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ABSTRACT
Calculus is typically one of the first college courses encountered by science, technology, 
engineering, and mathematics (STEM) majors. Calculus often presents major challenges 
affecting STEM student persistence, particularly for students from groups historically un-
derrepresented in STEM. For life sciences majors, calculus courses may not offer content 
that is relevant to biological systems or connect with students’ interests in biology. We 
developed a transformative approach to teaching college-level math, using a dynamical 
systems perspective that focuses first on demonstrating why students need math to un-
derstand living systems, followed by providing quantitative and computational skills, in-
cluding concepts from calculus, that students need to build and analyze mathematical 
models representing these systems. We found that students who complete these new 
math courses perform better in subsequent science courses than their counterparts who 
take traditional calculus courses. We also provide evidence that the new math curriculum 
positively impacts students’ academic performance, with data that show narrowing of the 
achievement gap, based on students’ math grades, between student subgroups in the new 
math courses. Moreover, our results indicate that students’ interest in the concepts and 
skills critical to the quantitative preparation of 21st-century life sciences majors increases 
after completing the new contextualized math curriculum.

INTRODUCTION
First-year calculus courses have long presented challenges for recruitment and reten-
tion of students in science, technology, engineering, and mathematics (STEM) fields at 
the college level. Varying levels of prior knowledge, unwelcoming first-year calculus 
courses, and a lack of relevant real-world examples in those courses are major factors 
in students’ decisions to abandon a STEM major (Laursen et  al., 2011; President’s 
Council of Advisors on Science and Technology [PCAST], 2012). For life sciences stu-
dents in particular, the quantitative and computational skills essential to modern bio-
logical research and biotechnology typically are not taught in first-year calculus courses 
(Marshall and Durán, 2018), and consequently students often view these classes as 
unpleasant and irrelevant hurdles to conquer in their quest for a degree in the biologi-
cal sciences (Bialek and Botstein, 2004). These challenges are particularly problematic 
for students from disadvantaged backgrounds or social identity groups historically 
underrepresented in STEM, whose college-level calculus preparation may reflect ineq-
uitable access to high-quality mathematics instruction in high school (e.g., see Moore 
et al., 2010; Benken et al., 2015). These disparities can become exacerbated in first-
year college math courses, manifested as gaps in academic performance outcomes, and 
can ultimately result in major barriers for such students to continue their studies in 
their intended STEM fields (PCAST, 2012).
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Setting the Stage for a Transformational Approach to 
College-Level Math Instruction
It has long been recognized that mathematical approaches 
should be integral to undergraduate biology education (Gross, 
2000), and multiple institutions have approached the develop-
ment of quantitative competencies among life sciences majors 
in a variety of ways. For example, several institutions have 
implemented interdisciplinary courses with embedded activi-
ties that enable first-year students to practice their math skills 
in the context of learning biological concepts. These range from 
single quantitative science courses (Caudill et al., 2010; Mat-
thews et al., 2010) to a multisemester series of courses in mixed 
lecture and laboratory settings (Depelteau et al., 2010). Often-
times, such courses necessitate multidisciplinary expertise and 
thus are team taught by biologists and mathematicians, collab-
orations that may not be possible across all institutions. In 
response to a call for students to engage in authentic coding 
experiences to enhance their quantitative skills in the context of 
biology (National Research Council [NRC], 2003), Matthews 
and colleagues incorporated computer programming into their 
first-year course (Matthews et al., 2010). Survey data indicate 
students gained appreciation for math but not necessarily pro-
gramming, which led the authors to question whether learning 
computational skills (e.g., coding) was too complex for first-
year students (Robins et al., 2003). This finding suggests addi-
tional research on effective approaches for introducing com-
puter programming to first-year biology students is needed.

Another strategy that many institutions pursued in improv-
ing the quantitative curriculum for life sciences students was 
the development of biology-relevant calculus sections (biocal-
culus) within math departments already teaching traditional 
calculus for math, physical science, and engineering students 
(Duffus and Olifer, 2010; Usher et al., 2010; Eaton and High-
lander, 2017; Aikens et al., 2021). For instance, Eaton and col-
leagues redesigned calculus to address the core competencies in 
Vision and Change (American Association for the Advancement 
of Science [AAAS], 2011) by including quantitative reasoning, 
modeling, simulation, and interdisciplinary collaborations, 
which they predicted would make the course more valuable to 
life sciences students. The authors compared biocalculus stu-
dent academic outcomes with their peers in traditional calculus 
at two different institutions and showed similar levels of 
achievement for these two student populations at both institu-
tions in content knowledge as measured by either the Calculus 
Concept Inventory (Epstein, 2013) or common quizzes assigned 
in all sections of the course (Eaton and Highlander, 2017). They 
also found that drop/fail/withdrawal (DFW) rates decreased 
over the duration of the study. Expanding upon this earlier 
study, Aikens and colleagues used pre–post surveys to examine 
attitudinal changes toward math as a function of its perceived 
value, or usefulness, in biology (Aikens et al., 2021). Previous 
studies have shown that valuing the utility and relevance of 
course material contributes to students having increased sub-
ject matter interest (Hulleman et al., 2010), a predictor of aca-
demic achievement (Schiefele et  al., 1992). Aikens and col-
leagues posit that redesigning calculus courses to emphasize 
the relevance of calculus to biological contexts is likely to 
increase the interest of life sciences students in math as well as 
enhance their performance in calculus courses. In support of 
this hypothesis, they find that 45% of post survey respondents 

reported an affirming attitude toward math, and that under-
standing the relevance and utility of math to biology motivated 
these attitudinal changes.

The curricular initiative we describe here confronts the 
national problem with quantitative literacy and STEM retention 
and, based on the outcomes of this study, reflects a transforma-
tive approach to teaching college-level math that was devel-
oped at a large, public, research-intensive university. The new 
two-course series, called Mathematics for Life Scientists 
(courses Life Science 30A, or LS30A, and Life Science 30B, or 
LS30B), focuses on bridging the gap between the way math is 
taught and the way it is often applied in STEM fields (Marshall 
and Durán, 2018) and represents a paradigm shift in how math-
ematical concepts and skills are introduced to first-year college 
students in life sciences. Referred to hereafter as a contextual-
ized math curriculum, these courses also provide a platform for 
teaching computer programming, a critical skill for the modern 
STEM workforce (NRC, 2003; Callier et al., 2014; Rubinstein 
and Chor, 2014). Briefly, students are engaged in classic calcu-
lus topics, such as the derivative and the integral, but with a 
focus on the application of these concepts to dynamical sys-
tems, which are also used as a framework for teaching linear 
algebra and as a platform for students learning computer pro-
gramming in Python so that they can numerically integrate 
nonlinear systems of differential equations. Perhaps most 
importantly, students learn how to think quantitatively about 
biological systems and practice constructing dynamical models 
for problems they have not previously encountered (i.e., engag-
ing in knowledge transfer; Halpern, 1998).

Synopsis of College-Level Calculus Courses and 
Their Limitations
Most traditional first-year calculus courses for biology students 
devote many weeks of instruction to differentiation techniques, 
integration techniques, and in some cases, at the beginning of 
the course, computing limits. Some courses also cover various 
amounts of linear algebra, differential equations, and multivari-
able calculus, but only after an exhaustive treatment of sin-
gle-variable differentiation and integration. Traditional “calcu-
lus for biology” courses typically use textbooks that teach some 
applications of calculus to biology (e.g., Comar, 2008; Rhein-
lander and Wallace, 2011), consistent with the approaches pre-
viously described for the development of biocalculus courses 
(Duffus and Olifer, 2010; Usher et al., 2010; Eaton and High-
lander, 2017; Aikens et al., 2021). Applications of differentia-
tion may include optimization, for example. However, this is 
primarily covered in the single-variable setting, with a focus on 
paper-and-pencil solutions, whereas numerical or other general 
techniques for optimizing functions of multiple variables would 
be much more applicable to modern biology. Applications of 
integration are generally limited to solving particularly simple 
(separable) single-variable differential equations and working 
with continuous random variables. Solutions to such simple dif-
ferential equations have very limited use in the life sciences 
today, and treating the topic of random variables properly 
requires another whole course in probability theory. Further-
more, it is inevitably the case that these applications, the ones 
most relevant to modern biology, such as multivariable optimi-
zation techniques and numerically solving nonlinear differen-
tial equations, are covered very late in the course, if at all. The 
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end result is almost invariably a calculus course in which stu-
dents spend the vast majority of their time learning math, with 
an occasional application added in, and the promise that if they 
spend months learning this material, they will eventually get to 
applications relevant to their life sciences major.

Overview of a Novel Contextualized Math Curriculum for 
Life Sciences Students
The contextualized math curriculum, Mathematics for Life Sci-
entists (LS30A, LS30B), takes a fundamentally different 
approach to the quantitative preparation of biology students 
(Garfinkel et al., 2017). The two courses that make up this cur-
riculum focus on biological applications, and instructors 
develop the mathematics as needed to serve those applications. 
The topic of differential equations, and dynamical systems more 
generally, offers a vast wealth of applications to biology. Thus, 
the curriculum begins by introducing the concepts of positive 
and negative feedback in the language of differential equations, 
as well as techniques for using differential equations to model 
dynamical systems in ecology, epidemiology, physiology, chem-
istry, and other subjects. Simultaneously, students learn the fun-
damentals of computer programming, so that they can imple-
ment basic numerical solution techniques on a computer. After 
that introduction, the curriculum briefly detours into sin-
gle-variable calculus to enable students to gain a conceptual 
understanding of the derivative. The students still learn differ-
entiation rules, but primarily as a tool for analyzing the stability 
of equilibrium points of single-variable differential equations. 
To do the same for multivariable systems of differential equa-
tions, the curriculum transitions into linear algebra and basic 
multivariable calculus. While covering linear algebra, the cru-
cially important concepts of eigenvalues and eigenvectors are 
introduced by considering the long-term behavior of matrix 
population models. As a result, students learn a number of use-
ful mathematical tools, including selected topics from calculus 
and linear algebra, but always motivated by real scientific appli-
cations and always with a strong emphasis on the mathematical 
concepts rather than just paper-and-pencil calculations. Stu-
dents gain the mathematical foundations needed to delve into 
several more advanced topics, including multivariable optimi-
zation techniques, limit cycles in dynamical systems, bifurca-
tion theory, and chaotic behavior, all of which are covered in the 
two-course sequence.

A pilot of the contextualized math course, LS30A, was 
offered to 19 students in the Spring of 2013, and following that 
term, the two-course sequence was consistently offered through-
out subsequent academic years. Support from a federal grant 
provided resources to expand the number of seats available in 
LS30 beginning in the Fall of 2014. As of Spring 2019, the 
majority of life sciences majors were completing the Mathemat-
ics for Life Scientists curriculum, with an average enrollment of 
about 1300 unique students per year, which corresponds to a 
little more than 70% of freshman undergraduates who enter the 
institution with a declared major in life sciences. Overall, LS30A 
has enrolled more than 4800 undergraduates since its pilot in 
Spring 2013. Approximately 4200 students have completed the 
second course in the sequence, LS30B, since it was first offered 
in Winter 2014. Here, we report the findings of our study of 
student outcomes in the contextualized LS30AB math curricu-
lum. Our results demonstrate the efficacy of this innovative 

instructional approach, and reinforce the long-standing national 
call to radically reform the undergraduate math curriculum for 
life sciences students (NRC, 2003, 2009; Edelstein-Keshet, 
2005; Association of American Medical Colleges-Howard 
Hughes Medical Institute, 2009; AAAS, 2011).

CONTEXT AND MOTIVATION FOR RESEARCH STUDY
Because the contextualized math curriculum diverges signifi-
cantly from traditional calculus in its approach to teaching 
mathematical concepts with applications to the biological sci-
ences, its launch prompted a research study of student outcomes. 
The overarching goal of the study was to examine the longitudi-
nal impacts on science course grades attributed to broad, course-
level differences between the new contextualized curriculum 
(LS30A, LS30B) and a traditional “calculus for biology” series 
(Math 3A, 3B, 3C). We also documented student grades in the 
new math courses in comparison with their peers in traditional 
calculus, monitoring performance gaps between various student 
subgroups characterized by demographic characteristics such as 
sex, race/ethnicity, socioeconomic status (SES), and parent or 
legal guardian education status (i.e., first-generation status). 
Additionally, responses from prior surveys of life sciences majors 
suggested low levels of satisfaction with the traditional calculus 
sequence (B.V.V., 2013, unpublished data). Students expressed 
lower levels of confidence in their mathematical abilities after 
completing Math 3A, 3B, or 3C, with some students feeling dis-
couraged from continuing their pursuit of a bachelor’s degree in 
the sciences. Thus, our study also incorporated findings from 
end-of-term student ratings of instruction (SRIs) in which we 
compared student interest in the subject matter at the beginning 
and end of each course. As noted previously, increased subject 
matter interest can be a positive predictor of academic achieve-
ment (Schiefele et al., 1992).

Rationale for Measuring Student Performance in 
Subsequent Science Courses
In alignment with the overarching goal of the study, we focused 
on grade outcomes in courses that represented a shared, homog-
enous curricular experience for life sciences students while also 
maximizing our study sample size. During the time frame of the 
study, life sciences students typically completed their math and 
chemistry course work during their first year of college and 
before beginning their introductory biology course work, which 
usually occurred in their sophomore year. Once the math, intro-
ductory biology, and chemistry curricula were completed, stu-
dents could matriculate into their upper-division major course 
work, choosing from among 12 different life sciences majors 
spread across six departments and two interdisciplinary pro-
grams. Our sample size quickly diminished and the number of 
confounding factors increased as students’ curricular experi-
ences diverged in upper-division course work; thus, we focused 
our course-level grade outcome analysis on introductory courses 
in biology and chemistry, as these represented a common curric-
ular experience for all life sciences majors. In addition, most of 
these students also are required to complete a physics curricu-
lum, the majority doing so in their junior and senior years of 
college. Because life sciences students often completed physics 
later in their course of study, we tracked grade outcomes in 
physics as a longitudinal marker of student academic perfor-
mance in their STEM course work.
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Substantiated as follows, we focused our grade analysis on 
the first course in the sequence comprising the curricula for 
biology, chemistry, and physics. In biology, we monitored stu-
dent performance in an introductory cell biology and physiol-
ogy course, Life Science 2, in which students were expected to 
apply the knowledge and skills learned in requisite math 
courses, exploring possible differences between those who took 
either the new contextualized math course LS30A or the tradi-
tional “calculus for biology” course Math 3A as their first math 
course. Life Science 2 covered various systems in human physi-
ology. When studying the circulatory system, for instance, stu-
dents calculated changes in flow and velocity through blood 
vessels, but to model the muscle system, students had to create 
diagrams demonstrating the relationship between power and 
velocity of a muscle from relaxation through contraction (D. 
Pires, personal communication). Thus, students progressed 
from calculating rates of change to building physiological mod-
els of dynamic, real-world systems, the latter of which were 
skills specifically emphasized in LS30A. During the time frame 
of the study, Life Science 2 was one of four introductory biology 
courses required of all life sciences STEM majors. It was the first 
in a three-course sequence; the fourth course could be taken in 
any order at any time in college.

Chemistry 14A was an enforced prerequisite for Life Science 
2. As a result, Chemistry 14A effectively served as a gateway 
course for life sciences students, and its inclusion in our study 
was motivated, in part, by its critical position in the sequence 
of math and science courses comprising the overall introduc-
tory curriculum for life sciences majors. In addition, some fac-
ulty and administrators in the chemistry department were ini-
tially skeptical of an alternative instructional approach to 
teaching college-level math. There was no calculus pre- or 
co-requisite for Chemistry 14A when this study began, but this 
changed by year 4 of the study, because preliminary data from 
our evaluation indicated that students completing their math 
courses either concurrently with or before taking their intro-
ductory chemistry courses were performing better (e.g., 
achieving higher average chemistry grades) than those who 
waited to take their math courses until after starting chemistry. 
A recent review of math course syllabi, learning objectives, 
sample midterm exams, and final exams failed to reveal sub-
stantial conceptional or skill-based connections (J. Casey, per-
sonal communication), which suggests that improved perfor-
mance outcomes in chemistry likely are more attributable to 
students developing more generalized cognitive skills that 
transfer well to science courses as opposed to enhanced learn-
ing of particular content.

There also was pushback from the physics department con-
cerning the new math series, with skepticism as to whether the 
LS30A and LS30B courses would adequately prepare students 
for the physics curriculum. That said, a set of skills noted to be 
highly relevant to physics courses included modeling systems in 
real-world contexts, understanding how physical quantities get 
integrated into the system being modeled, and then visualizing 
and qualitatively analyzing the behaviors of these systems (J. 
Samani and S. Shaked, personal communication). These skills 
are emphasized in the new contextualized math courses but are 
not covered in traditional calculus for biology courses. Conse-
quently, the overlap in concepts/skills between LS30A/B and 
the physics courses suggested to us that grades in the first phys-

ics course of the three-term series, Physics 6A, was an appropri-
ate proxy for longer-term student performance outcomes.

To garner broad buy-in from skeptical science departments, 
gain approval from the college curricular committees for the 
new math courses, and reassure ourselves that we were helping 
rather than hindering life sciences students, we needed to 
demonstrate that student grade outcomes in chemistry and 
physics as well as biology would not be adversely affected by 
taking these new math courses in place of traditional calculus 
for biology. Consequently, our research study design was influ-
enced heavily by our need to overcome this cultural barrier 
within the institution, so we focused on course-level perfor-
mance outcomes in science classes (i.e., grade achieved) and 
not on analyses of actual learning in math courses (e.g., via 
concept inventories or common exams).

Research Study Predictions
Given the potential content connections between the new con-
textualized math courses and Life Sciences 2 and Physics 6A, we 
expected to observe grade improvements in these two science 
courses among students who took contextualized math relative 
to their peers who took traditional calculus for biology. Our 
study sample targeted students who had taken as their first math 
course at the institution either the contextualized math course 
(LS30A) offered by a department in life sciences or the corre-
sponding calculus for biology course (Math 3A) offered by the 
math department. We did not necessarily predict any significant 
differences between these two student populations in Chemistry 
14A grades, because obvious content connections to the math 
courses were not evident. However, if students were indeed 
acquiring more generalizable and transferrable cognitive or non-
cognitive skills in the new math courses, it was possible that 
grade outcomes might also improve or at least be the same for 
both student populations. In gauging LS30A/B students’ interest 
in the subject matter (i.e., learning math in the context of biol-
ogy), we predicted a positive shift if LS30A/B was successful in 
establishing the relevance of math to biology in a curriculum 
designed for life sciences majors. Likewise, we hypothesized that 
this novel approach to learning math in a biology context might 
help to mitigate academic performance gaps historically 
observed in STEM gateway courses between students from dis-
advantaged backgrounds or social identity groups historically 
underrepresented in STEM and their counterparts with respect 
to background and social identity groups.

METHODS
Overview of Math Course Characteristics and Instructional 
Approaches
To better establish the classroom setting for the study, we provide 
information about the common and differentiating structures and 
instructional features of LS30A and Math 3A, the first two math 
courses of their respective series. Table 1 summarizes course 
characteristics in four categories: personnel, primary sections led 
by the instructor, instructional practices in primary sections, and 
secondary sections led by graduate student teaching assistants 
(TAs). Two authors on this paper (A.G. and W.J.C.) were instruc-
tors for LS30A, one of whom (W.J.C.) is full-time teaching faculty 
in the Department of Mathematics and also taught Math 3A. 
Together, they have firsthand knowledge of the math course 
information provided in the table and detailed as follows.
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Personnel.  During the study period, LS30A was taught by a 
team of instructors, mostly from the life sciences, and consisted 
of one tenured faculty member who conducts research in quan-
titative biology and several non–tenure track instructors with 
PhDs in either math or a quantitative subdiscipline of biology, 
most of whom were hired on a long-term or permanent basis, 
with the teaching of LS30A specified in their job descriptions. 
This structure helps with maintaining continuity of classroom 
culture, one that explicitly emphasizes a growth mindset (Dweck, 
1999; Canning et al., 2019), with instructors consistently mes-
saging that everyone is capable of success (Cohen et al., 1999). 
Math 3A has been taught by the occasional full-time instructor 
or ladder faculty member, but these courses are primarily taught 
by postdocs, who are temporary instructors hired on a 2- to 
3-year contract, and all of the Math 3A instructors were from the 
math department. Besides the departmental affiliation of the 
instructors, perhaps the biggest instructor-level difference 
between LS30A and Math 3A is that there was always a strong 
degree of communication and coordination among LS30A 
instructors; this was rarely the case for Math 3A at the time of 
the study. As a result, the pace, and to some extent even the 
topics covered, varied much more for Math 3A than for LS30A.

Both LS30A and Math 3A employ TAs. One notable differ-
ence was that LS30A TAs have 50% time appointments (20 
hours/week) and Math 3A TAs have 25% time appointments 
(10 hours/week). As a result, LS30A TAs attend lectures and 
have more time for student interactions such as drop-in office 
hours compared with Math 3A TAs, who are not required to 
attend lectures. All LS30A and Math 3A TAs new to teaching are 
required to complete a departmental pedagogy training course. 
By the second year of offering the new contextualized math cur-
riculum, the LS30A instructional team also included learning 
assistants (LAs; see Talbot et al., 2015), undergraduates who 
previously completed LS30A and who are trained to help TAs 

facilitate collaborative learning during computational lab ses-
sions. Finally, Math 3A utilizes graduate student Readers, who 
are hired on an hourly basis to grade weekly homework assign-
ments. Starting in 2015, LS30A also began hiring Readers for 
the same purpose, leaving the TAs to focus on grading exams 
and giving feedback on weekly computational lab assignments.

Primary Sections.  During the first 3 years of the study, enroll-
ments in LS30A were lower than in Math 3A; however, enroll-
ments increased over time, with LS30A enrollments exceeding 
those of Math 3A during the fourth and final year of the study. 
This trend has remained consistent through the current aca-
demic year with fewer than 300 students now enrolling in Math 
3A annually. On average, during most of the study period, the 
section sizes were in the range of 100 to 300 students for 
LS30A. In year 1, individual sections of LS30A enrolled fewer 
than 100 students. By year 2, LS30A enrollments ranged from 
100 to 240 students per section. In year 3, at least one section 
of LS30A enrolled up to 350 students. Individual sections of 
Math 3A, on the other hand, have always been capped at 210 
students. During the study period, they were usually filled close 
to capacity.

Instructional Practices in Primary Sections.  During the time 
frame of the study, both LS30A and Math 3A instructors relied 
heavily on lecture and real-time writing (“chalk talk”) as the 
dominant form of instruction. Starting in Fall 2016, in an 
attempt to make the courses more interactive, clicker questions 
were introduced into all sections of LS30A; clickers were not 
used in Math 3A. The grading strategies for LS30A and Math 3A 
were also distinct during the study period, with implications 
from the research that these strategies can differentially impact 
classroom climate (Hughes et al., 2014; Schinske and Tanner, 
2014). LS30A grades have always been assigned across all 

TABLE 1.  Comparison of LS30A and Math 3A course characteristics

Course component LS30A Math 3A

Personnel
  Instructor departmental affiliation Mix of life sciences (majority of instructors) and math Math only
  Graduate student teaching assistant (TA) appointment 50% time (20 hours/week) 25% time (10 hours/week)
  Undergraduate student learning assistants (LAs) Yes No
  Graduate student Readers Yes Yes

Primary sections
  Total enrolled during 4-year study 1879 3608
  Average enrolled per year 470 902
  Approx. enrolled per section per year 100–300 200

Instructional practices in primary sections
  Instructor coordination of pacing, curricular content, 

and classroom culture
Yes No

  General pedagogy Primarily lecture with “chalk talk” Primarily lecture with “chalk talk”
  Grading practice Criterion-based grading Norm-referenced grading

Secondary sections
  Computational lab Yes No
  Discussion section Yesa Yes
  Average size 18.8 30.6
  Number of secondary sections per TA 2 2

aApproximately half of the 2-hour lab was dedicated to TA-led discussion in which students could ask questions about lecture and homework.
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sections of the course using criterion-based assessment prac-
tices, which help to cultivate a collaborative, rather than com-
petitive, learning environment. For Math 3A, the grading struc-
ture varied by instructor, but most instructors during the time 
frame of the study would have used norm-referenced grading 
(e.g., grading on a curve), practices that promote a competitive 
learning environment that can adversely affect minoritized stu-
dents (Covington, 1992). Plus/minus grades were given in both 
math courses.

Secondary Sections.  Both math courses have secondary sec-
tions, but the format is vastly different. LS30A has a 2-hour 
weekly computational lab with graduate student TAs and 
undergraduate LAs. LS30A TAs are encouraged to use about 
half of the lab section time as a discussion section, allowing 
students to ask questions and clarify misunderstandings from 
lecture. The lab assignments themselves are largely self-guided, 
with students encouraged to collaborate in practicing comput-
er-based coding applications in Python, and the TAs and LAs 
serve as facilitators of these collaborative discussions. Math 3A 
has a 1-hour weekly discussion section with graduate student 
TAs, who primarily lead problem-solving sessions with stu-
dents.

The secondary section sizes for LS30A and Math 3A were 
always different. Enrollment in LS30A secondary sections is 
constrained by the capacity of the computer labs (max. 18–24 
students), with an average enrollment over the study period of 
18.8 students per section. Each LS30A TA is assigned two sec-
tions, and thus is responsible for oversight of approximately 40 
students per term. Math 3A, on the other hand, maintained an 
average enrollment of 30.6 students per secondary section 
during the time frame of the study. Each TA was assigned two 
sections, and thus was responsible for oversight of around 60 
students per term. Thus, the student to TA ratio in LS30A was 
lower (40:1) than in Math 3A (60:1).

Data and Sample
Several data sources are used in this study, including informa-
tion provided by the university registrar and self-report data 
collected from end-of-term SRIs. All data analyses were con-
ducted with human subjects’ ethics board approval (IRB no. 
13-001490).

To understand the grade outcomes for students in their sci-
ence courses as a function of which math course they com-
pleted, the study sample included students who had taken as 
their first math course at the institution either the contextual-
ized math course (LS30A) or the corresponding traditional cal-
culus course for biology (Math 3A). The registrar provided stu-
dents’ demographic and admissions information (e.g., 
standardized test scores, high school grade point average 
[GPA]) and transcript data with course histories, including 
grades, for all students who completed Math 3A and/or LS30A 
from Fall 2013 through Winter 2017. Final grades for the two 
math courses were obtained for examination of trends in per-
formance gaps, defined by differences in the mean and/or 
median grade in LS30A or Math 3A, for several groups based on 
demographic characteristics. Letter grades also were acquired 
for three lower-division science courses required of most life 
sciences majors: Chemistry 14A, which is the first chemistry 
course in a sequential four-course series, typically completed at 

the time of the study during the first year; Life Sciences 2, which 
was commonly taken as the first of four biology courses com-
pleted before entry into upper-division major courses and for 
which Chemistry 14A was an enforced requisite; and Physics 
6A, which was the first physics course in a sequential three-
course series and often taken during the junior or senior year. 
Science grades were limited to students’ most recent grades for 
their respective courses through Spring 2017, because that was 
the final term during which Physics 6A was offered at the insti-
tution. The Physics 6 curriculum was replaced by a new physics 
series for life sciences majors in Fall 2017. Notably, 2017–2018 
was the last year that Life Sciences 2 was offered; the introduc-
tory biology curriculum has since been replaced by a sequence 
of three introductory biology courses with no chemistry requi-
sites and specifically designed for first-year students.

In addition to limiting our sample to students’ science course 
grades from Fall 2013 through Spring 2017, the sample was 
further narrowed to direct-admit students, because transfer stu-
dents are not required to take math after matriculating to the 
university, as they would have completed their math require-
ments at their originating institutions before transfer. Conse-
quently, those transfer students who elected to enroll in LS30A 
or Math 3A would have previously completed their math requi-
sites for college, and thus neither course would qualify as their 
first math course taken. Of direct-admit students, only those 
students who completed either Math 3A or LS30A as their first 
math course at the institution and who took their respective 
courses only once were included in the sample to minimize 
multiple math treatment effects. Thus, anyone who repeated 
either LS30A (N = 21) or Math 3A (N = 61) for a letter grade 
was excluded from the sample. The few students who took both 
Math 3A and LS30A (N = 23) were also excluded from the sam-
ple. We further narrowed the math sample to include only those 
1447 students who also completed Chemistry 14A, Life Sci-
ences 2, and Physics 6A, our key outcomes of interest.

For the purposes of our research study, we focused on the 
most common science course–taking patterns as our sampling 
strategy, which ensured that we had a large enough sample 
population for meaningful grade comparisons and minimized 
confounding effects of the conditions or constraints that would 
have led to students scheduling their science courses according 
to a less common sequencing pattern. Such differences among 
students could not explained, because we had no control over 
student choice and did not evaluate student reasoning for any 
of the course-taking patterns observed. Thus, the final sample 
included only those students who enrolled in Chemistry 14A 
during the same term as their first math course (63.9% of the 
math and science course sample, as compared with 18.5% who 
took Chemistry 14A before Math 3A or LS30A and 17.6% who 
took Chemistry 14A after Math 3A or LS30A), enrolled in Life 
Sciences 2 subsequent to Chemistry 14A (96.2%), and enrolled 
in Physics 6A subsequent to Life Sciences 2 (98.9% of the math 
and science course sample). These course enrollment and 
sequencing criteria yielded a final analytic sample of 909 
students.

As part of the institution’s course and instructor evaluation 
process, anonymous end-of-term surveys, SRIs, are adminis-
tered to students to document their experiences in a course as 
well as their impressions of instructors. For this study, with 
instructor permission, SRI data were obtained for LS30A and 
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LS30B from Fall 2013 through Winter 2017 terms. The average 
response rate for all LS30A offerings was 79.2% (N = 1120) and 
for LS30B the average response rate was 73.9% (N = 908), both 
well within established thresholds for statistically valid survey 
response rates (Nulty, 2008).

Data Analysis
Logistic Regression and Propensity Score Analysis.  Propen-
sity score weights were employed to address potential selection 
bias or course assignment differences among students who 
enrolled in the contextualized math curriculum as opposed to 
traditional calculus for biology (Guo and Fraser, 2010). In gen-
eral, use of propensity score estimates is a quasi-experimental 
technique used to adjust for confounding factors (covariates) in 
a study sample by constructing a control group composed of 
individuals with characteristics similar to those of individuals in 
the treatment group (Austin, 2011). This method provides a 
counterfactual framework (Rosenbaum and Rubin, 1983, 1984, 
1985), which recognizes that, although we cannot go back in 
time and randomly assign students to the two different condi-
tions, we can use logistic regression to predict a student’s likeli-
hood of being in the treatment condition (in this case, LS30A) 
compared with the control condition (in this case, Math 3A) 
and then estimate the treatment effect on any one individual in 
the sample.

A difference between propensity score weighting and pro-
pensity score matching is the ability of the former to include all 
sample individuals in the analyses, rather than only those who 
were successfully matched. This more-inclusive approach mini-
mizes bias in the analysis due to incomplete matching between 
treatment and control groups and strengthens the generalizabil-
ity of the treatment effect (Austin, 2011). Propensity score 
weighting generates output (ω) based on the inverse probabil-
ity of treatment given a set of observed covariates [e ˆ(χ)] 
(Olmos and Govindasamy, 2015). For individuals in the treat-
ment group (e.g., LS30A), we use this equation: ω = 1/ e ˆ(χ), 
and for individuals in the control group (e.g., Math 3A), we use 
this equation: ω = 1/ [1 − e ˆ(χ)]. As a result of transforming 
the variables into weight estimates via these two equations, the 
sample size in the weighted pseudo data set (calculated sample 
size) will be inflated compared with the unweighted data set 
(actual sample size).

Table 2 presents descriptive statistics for the sample before 
and after applying the weights that were derived using propen-
sity score analysis. Weighting yields a more balanced sample 
with respect to representation of sex, race/ethnicity, Pell Grant 
recipient status (used in the study as a proxy for SES), and par-
ent/guardian education status (the criterion used to establish 
first-generation status), as demonstrated by the relative lack of 
statistical significance (within our threshold of α < 0.01) in 
group differences (based on two-proportion z-tests and inde-
pendent-samples t tests). Moreover, the differences in means 
for scale variables, including high school GPA, Scholastic Apti-
tude Test [SAT] math scores, and Advanced Placement [AP] 
Biology and Calculus exam scores, are smaller after weighting, 
albeit group differences are still statistically significant (p < 
0.01).

It is worth noting that the estimation of propensity scores is 
only as good as the variables in the model used to estimate 
them. Our regression models are limited to institutional data 

and thus lack explicit measures of motivation that students may 
have had when enrolling in their courses. Despite this limita-
tion, our estimations include a robust set of demographic and 
academic preparation measures. Supplemental Table S1 
includes the covariates and their parameter estimates associ-
ated with the logistic regression model used to estimate propen-
sity scores for sample individuals’ probability to have enrolled 
in LS30A versus Math 3A.

We thought it was important to account for predictors in our 
model that we know from existing research to be factors affect-
ing college math readiness (e.g., high school preparation). Oth-
ers, such as race/ethnicity, were included, because they are sup-
ported by research as predictive of educational outcomes. In 
addition, we opted to avoid purely statistically motivated vari-
able selection in our model (Heinze and Dunkler, 2017), which 
enabled us to account for possible shared predictive value 
among significant and insignificant variables, thereby prevent-
ing us from falsely attributing an effect to only the significant 
predictors.

Aligned with our goal to examine broad, course-level differ-
ences, our model did not include primary section within each 
course as a random effect for a nested regression analysis and 
instead assumes students’ share experiences by course (LS30A 
vs. Math 3A). Random effects or a nested model presumes there 
is a substantive reason to group students together (e.g., by pri-
mary section) that makes them different from one another 
(Hox, 2010). We concluded that we simply do not have data to 
treat primary sections of the same course as amply distinct from 
one another. In our study, we were limited to course-level infor-
mation about the structural details and instructional features of 
each math course (see Table 1).

Math and Science Course Grade Analysis.  We compared 
course grades between LS30A and Math 3A students and, as a 
means to explore possible grade disparities, among subgroups 
of students within LS30A and Math 3A. Parametric t tests were 
used to compare mean grades, with the standardized magni-
tude of the difference, or effect size, calculated as Cohen’s d 
coefficients (Lenhard and Lenhard, 2016). A value of 0.20 is 
considered a small effect, 0.50 is regarded as a medium effect, 
and 0.80 is a large effect (Cohen, 1988, 1992). Both sample 
size (Lumley et al., 2002) and visual inspection of histogram 
plots (Skovlund and Fenstad, 2001; Fagerland, 2012) suggest 
the appropriateness of parametric t tests for comparing group 
outcomes. Nevertheless, applying the Kolmogorov-Smirnova 
and Shapiro-Wilk tests indicates that the samples do not meet 
the assumption of normality. Thus, nonparametric Mann-Whit-
ney U-tests (Corder and Foreman, 2009) were used additionally 
to test for significant differences in the distributions of math 
and science course grades. Effect size calculations are not com-
mon with nonnormal data (see Tomczak and Tomczak, 2014) 
but become necessary when using nonparametric techniques 
(Leech and Onwuegbuzie, 2002). Pearson correlation coeffi-
cients (r) were calculated as an estimate of the effect size, or the 
strength of linear association between two variables (e.g., 
grades in the two math courses), using output from nonpara-
metric tests and the equation: r = Z/√n, where Z is the Z-score 
and n is the number of observations on which Z is based 
(Tomczak and Tomczak, 2014). A Pearson correlation coeffi-
cient (r) of −1 corresponds to a perfect negative correlation and 
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an r of +1 to a perfect positive correlation between variables. In 
this case, the effect size is small if the value of r is between 0.1 
and 0.3 and large if r is above 0.5 (Cohen, 1988, 1992). Group 
means, medians, and results from their corresponding paramet-
ric and nonparametric tests for significant differences are pro-
vided in the tables, wherein we report p values ranging from 
p < 0.05 to p < 0.001. Our threshold for statistical significance, 
however, is α = 0.01. This more stringent threshold helped us 
focus on those group differences that were more likely to be of 
practical importance, unless applying a less stringent threshold 
(p < 0.05) appeared to correspond to changes in the underlying 
quantities that were of potential practical importance as 
assessed by effect size.

To examine possible math course effects on different sub-
groups of students in their science courses, we ran parallel sets 
of blocked ordinary least-squares (OLS) regressions for all three 
science grade outcomes. Independent variables were organized 
into blocks comprising precollege characteristics (e.g., demo-
graphics, high school academic performance), math course 
grade, and whether students took LS30A or Math 3A as their 
first college math course. Plots of residuals and collinearity sta-
tistics confirm that the data do not violate regression assump-
tions. Analysis of variance (ANOVA) was conducted to confirm 
statistical significance of the models (α = 0.01).

Self-Report Data Analysis.  Two SRI questions of interest for 
this study asked LS30A and LS30B students to gauge their “sub-
ject interest before course” and “subject interest after course” 
using four categorical response choices: N/A, low, medium, and 
high. We omitted N/A responses and assigned numeric values 
on a 3-point scale to the remaining three categorical data as 
follows: 1 (low), 2 (medium), and 3 (high). Descriptive analy-
sis of students’ self-report data to these two survey items pro-
duced histograms of response frequencies in three categories 
(low level of interest, medium level of interest, and high level of 
interest) at two time points (before and after the course). We 
conducted z-tests to compare the distributions of response fre-
quencies for LS30A and LS30B. Unfortunately, we were not able 
to access comparable data for Math 3A. A copy of the entire SRI 
instrument is provided (see Supplemental Figure S1).

RESULTS
Analysis of science course (chemistry, life science, physics) 
grades among students who completed either contextualized 
math (LS30A) or traditional calculus for biology (Math 3A) as 
their first math course provides evidence supporting the effi-
cacy of the new math curriculum in improving learning. In 
addition to these cognitive gains, examination of students’ 
responses to survey items on end-of-term SRIs reveal marked 
gains in student interest in the subject matter, a noncognitive 
measure that could contribute to student motivation to persist 
in their course work as STEM majors (Graham et al., 2013).

Comparing Grades in Science Courses by First Math 
Course Completed
To determine the possible effects of the math courses on aca-
demic performance in subsequent science courses, we first 
examined group differences between Math 3A and LS30A with 
respect to course grades in Chemistry 14A, Life Science 2, and 
Physics 6A. Table 3 includes descriptive statistics and signifi-

cance test results for 907 students who earned a passing grade 
(at least a “C−”) in their respective math classes, and thus satis-
fied the math co- or prerequisite for the three science courses 
examined in this study. Nonparametric tests for significant dif-
ferences, for both unweighted and weighted samples, confirm 
that students who enroll in and pass LS30A earn higher grades 
in their subsequent science classes than do their counterparts in 
Math 3A. Recall, the apparent change in sample size between 
the unweighted data set (actual sample size) and weighted 
pseudo data set (calculated sample size) results from the trans-
formation of variables used to calculate propensity scores in the 
logistic regression model. By more conservative (i.e., weighted) 
estimates, LS30A students earn grades ranging from 0.10 grade 
points higher in Chemistry 14A to 0.17 grade points higher in 
Life Science 2, on average, than Math 3A students. In other 
words, these results indicate that students who enrolled in 
LS30A earned significantly higher grades in chemistry (p < 
0.001), life sciences (p < 0.001), and physics (p < 0.01) courses 
than their peers who had taken Math 3A as their first math 
course at the university.

To better understand the magnitude of mean grade differ-
ences between LS30A and Math 3A students and their practical 
significance, we estimated Cohen’s d coefficients based on para-
metric t test data. By more conservative (i.e., weighted) esti-
mates, the effect size is considered negligible (<0.2) to rather 
small (≥0.2 but <0.5), ranging from 0.15 for Chemistry 14A to 
0.23 for Life Science 2. The effect size is much larger for the 
unweighted samples, ranging from 0.54 in Physics 6A to 0.7 in 
Chemistry 14A (medium effect ≥0.5 but <0.8). That said, we 
acknowledge that these effect size estimates may be affected by 
departures from normality in the data set, which is what moti-
vated us to employ nonparametric tests for significance in the 
first place.

The Pearson correlation coefficients (r) were calculated as a 
means to gauge effect size based on the nonparametric data. 
These results mirror those estimated using Cohen’s d coeffi-
cients. For the weighted samples, the effect size is considered 
negligible (<0.1) for Chemistry 14A and small (0.1–0.3) for Life 
Science 2 (0.13) and Physics 6A (0.11). These results are inter-
esting, because they support our hypotheses, in which we pre-
dicted some grade improvements for LS30A students relative to 
their Math 3A peers in Life Science 2 and Physics 6A based on 
the potential relevance of content between the courses. Further-
more, we did not expect large differences between these two 
student populations in their Chemistry 14A grades, as we were 
unable to identify obvious content connections to either math 
course. Given that there was a significant difference in both 
mean science course grades and science course grade distribu-
tions, respectively, between LS30A and Math 3A student groups, 
it appears that LS30A students may benefit in their learning 
from acquisition of more generalizable and transferrable cogni-
tive or noncognitive skills.

In addition to group differences by first math class taken, 
and in response to pervasive disparities among students in 
STEM academic performance and retention (PCAST, 2012), we 
examined possible math course effects alongside those of stu-
dents’ sex, race/ethnicity, SES, first-generation status, and aca-
demic preparation. Table 4 shows all three sets of OLS regres-
sions (both unweighted and weighted versions for three science 
course grade outcomes); omnibus tests confirm that the models 
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are statistically significant (p < 0.001 for all ANOVAs), with 
adjusted R2 values for full, final models ranging from 0.274 
(predicting Physics 6A grades) to 0.498 (predicting Chemistry 
14A grades). The coefficients for all six full models are provided 
in Table 4.

Using the standardized coefficient, beta, to compare effect 
sizes within models for weighted samples, we observe that the 
largest effect sizes are associated with how well students per-
formed on their math SAT test and in their math classes. That 
said, the models also confirm that which math class students 
completed also matters in their science grade outcomes. The 
addition of math course (LS30A vs. Math 3A) contributes pre-
dictive value to each model, as evidenced by the statistical sig-
nificance of the positive math course coefficient as well as the 
significance of change in R2 value with the addition of the math 
course variable (ΔR2 Chemistry 14Aweighted = 0.019, p < 0.001; 
ΔR2 Life Sciences 2weighted = 0.025, p < 0.001; ΔR2 Physics 6Aweighted 
= 0.021, p < 0.001). Moreover, these findings are consistent 
regardless of outcome measure (science course grades) or 
weight (the more conservative, weighted estimates parallel the 
unweighted results). Thus, students who take LS30A as their 
first college math course tend to have significantly higher aver-
age chemistry, life science, and physics grades compared with 
those who take Math 3A, even after controlling for demographic 
characteristics, high school academic preparation, and math 
grade. This regression analysis lends further support to our 
hypotheses and suggests that LS30A students are benefiting in 
their learning in all three science courses, whether due to 
apparent content-based connections or to a more generalizable 
and positive impact on cognitive or noncognitive skill 
development.

Student Performance and Equity of Learning in 
Contextualized Math
For both traditional calculus and contextualized math courses, 
we calculated the mean and median course grades and exam-
ined the distribution of final letter grades (N = 909; see Table 5 
and corresponding histograms in Figure 1) as a performance 
indicator that could possibly be attributed to differences in stu-
dent learning or to other cognitive and/or noncognitive bene-
fits associated with differences in course structure and instruc-
tional approach (see Table 1). Notably, in our previous analyses 
of science course grades, we used weighted samples in predict-
ing grade outcomes in order to adjust for potential bias in 
covariates and produce findings that are more generalizable to 
the larger undergraduate life sciences population. For this part 
of our study, we used unweighted math grades to compare stu-
dent performance within our actual (i.e., unweighted) sample.

Math 3A students in our sample, on average, earned 3.25 
(SD = 0.69) grade points for their final course grade, or slightly 
less than a “B+” (3.3 on a 4.0 grade point scale). LS30A stu-
dents, on the other hand, earned an average grade of 3.41 (SD 
= 0.72), or slightly higher than a “B+” average. Parametric and 
nonparametric tests confirm that the difference in mean grades 
and in the overall grade distribution, respectively, between the 
two classes is statistically significant (at p < 0.001). Both 
Cohen’s d and Pearson’s correlation coefficient (r) indicate the 
effect size is practically small yet still significant. On its own, 
this finding provides some support for the efficacy of LS30A as 
having a positive impact on student performance but does not TA
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rule out confounding factors such as differences in instructors’ 
grading practices (see Table 1). When combined with the previ-
ous findings for science grades, which we would argue are far 
better indicators of learning, the difference in average grades in 
the math courses provides more compelling evidence of the 
benefits conferred to students who complete the contextualized 
math curriculum.

In addition to teaching math in a biology context and better 
preparing students for science courses, LS30A seeks to offer the 
benefit of a more equitable and inclusive learning environment. 
As previously mentioned (see Table 1), LS30A instructors meet 
regularly to not only coordinate curricular content and pacing 
of the course, but also to ensure consistent messaging to stu-
dents about growth mindset by both instructors and TAs (Cohen 
et al., 1999; Dweck, 1999; Canning et al., 2019). We hypothe-
sized that this approach to learning college-level math might 
reduce performance gaps between students historically under-
served and underrepresented in life sciences fields.

Table 6 shows unweighted mean and median grades for stu-
dent subgroups in Math 3A and LS30A. In line with persistent 
disparities throughout STEM education, there are apparent dif-
ferences in average grades among students in both math courses 
with respect to students’ sex, race/ethnicity, SES, and first-gen-
eration status. For the latter three student characteristics, non-
parametric tests confirm that the difference in the overall Math 
3A grade distributions between the two subgroups is statisti-
cally significant (p < 0.001) and corresponds to medium effect 
sizes as measured by Pearson correlation coefficients (r), with a 
range of −0.19 to −0.26. In other words, students who identi-
fied as a member of a racial/ethnic group underrepresented in 

STEM, as lower SES, or as a first-generation college student 
were less likely to earn higher grades in Math 3A than their 
counterparts in the same course. We did not observe a statisti-
cally significant or practical difference by sex in Math 3A. The 
differences in LS30A grade distributions between subgroups 
with respect to all four social identity characteristics did not 
meet our threshold for statistical significance (α = 0.01). That 
said, the practical differences between median grades by sub-
group in LS30A (0.3 to 0.7) are comparable to what we 
observed in Math 3A (0.3 to 0.7), except for sex, yet the corre-
sponding effect sizes are negligible to small for LS30A (effect 
size −0.04 to −0.12). We attribute the lack of detectable signifi-
cant differences in median grades to the smaller sample size (N) 
for LS30A compared with Math 3A (Gelman and Stern, 2006). 
Nonetheless, these findings support our hypothesis in showing 
that the grade gaps between students who identified as a mem-
ber of a racial/ethnic group underrepresented in STEM, as 
lower SES, or as a first-generation college student are practi-
cally smaller, as approximated by effect size, in LS30A as com-
pared with Math 3A (see Table 6). There is some indication, 
however, that a performance gap exists for women and low-
er-income students in LS30A, suggesting additional improve-
ments to the instructional approach are merited.

Gains in Student Interest in Contextualized Math Courses
Our analysis of grade data for science courses provides direct 
evidence of the cognitive benefits of the contextualized math 
curriculum (see Tables 3 and 4). Confirmation of a reduced 
grade gap in LS30A compared with Math 3A with respect to 
student social identity groupings (see Table 6) suggests there are 

likely noncognitive factors affecting class-
room climate that positively impact stu-
dent success in the contextualized math 
curriculum. We also were interested in 
examining how this transformational 
approach to teaching college-level math 
influences students’ interest in the subject 
matter—that is, learning math in the con-
text of biology. We predicted a positive shift 
in subject matter interest if we were suc-
cessful in establishing the relevance of 
math to life sciences majors.

With access to SRI data across all 4 
years of the study for both LS30A and 
LS30B, we analyzed the response frequen-
cies for survey items that asked students to 

FIGURE 1.  Grade distributions for math courses completed between 2013 Fall and 2017 
Spring. Nonparametric Mann-Whitney U-tests confirmed a statistically significant 
difference in the distributions (medians) of math course grades.

TABLE 5.  Descriptive statistics of unweighted mean and median grades in math courses for the sample population (N = 909) disaggregated 
by the first math class completed between 2013 Fall and 2017 Spring

Parametrica Nonparametricb

N Mean SD Cohen’s d Significant difference Median r Significant difference

Course 0.24 *** 0.14 ***
  Math 3A 615 3.25 0.69 3.30
  LS30A 294 3.41 0.72 3.85

aFor parametric statistics, t tests were used to compare mean grades, and Cohen’s d coefficients were calculated as measure of effect size (small effect 0.2, medium effect 
0.5, and large effect 0.8).
bFor nonparametric statistics, the Mann-Whitney U-test was used to compare grade distributions, and Pearson correlation coefficients (r) were calculated as a measure 
of effect size (small effect 0.1–0.3, medium effect 0.3–0.5, large effect >0.5).
***p < 0.001.
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Laursen et  al., 2011; PCAST, 2012). The 
new contextualized math curriculum was 
designed to provide students with opportu-
nities to learn and practice quantitative and 
computational skills relevant to contempo-
rary STEM careers and research in life sci-
ences (Marshall and Durán, 2018). Nota-
bly, our study was further motivated as a 
means to promote buy-in from colleagues 
in chemistry and physics departments, 
assuaging their concerns about the new 
contextualized math curriculum and its 
efficacy in preparing students for their 
respective service courses. These apprehen-
sions prompted us to track student grade 
outcomes not only in a life sciences course, 
but also in chemistry and physics courses 
required of life sciences majors.

The findings from our research study 
demonstrate that students who completed 

the contextualized math curriculum earned significantly higher 
grades in their science courses Chemistry 14A, Life Science 2, 
and Physics 6A (see Tables 3 and 4) compared with their peers 
who took traditional calculus for biology (Math 3A) as their first 
math course. Importantly, we are able to minimize course per-
formance differences in their science courses attributable to dis-
similarities in student characteristics or academic preparation by 
applying propensity score weighting to our sample population 
(see Table 2). This strategy is designed to address potential 
selection bias among enrolled students by accounting for differ-
ences in academic background characteristics (SAT scores, high 
school GPA, AP scores) and demography (sex, race/ethnicity, 
SES, first-generation status). The improvement in student per-
formance as ascertained by grade data is consistent with our 
initial hypothesis for Life Science 2 and Physics 6A, where over-
lap with the new math courses in conceptual applications and 
skills was anticipated. That we also saw grade improvements in 
Chemistry 14A, where content connections were less obvious, 
lends support to the idea that the contextualized math courses 
might confer benefits beyond content knowledge. Aspects of the 
course structure and pedagogy may instill strategies in students 
that make them better learners. For example, with growth mind-
set being emphasized consistently by instructors (Dweck, 1999), 
we might speculate that LS30A students become more resilient 
in their reaction to setbacks (Master, 2015) and thus are better 
positioned to persevere through difficult material or science 
courses with a chilly or hostile classroom climate (Cabrera et al., 
1999; Yosso et al., 2009; Jensen and Deemer, 2019).

Study findings also show that students earned higher grades 
in LS30A than their counterparts in Math 3A (see Table 5 and 
Figure 1). The dissimilarity in instructors’ grading practices (see 
Table 1), however, is a confounding factor affecting our math 
grade comparison.

Instead, we turned out attention to ascertaining potential 
impacts of the contextualized math curriculum on historically 
persistent performance gaps in math grade outcomes, specifi-
cally with respect to sex, race/ethnicity, SES, and first-genera-
tion status. As shown in Table 6, the grade gaps for LS30A stu-
dents, as assessed by effect size, in three of four subgroup 
comparisons are reduced relative to their Math 3A counterparts, 

retrospectively report their levels of interest in the subject mat-
ter at the beginning of the term and at the end of the term. We 
then looked for patterns corresponding to changes in student 
interest over time (see histograms in Figure 2). We used these 
particular survey items as a proxy for student attitudes about 
math in a biology context and motivation to persist in course 
work critical to the quantitative preparation of life sciences 
majors.

Overall, z-tests of the SRI data reveal that students had a 
statistically significant positive shift in their level of interest 
over the duration of each course as shown in Figure 2 for both 
LS30A (p < 0.01) and LS30B (p < 0.001). Before the course, 
fewer than 20% of students in LS30A (16.5%) and LS30B 
(19.3%) reported high levels of interest in the subject matter. 
However, after the course, nearly 40% of students in LS30A 
(37.1%) and LS30B (44.0%) reported high levels of interest. 
Moreover, fewer students expressed low levels of interest in the 
subject matter by the end of each course (13.8% for LS30A, 
7.9% for LS30B) as compared with the start of each course 
(27.7% for LS30A, 23.9% for LS30B). Altogether, the SRI data 
suggest that this innovative instructional approach to teaching 
college-level math is improving student attitudes and motivat-
ing their sustained engagement in introductory math courses, 
which historically have been a barrier to equitable attainment 
of STEM degrees in life sciences. As noted earlier, there were no 
comparable SRI data available to us for Math 3A. However, 
these results do contrast prior survey results in which life sci-
ences majors reported low levels of satisfaction with the Math 3 
series (B.V.V., 2013, unpublished data).

DISCUSSION
The overarching goal of this study was to conduct a broad, 
course-level comparison of outcomes for students who com-
pleted either LS30A or Math 3A as their first math course at a 
large, public research institution. The study was propelled by 
interest in the cognitive and noncognitive benefits that a trans-
formative math curriculum might afford first-year life sciences 
students, who frequently see calculus courses as unwelcoming 
and irrelevant obstacles en route to their undergraduate degrees 
in biological sciences (Bialek and Botstein, 2004; Steen, 2005; 

FIGURE 2.  Changes in students’ interests in LS30A (A) and LS30B (B) over the duration of 
each course. Response options were assigned numeric values on a 3-point scale: 1) low 
level of interest, 2) medium level of interest, and 3) high level of interest. Histograms 
reflect student responses comparing two relative time points: before and after each 
course. The z-tests confirmed a statistically significant positive shift in students’ level of 
interest for each course.
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suggesting LS30A may indeed be creating a more inclusive 
learning environment for minoritized and first-generation col-
lege students (Dewsbury and Brame, 2019).

During the time frame of the study, LS30A grades were 
determined using criterion-based assessment practices, whereas 
Math 3A grades mostly were assigned using norm-referenced 
grading strategies such as grading on a curve (Schinske and 
Tanner, 2014). Research shows that grading practices can have 
an impact on classroom climate, in that criterion-based assess-
ment tends to foster a collaborative learning environment and 
norm-referenced strategies typically promote a competitive 
learning environment (Hughes et al., 2014), the latter of which 
can differentially and negatively impact minoritized students 
(Covington, 1992). By using inclusive grading practices (i.e., 
criterion-based assessment), in combination with actively 
endorsing a growth mindset among students, we posit that 
LS30A instructors are creating a supportive, positive classroom 
climate that promotes students’ sense of belonging (Walton and 
Cohen, 2007), leading to improved academic achievement 
(Dewsbury and Brame, 2019). In addition, starting in 2015, a 
fraction of LS30A students (6.1%) began participating in a 
cohort-based undergraduate STEM student retention program 
that recruits science students who identify as members of 
racial/ethnic groups underrepresented in STEM, low-income 
students, and students who enter the institution with challeng-
ing life circumstances (Toven-Lindsey et al., 2015). This cocur-
ricular program was discontinued for Math 3A students during 
the study time frame. Being part of this learning community 
undoubtedly enriched the learning environment experienced 
by many minoritized life sciences majors in LS30A but was not 
sufficient to eliminate the performance gap for all subgroups 
(see Table 6). Future studies of the performance gap in the con-
textualized math curriculum could help to unpack the differen-
tial impacts of the various contributing factors on classroom 
climate.

Altogether, our new approach to teaching college-level math 
strengthens the academic preparation of all life sciences majors, 
including those students historically underserved and under-
represented in STEM. The cognitive gains made by LS30A stu-
dents are complemented by gains in at least one noncognitive 
measure, students’ interest in the subject matter (see Figure 2). 
Based on responses to two items on the end-of-term SRIs for 
both LS30A and LS30B, our study showed a statistically signifi-
cant positive shift in students’ subject matter interest upon com-
pletion of each course. These results are consistent with previ-
ous studies that showed improvements in students’ attitudes 
toward math when it was taught within a biology context (Duf-
fus and Olifer, 2010; Usher et al., 2010; Eaton and Highlander, 
2017; Aikens et al., 2021). Furthermore, given prior evidence 
that increased subject matter interest can be a predictor of aca-
demic achievement (Schiefele et al., 1992), these noncognitive 
outcomes support and reinforce the cognitive gains, particularly 
with respect to science course grades, revealed in this study. 
Finally, these results contrast with previous surveys of life sci-
ences students who reported low levels of satisfaction with the 
traditional calculus for biology curriculum (B.V.V., 2013, unpub-
lished data). This finding suggests teaching calculus using biol-
ogy examples may not be sufficient for inspiring life sciences 
students’ interest in math, its applications to quantitative sci-
ence disciplines, and its relevance to the biology major. We con-

clude that increasing student interest in the contextualized 
math curriculum is likely a combination of the manner by which 
the mathematical concepts and skills are taught (i.e., focusing 
on mathematical modeling, integrating key calculus concepts as 
needed to support biological applications, and emphasizing 
conceptual understanding and computational applications rele-
vant to understanding living systems), the structure (e.g., lower 
student to TA ratio, LA-supported secondary sections, computa-
tional lab), and instructional approaches that support an inclu-
sive classroom climate (e.g., criterion-based assessment prac-
tices, emphasis on a growth mindset).

Implications of the Research Findings
Demonstrating that students in the contextualized math curric-
ulum fared better in subsequent chemistry and physics courses 
led to a positive sea change in the attitude about the contextu-
alized math curriculum and increased the confidence of our 
colleagues in the chemistry and physics departments, as evi-
denced by their support of a college senate curriculum commit-
tee proposal to credit the units earned from LS30A and LS30B 
completion toward the quantitative requirements of life sci-
ences majors. Our research-driven approach to curricular 
change not only helped to solidify a formal agreement to mod-
ify the major requirements, but it also motivated the subsequent 
investment of chemistry and physics faculty in curricular change 
in their service courses for life sciences students. For example, 
the physics department initiated a major reform of the Physics 
6 curriculum taken by life sciences students, replacing it in 
2017 with a new curriculum that approaches the content and 
pedagogy in ways that better align with the interests and learn-
ing goals of the life sciences students it serves. Similarly, in 
2019 the chemistry department began reviewing and revising 
the content, structure, and pedagogy of chemistry courses for 
life sciences students to enhance their success. Thus, in addition 
to documenting the positive student outcomes resulting from 
the implementation of the novel math curriculum, our research 
drove changes in teaching culture across the sciences.

An important goal in our continuing efforts to improve the 
quantitative skills of life sciences students is to ensure that the 
mathematical concepts learned in these contextualized math 
courses become an integrated component of the entire curricu-
lum of a biology major. In other words, a companion approach 
to teaching math in the context of biology is to then teach biol-
ogy in ways that apply the quantitative concepts and skills that 
students learn in their math courses (Usher et al., 2010; Feser 
et al., 2013). Such an approach might include using the same 
biological examples in both the math and life sciences courses 
to give students a more cohesive and consistent framework for 
applying and deepening their knowledge. This approach has 
been implemented successfully in biology courses with physics 
topics (Geller et al., 2018) in which students’ interest in physics 
was enhanced when covering a topic relevant to what they were 
learning in biology.

Other approaches might include using supplementary inter-
active Web modules to introduce quantitative exercises into 
biology courses (Thompson et  al., 2010) or using textbooks 
interwoven with examples that integrate math into biology con-
cepts (Campbell et  al., 2020). A committee of life sciences 
instructors was recently established to explore this latter 
approach, integrating math examples from the LS30A/B series 
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into the new introductory biology courses. Yet another strategy 
might involve creating course-based research opportunities for 
students to expand their skills in modeling and coding by inves-
tigating complex, real-world problems relevant to the chal-
lenges faced by 21st-century biologists (NRC, 2009). We 
hypothesize that such a strategy might be an effective way to 
motivate or sustain biology students’ interest in computer pro-
gramming following its introduction in first-year math courses 
(Matthews et al., 2010).

Research Study Limitations and Future Research
It is important to consider the findings from our research in the 
context of several limitations. First, in generating the sample 
population from registrar data, we selected students who con-
formed to the most common course-taking patterns. We did not 
examine the basis of the decision-making process that led oth-
ers to complete their course work according to a less common 
sequencing pattern. Likely reasons might include scheduling 
conflicts or counseling during their first-year orientation by a 
student advisor with less experience or less knowledge of the 
courses or typical patterns of enrollment. Our sampling strategy 
aimed to minimize confounding factors that manifest in or 
affect course-taking patterns; however, we recognize that we 
may have inadvertently missed issues influencing the success or 
failure of those students who complete their math and science 
course work according to less common sequencing patterns. 
Future research examining student outcomes in the contextual-
ized math courses should consider these smaller student popu-
lations separate from the majority group to identify potential 
advantages or disadvantages associated with less common 
course-taking patterns. This information could prove useful, for 
instance, in devising a more personalized, data-informed advis-
ing strategy for all students.

Observational data using the Classroom Observation Proto-
col for Undergraduate STEM (Smith et al., 2013) indicate that 
LS30A instructors relied on lecture and real-time writing (“chalk 
talk”) as the primary instructional mode during the study 
period (M.K.E., unpublished data). Thus, there is still room to 
improve the pedagogy and classroom climate in the contextual-
ized math courses, such as by integrating more active learning 
and inclusive teaching during lectures (Dasgupta and Asgari, 
2004; Walton et al., 2015; Theobald et al., 2020). Such efforts 
could help to actualize closure of enduring performance gaps 
for women and lower-income students in the contextualized 
math courses (see Table 6). Future research should continue to 
include classroom observation data to inform pedagogical 
improvements in real time. This, in addition to instructor inter-
view data, course syllabi, and student feedback, could be com-
bined to support instructor groupings by various pedagogical 
criteria (e.g., Stains et al., 2018) to parse out math section–level 
differences and other nuances specific to the student experi-
ence, none of which was possible in a study designed to mea-
sure broader course-level differences. By extension, our statisti-
cal analyses could be expanded to include multilevel analyses 
and to explore possible interaction effects of variables in our 
main effects models, which could lend insight into math sec-
tion–level or instructor-level differences. Both are important to 
consider in future studies of LS30A and LS30B.

In our study, we did not investigate attrition data or DF 
grade frequencies for the math courses, because our outcome 

variables were the subsequent science course grades, which 
required students to complete their first math course with a 
passing grade. No-pass rates, in particular, are a substantive 
area of inquiry in ongoing LS30A/B curricular development 
efforts, in part, due to their negative impact on STEM per-
sistence and/or time to degree (Stewart et al., 2015; Yue and 
Fu, 2017). Toward the goal of providing a more individualized 
learning path for less-prepared students, we are integrating 
supplemental online learning modules designed to eliminate 
blind spots that impede a novice student’s understanding of 
math concepts (Lee et al., 2018). This approach has been shown 
to increase student engagement, boost exam scores without 
compromising rigor, and reduce course attrition rates, particu-
larly for women, in a bioinformatics course. A resulting fol-
low-up study should reveal whether or not such an intervention 
is sufficient to close the achievement gap that persists for 
women in the contextualized math curriculum, reduce the fre-
quency of DF grades in these courses, and improve the learning 
of all students.

One final limitation involves consideration of the SRI data 
and other sources of self-report data. Ideally, we would have 
compared the shift in subject matter interest in the contextual-
ized math courses, LS30A and LS30B, to that observed for our 
traditional calculus for biology courses, Math 3A, 3B, and 3C. 
However, per institutional policy, access to SRI data requires 
instructor permission, and we were only given permission by 
the LS30A and LS30B instructors. Nevertheless, the SRI data we 
did obtain covered the same time frame as the institutional data 
used to measure cognitive gains and thus told a parallel story 
about the noncognitive gains made by the same student popula-
tion. However, because the SRI data are anonymous, we were 
unable to link student responses to registrar data, thereby ham-
pering further studies. For example, we could not explore 
whether increased interest in the subject matter among LS30A 
students was directly correlated with improvements in individ-
ual student achievement as predicted by previous studies 
(Schiefele et al., 1992). In addition, these SRI data come from a 
homegrown, unpublished instrument that has not undergone 
validity testing (see Supplemental Figure S1), so future studies 
that assess student interest and other noncognitive measures 
would be strengthened by using a validated survey instrument.

As part of a formative evaluation of the new math courses, 
postcourse surveys were administered to students at the end of 
LS30A and again at the end of LS30B with items monitoring 
additional noncognitive measures, such as students’ confidence 
in their science and math ability, relevance of course material to 
students’ respective majors and career goals and its real-life 
applications, and factors affecting classroom climate and moti-
vation to persist in the life sciences curriculum (see Supplemen-
tal Table S2). The overall response rate for these surveys was 
low (11.5%); they were administered to students only through 
2016, and, consequently, the survey instrument never under-
went validity testing. Despite these drawbacks, our provisional 
survey results align with and provide additional support for the 
findings from the SRI data analysis in suggesting that this trans-
formative approach to teaching college-level math is positively 
changing student attitudes as well as increasing student motiva-
tion to persist in their math and science course work. Future 
research could entail relaunching survey efforts with incentives 
to improve response rates as well as administering them to a 
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comparison group such as Math 3A students, which would 
allow for both validity and reliability testing. Since the time of 
the original survey administration, at least two validated assess-
ment instruments relevant to our study have been published 
that could provide additional insight into student outcomes in 
the contextualized math courses. Stanhope and colleagues 
designed an exam called BioSQuaRE that measures undergrad-
uate students’ quantitative reasoning skills within a biological 
context (Stanhope et al., 2017), and Andrews and colleagues 
developed the Math-Biology Values Instrument, which mea-
sures life sciences majors’ interest in using math to understand 
biology as well as the perceived utility of math in a life sciences 
career (Andrews et al., 2017).

Concluding Remarks
The transformation of the introductory math curriculum for life 
sciences students was implemented in the face of significant 
pushback from STEM departments responsible for teaching ser-
vice courses taken by life sciences majors in chemistry, physics, 
and math. A comprehensive research study of student outcomes 
was critical to obtaining unanimous vote approval of the con-
textualized math courses, LS30A and LS30B, by the institu-
tion’s curriculum oversight committee in the senate. Thus, this 
endeavor is not only a research study for maximizing student 
learning in gateway courses critical to the persistence of life 
sciences students, but it also serves as a case study for overcom-
ing cultural barriers in large, public, research-intensive institu-
tions. Rigorous student assessment played an indispensable 
role in leveraging the success of an educational intervention to 
foster positive changes in how the vast majority of life sciences 
students at our institution are now engaged in learning math. 
Our findings clearly demonstrate that the innovative approach 
taken to teaching college-level math has had a positive impact 
on student learning in subsequent science courses and on nar-
rowing performance gaps in math. It also has helped to inspire 
the interests of life sciences students in quantitative biology.
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