

(Figure 5D) and 3-feature model (Figure 5E) revealed highest

phonotactic scores for chirp durations and pauses between 100

and 300 ms. The chirp response field of the 2-feature model,

obtained by varying the chirp pause at a fixed pulse period of 40

ms, revealed a 1-dimensional structure in which the scores only

vary for different chirp pauses, irrespective of the chirp duration,

see Figure 5F. Here, highest phonotactic scores were predicted for

chirp pauses between 100 and 250 ms.

Discussion

In this study we trained artificial neural networks to predict the

attractiveness of calling songs of the cricket Gryllus bimaculatus. We

studied the dependence of the model performance on the

parameters of the calling song and aimed to identify minimal

subsets of temporal features that carried sufficient information to

describe the experimentally measured behavioral performance.

The most Relevant Song Features for Behavior
A number of different song parameters, namely the duration,

pause, period, and duty cycle for both pulses and chirps are

commonly used in cricket studies [9,11,12,14,20]. But, this set is

overcomplete in the following sense: four features, two from each

time scale, are sufficient to describe the artificial calling song.

Thus, we investigated the performance of in total 255 models each

one using a different set of song features. We identified three

feature sets of different sizes that are best describing the behavioral

data. The best 4-feature model, which used pulse duration, pulse

pause, chirp duration and chirp period was ranked top ten (see

Figure 4). The overall best model uses three features, the pulse

period, chirp duration, and chirp duty cycle. Remarkably, the six

combinations consisting of the pulse period plus two features from

the long time scale are among the ten best performing sets of three

features. Also the best 2-feature model uses the pulse period from

the short time scale plus the chirp pause as input and regarding

only models with two input features, the pulse period plus one

feature from the long chirp time scale are the best four models.

These findings suggest that the pulse period is the most crucial

feature from the short time scale. For optimal prediction

information on the short time scale (pulses [21,22]) and in-

formation on the long time scale (chirps [11,14]) are equally

important. Also, in a taxonomic study [23] temporal features on

both time scales (number of pulses per second, number of pulses

Figure 5. Pulse and chirp response fields predicted by the best 4-feature, 3-feature and 2-feature model. (A) The pulse response field of
the best 4-feature model shows highest phonotactic scores for patterns that are accumulated in an oval bounded by pulse periods of 30 and 45 ms
and pulse duty cycles of 0.4 and 0.7. The pulse response fields of the best 3-feature model (B) and the best 2-feature model (C) are clearly
independent of the pulse duty cycle and show an extension on the diagonal defined by a pulse period of 40 ms. The chirp response field of the best
4-feature model (D) and the best 3-feature model (E) are qualitatively similar and reveal best scores for patterns with chirp durations and pauses
between 200 and 300 ms. The best 2-feature model predicts highest scores for patterns with a chirp pause between 100 and 250 ms, irrespective of
the chirp duration (F). Circles indicate experimentally measured phonotactic scores.
doi:10.1371/journal.pone.0055349.g005
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per chirp, number of chirps per minute) were relevant for relating

phylogeny to the species-specific song patterns.

Logical AND-operation of the Time Scales
Calling songs of crickets carry information on short and long

time scales, somewhat in analogy to words and phrases of human

speech. How does the female cricket fuse auditory information that

is present on the two distinct time scales? The response profile

(Figure 3B) for different combinations of pulse and chirp periods

showed a synergistic effect, that is only attractive pulse structures

combined with attractive chirp structures drove highest phono-

tactic scores. This provided evidence for a logical AND-operation

of the time scales and was in line with results from Grobe et al.

[11] who interpolated behavioral measurements in the plane

spanned by chirps per second and pulses per second, that is in the

frequency domain. Notably, the combination of attractive pulse

periods between 35 and 45 ms and unattractive chirp periods

(greater than 500 ms) already caused intermediate responses. This

again underlined the importance of the pulse period which we

determined as the behaviorally most important feature of the short

time scale.

The finding that the time scales are fused in an AND-operation

can be interpreted with respect to the neuronal processing in the

cricket brain. If our results had indicated a logical OR-operation

of short and long time scales, then an independent, that is parallel

processing of both time scales in the brain would have been likely.

The result of the interdependence indicates that processing could

be either parallel or serial. In the former case we expect from

physiological experiments to find neuronal responses in the central

brain that are independently tuned to either the short [24,25] or

the long time scale. The fusion of both information streams would

happen only at a late stage of the brain network. Alternatively, in

the latter case of serial processing we expect neural representations

to be dependent on both time scales at an earlier stage of the brain

network.

Song Pattern Complexity in Crickets Versus Grasshoppers
Acoustic communication is also widely studied in grasshoppers.

In mating behavior, male Chorthippus biguttulus grasshoppers

produce courtship songs consisting of syllables that are grouped

into phrases which in comparison with the songs of crickets exhibit

a more complex song structure [26–28]. If females rate the song as

attractive, they produce response signals that direct the male

toward her [29]. Wittmann et al. [30] employed an approach

similar to ours and analyzed courtship songs of the grasshopper

Chorthippus biguttulus with artificial neural networks. Seven struc-

tural features of courtship songs were introduced and served as

input to artificial neural networks. The linear correlation of

r~0:93 between the model’s predictions and the experimentally

measured response probabilities was in a similar range as for our

best 4-feature model. Wittmann et al. [30] also investigated the

features that affect a female’s assessment of a male’s quality by

excluding each song parameter once. In their case, none of the

excluded features led to an increased performance of the

corresponding reduced model. This indicates that the employed

features are non-reducible and results in a feature space of at least

seven dimensions. Thus, the processing of auditory information in

female grasshoppers is more complex than in crickets.

Non-linear Extension Improves Performance
A closer inspection of the best 4-feature model’s performance as

shown in Figure 2B revealed a systematic mismatch between the

behavioral measurements and the model prediction. For small

experimental phonotactic scores (ƒ0:1) the model overestimated

the attractiveness of the corresponding song patterns. Likewise, the

model underestimated the attractiveness of models that were

experimentally found to be highly attractive (§0:7). The same

systematic bias was observed in the behavioral predictions by [30].

What could be the reason for this result and how could we

improve model predictions? The classical artificial neural networks

devised non-linear elements in the hidden layer while the output

neuron computes a linear sum. We additionally applied a non-

linear transformation of sigmoidal shape to the predictions of the

model. In detail, we first used the training data set to choose n~10
hidden neurons. Then, we chose the parameters y~0:5 and

b~5:23 of the sigmoidal sb,y(x)~
1

1z exp ({b(x{y))
as they mini-

mized the mean squared error between the experimentally

measured phonotactic scores of the training data set and the

sigmoidal transformed predictions. This improved the predictive

power: on the test data set the error measure reduced to

MSEtest~0:008 (as compared to MSEtest~0:017) and the linear

correlation coefficient was r~0:94. A possible interpretation of

this result in a biological context involves two-step processing. In

a first processing stage, the attractiveness of the stimulus pattern is

evaluated. In a second stage, the outcome of this evaluation is non-

linearly translated into behavior analog to a behavioral decision.

To investigate this possibility it would be of interest to study in

detail behavioral thresholds in individual animals [31].

Towards Future Models of Neural Network Processing
We presented artificial neural networks that are suitable for

predicting phonotactic scores of untested song patterns and thus

for complementing behavioral as well as guiding electrophysio-

logical studies. However, artificial neural networks do not attempt

to model the natural neural processing of auditory information in

the cricket brain. To improve our understanding of the underlying

neuronal mechanisms during pattern recognition computational

models of neural function are required that incorporate our

anatomical, morphological, and physiological knowledge. Any

such model should attempt to reproduce female phonotactic

behavior and to provide testable hypotheses at the biophysical

level.

Insects in general are well suited because they achieve the

required tasks of pattern recognition and evaluation of the fitness

parameters with relatively small brains. The cricket Gryllus

bimaculatus is a well suited insect model for studying the neural

basis of the processing of auditory information and the generation

of choice behavior due to its highly limited neuronal resources. In

the auditory pathway receptor neurons converge to two ascending

neurons that project to a small number of neurons in the brain.

Much is already known about the physiological properties [21,32]

of the ascending interneurons and ongoing work investigates the

connectivity and physiological properties of the brain neurons. It

has been shown that for varying pulse patterns some neurons

match the average behavioral tuning [21,24]. Several modeling

approaches that use the cricket as a model system exist. Webb [33]

investigates sound-seeking in crickets with robots. Mhatre and

Balakrishnan [34] used a stochastic model to simulate the walking

path of crickets. But, only few attempts have been made to model

the neural mechanisms for pattern recognition in crickets. Benda

and Hennig [35] showed that spike-frequency adaptation can

generate intensity invariance in ascending neurons. In a pre-

liminary study short term depression and short term facilitation in

central brain synapses were suggested as plausible mechanisms for

the parametric tuning on the short and long time scale [36].

Recently, based on their physiological investigation of central

brain neurons, [24] suggested a network scheme that includes

mutual excitation and inhibition of central brain neurons as

Analyzing Phonotaxis with Multilayer Perceptrons

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e55349



a plausible alternative that awaits testing in a future neural

network study.
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