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While the coronavirus disease 19 (COVID-19) pandemic has transformed the medi-
cal and scientific communites since it was first reported in late 2019, we are only
beginning to understand the chronic health burdens associated with this disease.
Although COVID-19 is a multi-systemic disease, the lungs are the primary source of
infection and injury, resulting in pneumonia and, in severe cases, acute respiratory
distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized
sequela of ARDS, many have questioned whether COVID-19 survivors will face
long-term pulmonary consequences. This review is aimed at integrating our under-
standing of the pathophysiologic mechanisms underlying fibroproliferative ARDS
with our current knowledge of the pulmonary consequences of COVID-19 disease.
(Translational Research 2022; 241:13�24)
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INTRODUCTION

The coronavirus disease 19 (COVID-19) pandemic has

reshaped numerous aspects of the medical and scientific

communities in an unprecedentedly brief period of time. A

surge in research has quickly created a greatly expanded

understanding of the epidemiologic characteristics and

acute clinical manifestations caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2)

infection1,2; however, the chronic consequences of this dis-

ease are only now beginning to emerge.3-5 Although

COVID-19 is a multi-systemic disease,6-12 the lungs are

the primary source of infection and injury, resulting in
pneumonia and, in severe cases, acute respiratory distress

syndrome (ARDS).

Given that pulmonary fibrosis is a well-recognized

sequela of ARDS,13-17 since nearly the onset of the

pandemic concerns have been raised regarding the pos-

sible chronic pulmonary consequences of SARS-CoV-

2 infection.18-21 While long-term pulmonary complica-

tions for ARDS have been dramatically reduced with

vastly improved disease management including the

advent of lung-protective ventilation strategies,13,22 the

sheer magnitude of patients affected by COVID-19-

related ARDS has only amplified these concerns. There

is growing evidence that a substantial portion of

COVID-19 survivors continue to have persistent physi-

ologic impairments with accompanying radiologic

findings months after recovery,23-31 which parallels

established outcomes from the severe acute respiratory

syndrome (SARS),32 Middle East respiratory syndrome

(MERS),33 and influenza A outbreaks.34 Moreover, for

some of the most vulnerable populations to COVID-

19, including those with pre-existing lung disease and

the elderly, even a small degree of pulmonary effects

from COVID-19 could have devasting consequences

for quality of life in these populations.

In this review, we discuss ARDS in the setting of

COVID-19, and summarize our current understanding
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of pulmonary fibrosis resultant from ARDS. Further-

more, we discuss the mechanisms driving the fibrotic

phase of ARDS in the context of our understanding of

progressive fibrosing lung diseases such as idiopathic

pulmonary fibrosis (IPF). Finally, we examine the

emerging evidence of chronic pulmonary consequences

of severe COVID-19 and speculate on the management

of post-ARDS COVID-19 patients.
ARDS AND COVID-19

While clinical definitions of ARDS have evolved

over time since its initial description in the 1960s,35 the

2012 Berlin criteria center the definition of ARDS as

new or worsening respiratory failure with hypoxemia

and alveolar infiltrates in the setting of critical illness

and the absence of heart failure as a sole cause.36 At

the microscopic level this correlates with the histologic

pattern referred to as diffuse alveolar damage (DAD)

which comprises a constellation of findings including

alveolar edema, hyaline membrane formation, and

inflammatory infiltrates in the acute phase.37-39 ARDS

is the most frequent complication of severe COVID-19

disease and is highly prevalent among fatal cases. A

substantial proportion of individuals hospitalized for

COVID-19 progress to ARDS, up to 40% in some

cohorts, and development of ARDS remains one of the

highest predictors of mortality in COVD-19.2,40,41

ARDS caused by COVID-19 as compated to non-

COVID-19 etiolgies has been demonstrated to share

similar features, including respiratory mechanics.42-44

the estimated number of COVID-19 cases surpassing

180 million worldwide by mid-year 2021 and the pro-

portion of most severe COVID-19 cases of approxi-

mately 5%, this will equate to millions of survivors of

ARDS due to SARS-CoV-2.

The mortality of ARDS has been reduced by the

introduction of standardized management, including

conservative fluid management45 and lung-protective

ventilation,22 though there remains a subset of ARDS

survivors who experience persistent pulmonary and

extra-pulmonary consequences for years after recov-

ery.46-49 Identified risk factors for increased severity of

these long-term consequences include increasing age,

the severity of the acute illness, duration of mechanical

ventilation, and pulmonary-specific causes of ARDS.45

Substantial concern for long-term pulmonary

sequelae of SARS-CoV-2 infection has emerged from

our previous experience with coronaviruses, namely

the 2003 SARS and 2012 MERS outbreaks. The fre-

quency of ARDS among SARS patients was compara-

ble to the rate seen among cohorts of hospitalized

patients with COVID-19.32,50,51 At 6-month follow-up
after hospitalization for SARS infection, the frequency

of pulmonary function deficits and radiologic abnor-

malities, including evidence of fibrosis like parenchy-

mal banding and traction bronchiectasis, directly

correlated with initial disease severity. Furthermore,

subsets of SARS survivors followed for up to 2 years

had persistent changes in pulmonary function.50 Simi-

lar observations have been seen in MERS patients in

which increased age and critical illness are correlated

with increased restrictive lung deficits and radiologic

abnormalities indicative of fibrosis.33 Survivors of the

pandemic 2009 H1N1 strain of the influenza A virus

also experienced significant rates of post-ARDS fibro-

sis which persisted through at least 6 months after hos-

pitalization.34 While these data offer insight into the

incidence of pulmonary sequela in viral ARDS survi-

vors, they are limited in their exploration of the natural

history of these findings including whether they

remained persistent beyond the follow-up timeframe.

However, taken together these data outline the conse-

quences from other viral causes of ARDS and under-

line the importance for understanding ARDS-induced

pulmonary fibrosis in the era of COVID-19.
PATHOGENESIS OF ARDS-INDUCED FIBROSIS

ARDS has been recognized as a clinical entity since its

first description over 50 years ago, and our understanding

of ARDS pathogenesis has continuously changed and

remains an actively evolving area of investigation.52-54

Traditionally, ARDS has been thought of as a series of

sequential pathobiologic phases which are believed to

encompass the scope of the response of the distal airspace

to an injurious insult. The exudative phase of ARDS is the

initial response to acute lung injury causing disruption of

the alveolar epithelial-endothelial barrier in which edema-

tous flooding of the alveolar and interstitial compartments

occurs. Secondarily, the proliferative phase ensues in an

attempt to repair injury through re-establishment of the

alveolar barrier with clearance of exudative fluid. While

there have been remarkable advances in revealing the com-

plex mechanisms underlying these initial phases of ARDS,

the third, fibrotic phase has continued to remain poorly

understood.13

The degree of fibroproliferation in ARDS has been

intimately linked with poor prognosis, including

increased mortality and ventilator dependence.13 Still,

it remains unclear why most patients with ARDS are

able to recover from the initially inflammatory process

while a subset undergoes an excessive fibrotic response

that can persist radiographically for months to years

after ultimate recovery and is correlated with loss of

quality of life and pulmonary dysfunction.49
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As our understanding of the drivers of excessive

fibroproliferation in severe ARDS continues to

advance, our overall understanding of the underpin-

nings of lung fibrosis has exponentially grown, particu-

larly in the context of progressive fibrosing diseases

like idiopathic pulmonary fibrosis (IPF).55-59 Further-

more, decades of research have demonstrated that

while there are undoubtedly differences between sub-

types of pulmonary fibrosis, such as that seen following

ARDS and in chronic diseases like IPF, the founda-

tional mechanisms of pulmonary fibrosis are often

shared. In fact, the most commonly used animal models

of pulmonary fibrosis, including the bleomycin model,

utilize acute lung injuries in a similar manner to which

we conceptualize fibroproliferative disease in ARDS.

Thus, while IPF and fibroproliferative ARDS are dis-

tinct entities, the underlying pathobiology of these dis-

eases almost certainly share similarities. Here we

discuss the overall pathophysiologic mechanisms

linked to pulmonary fibrosis and their potential impli-

cations in ARDS-associated fibrosis, and more specifi-

cally that caused by SARS-CoV-2 lower respiratory

tract infection.

Epithelial injury. The most widely accepted hypothesis

for pulmonary fibrosis pathogenesis begins with epithe-

lial cell injury which subsequently triggers a fibroproli-

ferative cascade.56,57-59 The alveolar epithelium is

comprised of 2 distinct cells: Type I and type II alveo-

lar epithelial cells (AECs).60 Type I AECs form the

vast majority of the surface area of the alveolus, form-

ing the air-blood interface with the underlying intersti-

tum and capillary system. Type II AECs are considered

the stem cell of the distal lung and are responsible for

surfactant production and re-epithelization of the bron-

choalveolar epithelium after injury.61

In ARDS, the initial insulting injury results in loss of

epithelial barrier function through destruction of the rela-

tively fragile alveolar-endothelial interface. In extra-pul-

monary causes of ARDS, this epithelial injury is likely

caused by inflammation and oxygen toxicity that can

induce alveolar cell death, loss of negatively-charged gly-

cocalyx, and accumulation of protein-rich alveolar

edema.62 In pulmonary-specific causes of ARDS, like

lower respiratory tract infections by viruses and bacteria,

pathogens can have multiple effects on alveolar epithelial

cells leading to both direct and indirect cytotoxicity. In the

case of SARS-CoV-2, the virus itself has been shown to

have the highest infectivity in type II alveolar cells due to

their specific expression of the ACE2 receptor,63-65 which

follows a decreasing expression gradient down the respira-

tory tract from nasopharynx to alveoli. This direct viral-

mediated cell death of the stem cell population impairs

bronchoalveolar epithelial repair, surfactant production,

and almost certainly drives progression of severe COVID-
19 towards ARDS pathology. Furthermore crosstalk

between the alveolar epithelium and other lung cells

including fibroblasts and the endothelium, such as

increased expression of tissue factor,66 certainly drives

COVID-19-associated ARDS severity.

Depletion of the alveolar stem cell population and

activation of aberrant repair processes has long been

speculated to lead to pulmonary fibrosis in diseases

such as IPF.67,68 In animal models, modulating type II

AEC intracellular stresses by inducing aberrant mucin

expression,69 increasing endoplasmic reticulum

stress,70 and inducing local tissue hypoxia71,72 exacer-

bate the fibrotic response likely through impairment of

the normal repair process. Directed type II AEC cell

death through both programmed and non-programmed

means also increases experimental fibrosis.73,74 This

shared origin of epithelial injury between COVID-19-

related ARDS and diseases such as IPF likely repre-

sents a unifying aspect of pulmonary fibrosis. Given

the relatively high infectivity of the SARS-CoV-2 virus

towards type II AECs, this may also explain why others

have described COVID-19-related ARDS as distinct

from other types of ARDS, given its apparent severity.

Furthermore, given the connection between the degree

of epithelial injury and subsequent fibrosis, these asso-

ciations could be indicative of a more severe manifes-

tation of post-ARDS fibrosis than that seen in other

virally-mediated etiologies.

Although pulmonary fibrosis pathobiology has been

focused on interactions within the alveolus, there is a grow-

ing understanding of the role of the distal airway

epithelium.55,75,76 The distal airway is known to be essen-

tial to alveolar repair after severe injury and it is hypothe-

sized that dysregulation of this repair pathway may be

related to distal airspace remodeling, including bronchioli-

zation and honeycombing, seen in pulmonary fibrosis.55,77

Even though ARDS has also been thought of as a disease

of the alveolar-capillary interface, SARS-CoV-2 is capable

of infecting both alveolar and airway epithelial cells,63,64

and the pro-inflammatory signature produced by distal air-

way infection has been linked to COVID-19 disease sever-

ity and ARDS.78 Given that intra-airway inflammatory

signatures are known to induce pulmonary fibrosis, it

remains to be seen whether infection of the distal airway

epithelium correlates with post-inflammatory fibrosis.

Endothelial injury. In addition to epithelial injury, dis-

ruption of the endothelium lining the air-blood barrier

is recognized as a provoking insult that can initiate

ARDS pathogenesis.79,80 The subsequent pulmonary

edema has been demonstrated to be involved in initiat-

ing repair pathways that may become altered and push-

ing the lung towards excessive fibroproliferation.81

Given the substantial effects that SARS-CoV-2 infec-

tion has on the endothelium including pulmonary
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capillaries, including complement deposition and

microthrobosis,82 vascular damage is likely even more

severe in ARDS due to COVID-19 compared to other

causes.83,84

Vascular changes are also obvious within chronic

fibrosing lung diseases like IPF.85,86 Microvascular

leak and increased endothelial permeability are

observed within IPF lungs and have been linked to pul-

monary fibrosis pathogenesis. Alveolar edema is typi-

cally resolved after lung injury, but persistent vascular

leak is hypothesized to exacerbate the pro-fibrotic envi-

ronment within the distal lung and has been demon-

strated to increase fibrosis in animal models.87

Persistence of fluid within the airspace also distorts the

architecture of the alveolus imparting mechanical

forces which impair a return to homeostasis.

It is reasonable to extrapolate that severe ARDS in

which fluid remains persistent in the alveolus for

extended periods of time, likely well past the acute

phase of illness, can further exacerbate the fibroproli-

ferative cascade in an accelerated manner compared to

what is observed in slowly progressive lung diseases.

Cellular senescence. Accelerated aging and cellular

senescence have long been implicated in pulmonary fibro-

sis, and a variety of mechanisms have been associated

including both genetic and environmental factors.88,89 In

human tissue,88,90-92 animal models,88,92 and in vitro cul-

tures,93 markers of cellular senescence are increased in pul-

monary fibrosis, and this increase is conserved across

multiple cell types including epithelial cells and

fibroblasts.94,95 Additionally, genetic variants in at least 5

telomere related genes which functionally shorten telomere

length have been associated with increased risk of

IPF.96-103 Even without these telomere-shortening muta-

tions, IPF patients have telomeres that are shorter than age-

matched controls.103 Telomere shortening is intimately

linked to activation of cellular senescence, and it has been

speculated that this premature activation of cellular senes-

cence in IPF tissue may impair normal regenerative pro-

cesses and drive fibroproliferation. A recent study

examining COVID-19 patients at 4-month follow-up after

hospitalization found that age-adjusted telomere length

was independently associated with the presence of fibrotic-

appearing radiographic abnormalities.104 Recent studies

have also highlighted the persistence of transitional epithe-

lial cell types within the IPF lung and in pulmonary fibrosis

animal models that express typical features of cellular

senescence.105-107 Interestingly, these transitional cell types

are also enriched within COVID-19-injured lungs and may

contribute to the overall senescent and fibrotic pheno-

type.108 This is further evidence that the pathogenesis of

pulmonary fibrosis associated with chronic diseases like

IPF and acute illness like COVID-19-induced ARDS share

overlapping features.
Mechanical injury. The mechanical forces applied to the

alveolus are intrinsic to proper lung function and distortion

of these forces via overdistention of alveolar spaces can

lead to barotrauma and furthering of lung injury. Our

understanding of ventilator-induced lung injury (VILI),

particularly from ventilating the lungs at inappropriately

high volumes, is inherently tied to our understanding of

ARDS, as low volume ventilation strategies reduce mortal-

ity and have become the mainstay of management.109,110

Post-ARDS fibrosis also has an association with ventila-

tor use and VILI. Increased pulmonary deficits and radio-

logic findings after ARDS have been strongly correlated

with duration of mechanical ventilation.48 Additionally,

dramatic reduction in post-ARDS pulmonary effects has

been demonstrated with the near universal adoption of

lung protective ventilation strategies.22 This suggests that

ARDS-induced fibrosis can be exacerbated through appli-

cation of excessive mechanical forces to the alveolus. Early

reports on COVID-19-associated lung injury was atypical

of classical ARDS with COVID-19 patients having

markedly higher lung compliances than other ARDS

patients.111-113 However, as many have since reinforced,

ARDS itself is a heterogenous syndrome with multiple

subtypes that can be grouped in many ways whether it be

due to etiology, physiologic changes, or immunologic

responses.42-44,114-117 Several groups have associated lower

lung compliance with higher mortality,43,44,118 and it

remains possible that early increase in lung stiffness drives

further fibrotic lung remodeling. Given this widespread

uncertainity around management of COVID-19-related

ARDS in the early stages of the pandemic, less rigorous

use of lung-protective ventilation may be contributing to

worsened fibroproliferation.

There is compelling evidence that mechanical distor-

tion of alveolar spaces is involved in IPF pathogenesis as

well.119,120 Alveolar decruitment and collapse induration

have been implicated in animal models of pulmonary

fibrosis and observed in IPF lungs. Interestingly collapse

induration has been observed in patients with COVID-19

and is hypothesized to represent one of the initiating steps

in the subsequent fibroproliferative response.121-123

Mechanical stretching of alveolar spaces has also been

demonstrated to directly activate pro-fibrotic signaling

cascades and induced programmed cell death in type II

AECs and may account for the peripheral distribution of

fibrosis in IPF.124-126 Hypoxia resultant from the mechan-

ical distortion and collapse of alveolar spaces further

compounds this injury and exacerbates pro-fibrotic

responses.127,128 Thus, mechanical injury is inherent to

ARDS and pulmonary fibrosis and may link these 2 pro-

cesses whereby worsening mechanical distortion of the

pulmonary architecture seen in ARDS exacerbates these

positive feedback loops towards furthering fibrotic

remodeling.
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Extracellular matrix biology. The ultimate outcome of

the fibrotic cascade is the deposition of extracellular

matrix (ECM) which stiffens and distorts the pulmo-

nary architecture resulting in restrictive lung deficits.

While the ECM was traditionally thought of as an inert

substance that represented the end product of fibroblast

activation, it is now understood that interactions

between ECM and its surrounding cells have a complex

interplay in pulmonary fibrosis pathogenesis.129-133 In

particular, increases in lung stiffness have been shown

to direct cellular activation, differentiation, and migra-

tion to further exacerbate the pro-fibrotic environ-

ment.134-137 In severe cases of ARDS in which the

proliferative phase is more exaggerated, decreased

compliance of the parenchymal tissue may further acti-

vate the fibrotic response leading to the dramatic fibro-

sis that occurs in a subset of patients.

Interactions between cell adhesion molecules and under-

lying ECM has also been a productive area of investigation

in IPF biology. Integrins, which bind the basal surface of

cells to the ECM, have been sought as possible therapeutic

targets for their known secondary function in activating

latent transforming growth factor-b bound within the

ECM.138-140 The SARS-CoV-2 virus is able to bind integ-

rins via a conserved motif near its receptor binding

domain. Although the functional consequence of viral par-

ticles binding to membrane-bound integrins is not entirely

clear, it has been demonstrated to increase viral entry into

cells.141-144 One integrin in particular, avb6, appears to

have relatively high affinity for the SARS-CoV-2 virus

and has been directly implicated in IPF pathogenesis, again

suggesting a link between these seemingly distinct

processes.144

Genetic susceptibility. Understanding of pulmonary

fibrosis pathogenesis has been substantially enhanced with

the advent of population-based genome-wide association

studies which have identified genetic risk variants that

account for a significant portion of the total risk of IPF and

other fibrotic lung disease.145-147 A gain-of-function variant

in the promoter of the MUC5B gene, which encodes 1 of

the 2 major gel-forming mucins expressed in the airway

and the primary mucin expressed in the distal lung, is the

strongest risk factor for IPF.148-154 Increased expression of

MUC5B has been directly implicated in driving fibroprolif-

eration in mouse models of fibrosis and remains an active

topic of IPF-related research. This same gain-of-function

MUC5B promoter variant has been associated with

increased risk of development of ARDS in individuals age

>50 years, likely suggesting shared mechanisms between

these distinct disease processes.155

A recent study examined genetic risk variants for

IPF and their relationship to COVID-19 severity.156

When the MUC5B risk variant was excluded, the

remaining combined genetic risk factors were
significantly associated with increased risk of severe

COVID-19. However, when the MUC5B risk variant

was analyzed separately, it was found to have a

decreased association with severe COVID-19 in those

with established disease. Interestingly these results par-

allel findings in IPF157,158 in which the MUC5B variant

is associated with a paradoxical survival benefit for

individuals with IPF. The complex biology underlying

these findings remains under investigation though it

suggests that genetics almost certainly have a role in

understanding both COVID-19 severity and post-

COVID-19 fibrosis (Fig 1).
IMPLICATIONS FOR CHRONIC MANAGEMENT OF
COVID-19

Prospective data on the chronic pulmonary conse-

quences of COVID-19 are just beginning to emerge

from up to 1 year after the start of the pandemic. In a

series of patients who had recovered from severe

COVID-19 were followed for a year after hospitaliza-

tion, nearly 25% had persistent radiographic abnormal-

ities with features characteristic of fibrosis including

septal thickening, reticular opacities, and traction bron-

chiectasis.25 Perhaps most significantly, while these

radiologic changes correlated with illness severity,

these findings were in patients that were not ventilated

and therefore likely on the less severe end of the acute

lung injury spectrum. In other cohorts that have

included critically-ill patients requiring mechanical

ventilation, the proportion of individuals with radio-

logic findings indicative of fibrotic changes as well as

functional abnormalities was substantially higher with

increasing disease severity, reaching up to 50%�66%

of patients at 4 months.26 As described previously,

SARS and MERS survivors had similarly persistent

function and radiologic abnormalities at follow-

up.32,33,50 The preliminary data for COVID-19 suggests

that functional and radiologic impairment is at least

equivalent to if not more prevalent than in SARS and

MERS cohorts at similar follow-up time points, possi-

bly due to the fact that severely ill COVID-19 patients

infected early in the pandemic were older and more

medical comorbid than seen in previous

pandemics.159,160 Given the far greater clinical impact

of COVID-19 compared to previous pandemics, the

global health care system will inevitably be challenged

by patients with long-term pulmonary and extra-pul-

monary COVID-19 complications.

Apart from persistent radiologic changes and deficits

in pulmonary testing which persist for months to years

after the inciting ARDS incident, functional and

health-related quality of life impairments are highly

https://doi.org/10.1016/j.trsl.2021.09.001


Fig 1. Mechanisms of fibroproliferation in COVID-19-induced ARDS: SARS-CoV-2 infection can lead to acute

respiratory distress syndrome (ARDS) during which severe fibroproliferation can occur. The mechanisms by

which eventually lead to the deposition of extra-cellular matrix by fibroblasts include direct cytotoxity to the epi-

thelium and endothelium.
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prevalent amongst ARDS survivors. Up to two-thirds

of individuals recovering from severe COVID-19

report persistent pulmonary symptoms, most com-

monly dyspnea, several months after their acute illness

and have dramatically reduced functional capacity as

measured by the 6-minute walk test.25-30 These data

parallel our existing knowledge of impairments caused

by ARDS survivors from other coronaviruses.32 A sub-

stantial body of evidence has now accumulated directly

linking the severity of subjective impairments post-
COVID-19 with objective radiographic and physio-

logic pulmonary changes49; suggesting ARDS-induced

fibrosis could be a major contributor to pulmonary

morbidity in years to come. Additionally, it is not

entirely clear how established risk factors for increased

COVID-19 severity, including premorbid smoking161

and obesity,162,163 interplay with the risk for potential

lasting post-COVID pulmonary consequences.

Our best understanding of long-term pulmonary out-

come from viral-induced ARDS are extrapolated from

https://doi.org/10.1016/j.trsl.2021.09.001
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the SARS, MERS, and H1N1 pandemics. These differ-

ent viral etiologies of ARDS likely overlap; however,

the patient populations affected and studied in these 2

pandemics were drastically different than seen in

COVID-19: SARS in 2013 largely affected relatively

healthy health care workers, and H1N1 in 2009 most

dramatically affected younger individuals. The highest

risk groups for severe COVID-19 included groups rela-

tively underrepresented in these previous long-term

follow-up ARDS studies, including the very elderly

and patients with severe medical co-morbidities includ-

ing established chronic lung disease.164,165 Functional

impairments that may appear minor in relatively

healthier cohorts could have devastating consequences

in these groups that will be likely have the highest

degree of post-ARDS fibrotic burden. The treatment of

these patients, including interval pulmonary function

testing, need for supplemental oxygen, benefit from

pulmonary rehabilitation, and susceptibility to exacer-

bations remain unknown.

It remains unclear whether COVID-19-related

ARDS will result in progressive and irreversible lung

fibrosis, like IPF, where recovery is not possible.

Autopsy studies in individuals who succumbed to

COVID-19 and explanted lung from severe COVID-19

cases revealed lungs with classic features of progres-

sive fibrotic disease including traction bronchiectasis,

interstitial fibrosis, bronchial metaplasia, and radio-

graphic and microscopic honeycombing.108,166,167

More recent literature demonstrates a dramatic increase

in the number of fibroblasts and collagen deposition in

fatal COVID-19 cases.168 Case reports described histo-

pathologic evidence of DAD (the pathologic manifesta-

tion of ARDS) within these fatal cases, but there is yet

no evidence to suggest that individuals who entirely

recover from COVID-19 related ARDS will experience

progressive fibrosis. Rather, as was previously seen

with SARS and H1N1, ARDS-induced fibrotic changes

appear to stabilize after initial recovery and may

resolve over subsequent years. Nevertheless, the trajec-

tory of post-COVID-19 ARDS fibrosis is still uncer-

tain, and many patients may require considerable

clinical attention to rehabilitate.

As a final point, there has been much discussion

about the possible role for anti-fibrotic medications in

preventing or treating the potential for ARDS-induced

fibrosis, and currently there are multiple trials under-

way to investigate these therapies. Nintedanib169 and

pirfenidone170 are currently the only pharmaceutical

agents approved for treatment of IPF and have been

shown to slow decline in lung function. Given the like-

lihood that post-ARDS fibrosis will be relatively stable

with slow resolution over months to years after initial

COVID-19 disease, it seems reasonable that these
agents may expedite recovery in those most severe

cases. Both agents, however, have a significant side-

effect burden, including severe nausea, weight loss,

diarrhea, sun sensitivity, and liver failure. In regard to

preventing the initiating fibroproliferative cascade in

ARDS, it is important to account for the fact that fibro-

sis is tightly linked to the repair process and many of

the pathways that are implicated as “pro-fibrotic” are

necessary for physiologic lung maintenance. Therefore,

when targeting these pathways there is a necessary bal-

ance between allowing lung repair while dampening

the maladaptive processes that drive fibrosis.
CONCLUSIONS

It is apparent that further studies are necessary to better

understand the natural history of post-COVID-19 lung dis-

ease. As an increasing amount of radiologic evidence

begins to emerge, it is important to emphasize that pres-

ence of true fibrosis cannot be established solely from

“fibrosis-like” imaging. Findings in post-COVID-19 survi-

vors of reticular abnormalities, traction bronchiectasis, and

honeycomb cyst are consistent with established radio-

graphic patterns of fibrosis, like that seen in IPF, however

the natural history of the lesions remains unclear. Other

findings seen in these data sets such as persistent ground-

glass opacities, nodules, and consolidation are not tradi-

tionally seen in IPF and complicate the full interpretation

of these findings. Furthermore, while some long-term data

has emerged in the forms of imaging and pulmonary func-

tion, no histopathology of so-called long-haul COVID-19

survivors has been studied to help clarify these radio-

graphic abnormalities.

Beyond the conserved mechanisms underlying pul-

monary fibrosis discussed here, there is an expanding

understanding of the interplay between innate and

adaptive immunologic processes in IPF. These mecha-

nisms which may contribute to the fibrotic response in

COVID-19 are well-reviewed elsewhere.171-174

Fibrosis is best understood as a part of the spectrum of

adapative repair and attempts to intervene on this procre-

sses in the setting of post-COVID-19 syndromes could

subvert normal repair. At this time, there is no role for

anti-fibrotics in the treatment of acute or chronic COVID-

19 pulmonary disease. A recent cohort study described ste-

roid treatment for patients experiencing chronic respiratory

symptoms of COVID-19; patients reported improved

symptoms following therapy. Importantly, this was not a

rigorous study and it is unclear due to lack of a placebo

group whether these patients would have failed to improve

without steroids.175 Clearly further studies exploring means

of improving quality of life in COVID-19 survivors are

paramount.
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Ultimately, the best treatment for COVID-19 is pro-

phylactic vaccination. Studies continue to investigate

the progression of and interventions for the pulmonary

consequences of COVID-19 illness, and given the pace

of the pandemic to date there will likely be many

opportunities for further exploration in the future.
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