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Abstract: Breast cancer (BC) is the most common cancer and the leading cause of death in

women. Advances in early diagnosis and therapeutic strategies have decreased the mortality

of BC and improved the prognosis of patients to some extent. However, the development of

drug resistance has limited the success rate of systemic therapies. Long non-coding RNAs

(lncRNAs) are involved in drug resistance in BC via various mechanisms, which contribute

to a complex regulatory network. In this review, we summarize the latest findings on the

mechanisms underlying drug resistance modulated by lncRNAs in BC. In addition, we

discuss the potential clinical applications of lncRNAs as targeted molecular therapy against

drug resistance in BC.
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Introduction
Breast cancer (BC) is the second most commonly diagnosed malignant cancer and

the fifth most common cause of cancer-related death worldwide.1 Among

women, BC is the most common cancer (24.2% of the total cases) with the highest

mortality rate (15.0% of the total cancer deaths) worldwide.1 Advances in early

diagnosis and therapeutic strategies have decreased the BC death rate and improved

the prognosis of patients to some extent.2 However, recurrence and metastasis occur

in almost 35% of BC patients, and are generally associated with the development of

resistance to chemotherapy, endocrine therapy, and radiotherapy.3,4 The frequent

development of drug resistance in BC patients severely limits the efficacy of

therapy and affects the prognosis of BC patients. The mechanisms underlying

drug resistance are complex and some have been elucidated, such as drug efflux,

DNA damage, drug target modulation, apoptosis dysfunction, and increased pro-

liferation among others.5–8 Reversing drug resistance to overcome the adverse

effects and improve the efficacy of drug therapies in BC remains challenging

because of the complex mechanisms involved.

Advances in human genome sequencing technology have revealed that only 2% of

human genes encode proteins. Genes that are transcribed into RNAwithout the ability

to encode proteins are called non-coding RNAs (ncRNAs).9 Although ncRNAs were

considered “junk DNA” in past decades, emerging evidence indicates that ncRNAs

play important roles in epigenetics, transcription, post-transcriptional processes, and

translation.10 ncRNAs modulate cell growth, proliferation, apoptosis, metastasis,

epithelial–mesenchymal transition (EMT), and angiogenesis via a variety of mechan-

isms in many diseases including cancer.11–13
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Long non-coding RNAs (lncRNAs), which consist of

more than 200 nucleotides, are a common type of

ncRNA.14 LncRNAs are transcribed by RNA polymerase

Ⅱ, lack open reading frames, and are localized in both the

cell nucleus and cytoplasm.15 Dysregulated lncRNAs are

involved in drug resistance in numerous cancer cells and

tissues, such as hepatocellular carcinoma, gastric cancer,

colorectal cancer, and cervical cancer among others.16–19

In recent years, an increasing number of studies have

demonstrated the functional role of lncRNAs in drug

resistance in BC. LncRNAs sponge miRNAs as competing

endogenous RNAs (ceRNAs), induce resistance in sensi-

tive cells via exosomes, activate the EMT process, and

modulate cell apoptosis and the cell cycle directly, thereby

regulating the response of BC cells to chemotherapy,

endocrine therapy, and molecular targeted therapy.20,21

In this review, we summarize the characteristics of

lncRNAs associated with drug resistance in BC and

describe the potential underlying mechanisms briefly. The

purpose of studies is to identify therapeutic targets to

reverse drug resistance or improve the efficacy of BC

treatment.

Multidrug Resistance and Single
Drug Resistance
Drug resistance is classified into multidrug resistance

(MDR) and single drug resistance. MDR refers to the

resistance of cancer cells to a variety of anticancer drugs

with different structures and functions.22 An important

mechanism underlying MDR is the activity of drug efflux

pumps, which rely on energy-dependent transporters.

These transporters, which are located on the cell mem-

brane, are proteins that control the entry or exit of multiple

drugs from cells.23 These molecular pumps remove drugs

from cells and lead to MDR. The ATP-dependent binding

cassette (ABC) transporters are a family of molecules that

mediate drug efflux, and include ABCB1 (P-glycoprotein,

multidrug resistance 1/MDR1) and multidrug resistance

associated protein 1 (MRP1, ABCC1) among others.24

Another mechanism underlying MDR is the induction of

apoptosis and autophagy in cancer cells treated with anti-

cancer drugs.11 Many other mechanisms, including DNA

damage repair,27 resistance dissemination by exosomes,28

ceRNAs,29 and modification of cancer stem cells (CSCs)30

regulate drug resistance in BC.

In addition to lncRNAs involved in MDR, various

lncRNAs related to single anti-cancer drug resistance

have been identified. Those drugs, which are applicated

during chemotherapy, endocrine therapy and molecular

targeted therapy, include DOX/Adriamycin (ADR), 5-FU,

cisplatin (DDP/CDDP), paclitaxel (PTX), tamoxifen

(TAM), trastuzumab (TZB), epirubicin, and docetaxel

(DOC). LncRNAs related to MDR or single drug resis-

tance in BC contribute to a complex regulatory network of

drug resistance.

LncRNAs Involved in Multidrug
Resistance
In recent years, numerous studies have reported the rela-

tionship between lncRNAs andMDR in BC.Most lncRNAs

are upregulated in BC cells and tissues and promote MDR

by modulating cell apoptosis, inducing the EMT process,

and targeting classic signaling pathways (Table 1).

LncRNA NEAT1 is upregulated in cisR (cisplatin resis-

tance) and taxR (taxol resistance) MDA-MB-231 cells.29

Knockdown of NEAT1 downregulates drug transporter

genes, including ATP7A and ATP7B, and the stemness

marker SOX2 in BC cells, leading to the reversal of

CDDP and PTX resistance.29 NEAT1 also affects cell pro-

liferation and apoptosis by inhibiting the expression of

cyclin D1 and E1 and upregulating cleaved caspase-3.29

Another study reported that NEAT1 inhibits miR-211 and

upregulates its downstream target HMGA2, thereby indu-

cing the EMT process and 5-FU resistance in BC cells.30

LncRNA LINP1 promotes TAM, DOX, and 5-FU resis-

tance in BC cells by decreasing cell apoptosis.31,32 LINP1

inhibits caspase-8 and caspase-9 in DOX treated cells or

caspase-9 and Bax in 5-FU treated cells.31,32 The lncRNA

linc00518 is upregulated in MCF-7 cells.33 Linc00518 acts

as a sponge for miR-199a to inhibit MRP1 and reverse

MDR in BC cells, including resistance to ADR, vincristine

(VCR), and PTX.33 The lncRNA HOTAIR is upregulated

in BC cells, and silencing of HOTAIR promotes cell apop-

tosis by targeting caspase-3, Bcl-2, and Bax. It also

decreases the expression of the classic MDR resistance

proteins MDR1, MRP1, and ABCB1 to reduce DOX and

TZB resistance by inhibiting the PI3K/Akt/mTOR signal-

ing pathway.34,35 Another study reported that HOTAIR

activates ligand-independent estrogen receptor (ER) to pro-

mote TAM resistance.36 Some other lncRNAs, including

H19,37–44 CRALA,45 and UCA1,46–51 are also upregulated

in BC cells and tissues and promote MDR via different

mechanisms.
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Certain lncRNAs play opposite roles in drug resis-

tance in BC by sponging miRNAs or by regulating MDR

related proteins. LncRNA GAS5 is downregulated in BC

cells, and overexpression of GAS5 reverses the PTX

resistance of BC cells by inducing cell apoptosis through

the miR-378a-5p/SUFU signaling pathway.52 GAS5

deceases TAM resistance in MCF-7R cells by inhibiting

PTEN via sponging miR-222.53 Reduced GAS5 in BC

cells can also activate mTOR and suppress PTEN

to confer TZB resistance.54 Knockdown of lncRNA

BC032585 upregulates the expression of MDR1 to pro-

mote resistance to DOX and PTX in BC cells.55

Enhanced lncRNA LINC00968 inhibits the Wnt2/β-

catenin signaling pathway and the EMT process to

reverse MDR in BC cells, including resistance to ADR,

Taxol, and VCR.56

LncRNAs Involved in Single Drug
Resistance
LncRNAs in Chemotherapy Resistance
To prevent recurrence and metastasis of BC after surgery,

chemotherapy has been widely used in clinical treatment.

Chemotherapy increases the disease-free survival and

overall survival rates of postoperative BC patients.57

Chemotherapy drugs, including anthracycline family,

taxanes, and platinum drugs are used extensively for

treating BC. LncRNAs involved in chemotherapy resis-

tance are summarized in Table 2.

Doxorubicin/Adriamycin

As a member of the anthracycline family, DOX/ADR are

used as the first-line chemotherapy drugs for cancers

including BC. DOX/ADR increase cytotoxicity by limiting

DNA replication, thereby causing the death of cancer

cells.58 The relationship between DOX/ADR and BC has

been reported extensively. LncRNA LINC00668, which is

upregulated in BC cells, promotes DOX resistance by

targeting staphylococcal nuclease domain-containing 1.59

LncRNA BORG reduces DNA damage to promote DOX

resistance in BC cells by activating the NF-κB signaling

pathway.60 Knockdown of linc00152 reverses DOX resis-

tance in MCF-7/ADR cells.61 LncRNA ARA is upregu-

lated in BC cells, and knockdown of ARA reverses ADR

resistance via the MAPK signaling pathway and by mod-

ulating cell cycle progression.62

LncRNA PTENP1 is downregulated in BC cells, and

increased PTENP1 sponges miR-20a to promote PTEN

expression via the PI3K/Akt signaling pathway to reverse

ADR resistance in BC cells.63 Low lncRNA MEG3

expression promotes DOX resistance by reducing cell

apoptosis via the Bax/Bcl-2 axis in BC cells.64

Table 1 LncRNAs Involved in MDR of Breast Cancer

LncRNA Dysregulation Target/Pathway/Mechanisms Corresponding

Drugs

Refs

NEAT1 ↑ ATP7A, ATP7B, cyclin E1, cyclin D1, caspase-3, miR-211/HMGA2 DDP/PTX/5-FU [29,30]

LINP1 ↑ apoptosis, cas-8/9, cas-9/Bax DOX/5-FU/TAM [31,32]

H19 ↑ exosomes/apoptosis/Akt/Wnt/EMT, CUL4A/ABCB1/MDR1, autophagy/SAHH/

DNMT3B, ERalpha/Notch/c-MET, BIK/NOXA

DOX/TZB/PTX/

TAM

[37–44]

Linc00518 ↑ miR-199a/MRP1 ADR/VCR/PTX [33]

HOTAIR ↑ PI3K/Akt/mTOR, MEK/MAPK, PTEN, TGF-β, Caspase-3, Bcl-2, Bax, MDR1,

MRP1, ABCB1, ER

DOX/TZB/TAM [34–36]

CRALA ↑ Proliferation DDP/PTX [45]

UCA1 ↑ miR-18a/YAP1, miR-18a/HIF-1α, EZH2/p21, PI3K/Akt, Akt/mTOR, exosomes/

apoptosis, Wnt/β-catenin

TZB/TAM [46–51]

GAS5 ↓ miR-378a-5p/SUFU, miR-222/PTEN, miR-21/mTOR/PTEN PTX/TAM/TZB [52–54]

BC032585 ↓ MDR1 DOX/PTX [55]

Linc00968 ↓ Wnt2/β-catenin/MRP1/BCRP/P-gp ADR/Taxol/VCR [56]

Notes: “↑” represents upregulation; “↓” represents downregulation.

Abbreviations: DDP, cisplatin; PTX, paclitaxel; 5-FU, 5-fluorouracil; DOX, doxorubicin; TAM, tamoxifen; TZB, trastuzumab; ADR, adriamycin; VCR, vincristine.
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Epirubicin

Epirubicin is the isomer of ADR, and studies have

reported on epirubicin resistance in BC cells. LncRNA

NONHSAT101069, a novel overexpressed lncRNA in

MCF-7 andMCF-7/ADR cells, acts as a ceRNA by sponging

miR-129-5p to target the downstream protein Twist1 and

promote epirubicin resistance in BC cells.29 Zheng et al

reported that lncRNA SPRY4-IT1 is overexpressed and pro-

motes epirubicin resistance in MCF-7 and MDA-MB-231

cells.65

Taxanes

Taxanes are classic and effective cytotoxic drugs and

include the traditional PTX and DOC, as well as the

novel cabazitaxel and abraxane.66 PTX and DOC resis-

tance in BC has been reported, whereas resistance to the

two novel drugs has not been identified. LncRNA FTH1P3

is upregulated in MCF-7/PTX cells.67 FTH1P3 promotes

ABCB1 protein expression by acting as a sponge for miR-

206 to enhance PTX resistance in BC cells.67 LncRNA

CASC2 is upregulated in BC cells and negatively regulates

miR-18a-5p, thereby activating cyclin dependent kinase 19

(CDK19) to enhance PTX resistance in BC cells.68

LncRNA LINC00511 interacts directly with miR-29c and

inhibits its expression, which upregulates the expression of

cyclin dependent kinase 6 (CDK6) and suppresses PTX-

induced cytotoxicity.69 LncRNA MAPT-AS1 is upregu-

lated in BC cells, and knockdown of MAPT-AS1

decreases the stability of MAPT mRNA to induce PTX

resistance.70 LncRNA RP11-770J1.3 confers PTX resis-

tance to MCF-7 cells by increasing transmembrane protein

25 (TMEM25) and MRP, BCRP, and MDR1/P-gp.71

LncRNA EPB41L4A-AS2 is downregulated in DOC-

resistant BC cells, and low expression of EPB41LA4-AS2

upregulates ABCB1 and promotes DOC resistance in BC

cells.72

Cisplatin

Cisplatin is a commonly used anticancer agent that is lethal to

target DNAs in cancer cells.73 LncRNA SNHG15 is upregu-

lated in MCF-7/DDP and MDA-MB-231/DDP cells, and

knockdown of SNHG15 increases DDP sensitivity in BC

cells by sponging miR-381.74 LncRNA HCP5 is upregulated

in MDA-MB-231/DDP cells and promotes DDP resistance

by inhibiting the expression of PTEN; this effect has been

observed in TNBC xenografts in vivo.75

5-Fluorouracil

5-FU is commonly used in the treatment of gastrointestinal

cancer.76 Liang et al showed that lncRNA PRLB sponges

Table 2 LncRNAs Involved in Chemotherapy Resistance in Breast Cancer

Drug lncRNA Dysregulation Effect on Drug Resistance Target/Pathway/Mechanisms Refs

Doxorubicin or Adriamycin Linc00668 ↑ Promoting SND1 [59]

BORG ↑ Promoting NF-κB/DNA damage [60]

Linc00152 ↑ Promoting EMT [61]

ARA ↑ Promoting MAPK/cell cycle [62]

PTENP1 ↓ Reversing PTEN/PI3K/Akt [63]

MEG3 ↓ Reversing Bax/Bcl-2/apoptosis [64]

Epirubicin NONHSAT101069 ↑ Promoting miR-129-5p/TWIST1 [29]

SPRY4-IT1 ↑ Promoting / [65]

Paclitaxel FTH1P3 ↑ Promoting miR-206/ABCB1 [67]

CASC2 ↑ Promoting miR-18a-5p/CDK19 [68]

Linc00511 ↑ Promoting miR-29c/CDK6/cytotoxicity [69]

MAPT-AS1 ↑ Promoting MAPT [70]

RP11-770J1.3 ↑ Promoting TMEM25/MRP/BCRP/MDR1/P-gp [71]

Docetaxel EPB41L4A-AS2 ↓ Reversing ABCB1 [72]

Cisplatin SNHG15 ↑ Promoting miR-381 [74]

HCP5 ↑ Promoting PTEN [75]

5-Fluorouracil PRLB ↑ Promoting miR-4766-5p/SIRT1 [77]

Notes: “↑” represents upregulation; “↓” represents downregulation; “/” represents not mentioned.

Abbreviation: EMT, epithelial–mesenchymal transition.
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miR-4766-5p to enhance the expression of sirtuin 1 and

promote 5-FU resistance in BC cells.77

LncRNAs in Endocrine Therapy

Resistance
Gene expression profiling led to the classification of BC

into four molecular subtypes according to the expression

levels of ER, progesterone receptor and human growth

factor receptor type 2 (HER2): luminal A (50%), luminal

B (20%), HER2 (15–20%), and TNBC (15–20%)

subtypes.78 LncRNAs play different roles in drug resis-

tance in different BC subtypes (Figure 1). The luminal

A and luminal B subtypes, which account for approxi-

mately 70% of BC cases, are positive for ERα
expression.79 The tumorigenesis of ERα-positive BC is

determined by estrogen signaling.80 Therefore, targeting

ERα using selective ER modulators or selective ER down-

regulation to block estrogen action is an effective strategy

for the treatment of BC. LncRNAs involved in endocrine

therapy resistance are summarized in Table 3.

Tamoxifen

TAM is the most widely used antiestrogen drug and it has

shown good results as long-term adjuvant therapy in the past

decades.80 However, the curative effect of TAM is limited

by the acquisition of drug resistance. LncRNAs play a role

in the resistance to TAM. LncRNA CYTOR promotes TAM

resistance by increasing serum response factor (SRF) and

activating the MAPK signaling pathway by sponging miR-

125a-5p in MCF-7/TAM cells.81 Sun et al identified a novel

Figure 1 lncRNA-mediated drug resistance in different subtypes in breast cancer. The green arrows indicate promoting effect and the red “T” symbols indicate inhibiting

effect.

Abbreviation: TNBC, triple negative breast cancer.

Table 3 LncRNAs Involved in Endocrine Therapy Resistance of Breast Cancer

Drug lncRNA Dysregulation Effect on Drug Resistance Target/Pathway/Mechanisms Refs

Tamoxifen CYTOR ↑ Promoting miR-125a-5p/SRF/MAPK [81]

LOL ↑ Promoting let-7 family [82]

DSCAM-AS1 ↑ Promoting miR-137/ESP8, GREB1 [83,84]

TMPO-AS1 ↑ Promoting estrogen signaling [85]

ROR ↑ Promoting miR-205/ZEB1/ZEB2, MAPK/ERK/DUSP7,

autophagy

[86–88]

CCAT2 ↑ Promoting apoptosis [89]

BCAR4 ↑ Promoting ERBB2/ERBB3 [90]

ADAMTS9-AS2 ↑ Promoting miR-130a-5p/PTEN [91]

Linc00894-002 ↑ Reversing miR-200a-3p/miR-200b-3p/TGF-β2/ZEB1 [92]

AIs / / / / /

Notes: “↑” represents upregulation; “↓” represents downregulation; “/” represents not mentioned.
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lncRNA named LOL (lncRNA of luminal) that is upregu-

lated in BC and luminal BC. Knockdown of LOL reverses

TAM resistance in TamR MCF-7 cells by sponging let-7

miRNAs.82 LncRNA DSCAM-AS1 promotes TAM resis-

tance via the miR-137/EPS8 axis or by modulating GREB1,

a target of ER. It promotes cell reproduction and suppresses

cell apoptosis by acting as a ceRNA of miR-137 and increas-

ing EPS8 expression.83,84 Overexpression of lncRNA

TMPO-AS1 activates estrogen signaling to promote TAM

resistance in BC cells.85 Downregulated lncRNA ROR inhi-

bits the EMT process by upregulating miR-205 expression

and preventing ZEB1 and ZEB2 expression, thereby rever-

sing TAM resistance in MDA-MB-231 cells.86 Knockout of

ROR regulates dual specificity phosphatase 7 and activates

the MAPK/ERK signaling pathway, which decreases TAM

resistance.87 Li et al reported that the induction of cell

autophagy is another mechanism by which ROR reverses

TAM resistance.88 Knockdown of lncRNA CCAT2 pro-

motes cell apoptosis and enhances TAM resistance in BC

cells.89 LncRNA BCAR4 targets ERBB2 and ERBB3 and

promotes TAM resistance.90 Low expression of lncRNA

ADAMTS9-AS2 decreases proliferation and apoptosis in

MCF-7R cells by increasing miR-130a-5p and preventing

PTEN expression, thereby increasing TAM resistance.91

LncRNA LINC00894-002 is expressed at low levels in

MCF-7/TamR cells, which could be related to the down-

regulation of ESR1. LINC00894-002 downregulation con-

tributes to TAM resistance via the miR-200/TGF-β2/ZEB1
signaling pathway.92

Aromatase Inhibitors

Aromatase inhibitors (AIs) play an important role in the

treatment of ERα-positive BC. Aromatase is the rate-

limiting enzyme in the estrogen biosynthesis pathway, and

inhibiting aromatase decreases the circulating levels of estro-

gen to suppress the proliferation of ERα-positive BC.93 Three
AIs approved by the US Food and Drug Administration

(FDA) are used in the clinical treatment of BC, including

steroidal AIs (exemestane) and nonsteroidal AIs (anastrozole

and letrozole).94 However, the relationship between

lncRNAs and resistance to AIs has not been reported to date.

LncRNAs in Molecular Targeted Therapy

Resistance
The HER2 subtype, which accounts for 15–20% of BC

cases, is associated with a higher risk of metastasis and

a worse prognosis than the luminal A and luminal

B subtypes.95 The therapeutic efficacy of chemotherapy

and anti-estrogen therapy is low for the HER2 subtype,

which shows a certain degree of drug resistance.20

Therefore, molecular targeted therapy against HER2 is

a promising strategy to improve the prognosis of patents

with the HER2 subtype. LncRNAs involved in molecular

targeted therapy resistance are summarized in Table 4.

Trastuzumab

TZB, a monoclonal antibody that targets and blocks the

activity of HER2, has improved the prognosis of patients

with the HER subtype.96 However, TZB resistance can

develop during targeted therapy. Studies have reported

a relationship between lncRNAs and TZB resistance

in BC. LncRNA AFAP1-AS1 targets AU-binding factor

1 (AUF1) and activates the translation of ERBB2, leading

to TZB resistance in BC cells.97 AGAP2-AS1 decreases the

cytotoxicity of TZB via being incorporated into exosomes,

and promotes TZB resistance in BC.98 AGAP2-AS1 inhibits

cell apoptosis and promotes TZB resistance in BC cells by

upregulating MyD88, which results from the enrichment of

H3K27ac at the promoter region of MyD88, and activating

the NF-κB signaling pathway.99 LncRNATINCR is upregu-

lated in HER-2+ BC cells; it sponges miR-125b and targets

Snail-1, thereby promoting TZB resistance and the asso-

ciated EMT process in BC cells.100 LncRNA SNHG14

Table 4 LncRNAs Involved in Molecular Targeted Therapy Resistance of Breast Cancer

Drug lncRNA Dysregulation Effect on Drug Resistance Target/Pathway Refs

Trastuzumab AFAP1-AS1 ↑ Promoting AUF1/ERBB2/HER-2 [97]

AGAP2-AS1 ↑ Promoting MyD88/NF-κB, apoptosis, exosomes, [98,99]

TINCR ↑ Promoting miR-125b/Snail-1 [100]

SNHG14 ↑ Promoting PABPC1/H3K27/Nrf2, exosomes/Bax/Bcl-2 [101,102]

ATB ↑ Promoting miR-200c/ZEB1/ZNF-217 [103]

Lapatinib / / / / /

Pertuzumab / / / / /

Notes: “↑” represents upregulation; “↓” represents downregulation; “/” represents not mentioned.
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modulates H3K27 acetylation, which upregulates PABPC1

expression and activates the Nrf2 signaling pathway,

increasing TZB resistance in BC cells.101 SNHG14 also

promotes TZB resistance through its incorporation into exo-

somes and transport to sensitive BC cells. Knockdown of

SNHG14 increases cytotoxicity and cell apoptosis via the

Bcl-2/Bax signaling pathway to reverse TZB resistance.102

LncRNA ATB upregulates ZEB1 and ZNF-217 by competi-

tively binding to miR-200c and promotes EMT to induce

TZB resistance in BC cells.103

Other Targeted Drugs

In addition to TZB, other molecular targeted drugs are

currently used in the treatment of HER2-positive BC,

such as lapatinib and pertuzumab. Lapatinib is a tyrosine

kinase inhibitor that targets HER2 and epithelial growth

factor receptor. Pertuzumab is another monoclonal anti-

body that targets HER2 directly.104 Although these two

molecular targeted drugs have improved the prognosis of

HER2 subtype BC patients, they are associated with drug

resistance. Studies show that miR-16 and miR-630 reverse

lapatinib resistance in BC.105,106 However, there are no

studies assessing the relationship between lncRNAs and

lapatinib resistance or pertuzumab resistance in BC.

Mechanisms Underlying
LncRNA-Mediated Drug Resistance
LncRNAs modulate drug resistance via various mechan-

isms. They act as ceRNAs for specific miRNAs and alter

the expression of targets, regulate resistance through trans-

port via exosomes, modulate cell apoptosis or autophagy,

regulate drug efflux via ABC transporters, activate the

EMT process, and target common signaling pathways.

Acting as ceRNAs and regulating via exosomes are two

of the most important ways of action. An increasing num-

ber of studies have demonstrated the functional role of

lncRNAs in drug resistance in BC via these two ways.

CeRNAs
MiRNAs recruit the RNA-induced silencing complex and

bind to miRNA response elements to repress translation,107

whereas lncRNAs bind competitively to miRNAs and

suppress their silencing effect, acting as a “molecular

sponge”.108 CeRNAs play an important role in many biolo-

gical processes associated with cancer including drug resis-

tance. Linc00518 acts as a sponge for miR-199a and reverses

MDR in BC.41 UCA1 sponges miR-18a and increases TAM

resistance.46,47 Overexpressed GAS5 sponges miR-378a-5p,

miR-222, and miR-21, thereby reversing drug resistance

in BC.52–54 SNHG15 increases the sensitivity of BC cells

to DDP by sponging miR-381.74 CASC2 is upregulated

in BC cells and sponges miR-18a-5p to enhance PTX

resistance.68 TINCR sponges miR-125b and promotes TZB

resistance in HER-2+ BC cells.100 Other lncRNAs such as

FTH1P3,67 LINC00511,69 ATB,103 CYTOR,81 DSCAM-

AS1,83,84 ROR,86 ADAMTS9-AS2,91 LINC00894-002,92

NONHSAT101069,29 and PRLB77 sponge specific

miRNAs to regulate drug resistance in BC.

Exosomes
Exosomes are extracellular vesicles that are constantly

released into the microenvironment by various types of

cells including cancer cells.109 Communication between can-

cer cells can be mediated by exosomes through the transport

of lipids, proteins, and nucleic acids including lncRNAs.

This process affects cell growth, immune responses, and

drug resistance in target cells, and has therefore attracted

increasing attention.110 LncRNA H19 is incorporated into

exosomes and promotes DOX resistance in sensitive BC

cells.34 LncRNA UCA1 promotes TAM resistance in BC

via transport by exosomes.51 AGAP2-AS1 is incorporated

into exosomes in an hnRNPA2B1-dependent manner,

thereby decreasing TZB-induced cytotoxicity and promoting

TZB resistance in BC cells.98 SNHG14 promotes TZB resis-

tance in sensitive BC cells via exosomes.102

In addition to ceRNAs and exosomes, lncRNAs can

regulate drug resistance in BC via cellular or molecular

targets. All those mechanisms constitute a complicated

regulatory network (Figure 2).

Apoptosis
Apoptosis is a type of programmed cell death that serves

a biological function under normal conditions. There are

two pathways of apoptosis, the intrinsic and the extrinsic

pathways, which converge to activate effector caspases

such as caspase 3 and caspase 7.111 The intrinsic pathway,

which is mediated by the Bcl-2 family, leads to mitochon-

drial outer membrane permeabilization and the release of

cytochrome c into the cytoplasm. The extrinsic pathway is

mediated by the tumor necrosis factor receptor family and

causes the activation of caspase 8.111 An unbalanced rela-

tionship between pro-apoptosis factors and anti-apoptosis

factors leads to dysregulated apoptosis, which is associated

with many diseases including cancer, and is involved in

the sensitivity of cancer cells to drugs.112 LINP1 decreases

cell apoptosis by inhibiting caspase-8 and caspase-9 in
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DOX-resistant cells or by suppressing caspase-9 and Bax

in 5-FU-resistant cells, thereby increasing DOX and 5-FU

resistance.26 Low MEG3 expression promotes DOX resis-

tance by reducing cell apoptosis via the Bax/Bcl-2 axis

in BC cells.64 Other lncRNAs, including UCA1,48

SNHG14,102 and CCAT289 also alter BC cell sensitivity

to drugs via apoptosis.

Autophagy
Autophagy is a homeostatic process in cells in which

intracellular proteins and organelles are delivered to lyso-

somes and degraded for reuse or to generate new

macromolecules.113 Autophagy is critical for cell survival

under stress conditions. Recent studies suggest that

lncRNAs affect drug resistance by regulating cell autop-

hagy in BC. H19 and ROR induce cell autophagy and

reverse TAM resistance in BC cells.39,88

The Cell Cycle
The mammalian cell cycle is controlled by cyclin-

dependent kinases (CDKs) and certain signaling pathways,

such as the RB and p53 pathways, are related to CDKs.

CDKs and their associated pathways regulate exit and entry

to the different phases of the cell cycle to control cell cycle

progression.114 LncRNAs are involved in the regulation of

the cell cycle by modulating critical cell cycle regulators.

Deregulation of lncRNAs can lead to cell cycle arrest and

promote tumorigenesis.115 Knockdown of NEAT1 results in

cell cycle arrest at G1 phase via targeting cyclin E1 and D1

to induce apoptosis of cisR and taxR BC cells.31 High

expression of UCA1 promotes TAM resistance by decreas-

ing cell apoptosis and arresting the cell cycle at the G2/M

phase.48 LINC00511 upregulates the expression of CDK6

and decreases PTX cytotoxicity.69 ARA reverses ADR

resistance by modulating the cell cycle in BC.62

Drug Efflux
Certain lncRNAs promote MDR by activating drug efflux

pumps via targeting ABC transporters in BC. H19 targets

MDR1 and increases DOX resistance.25 HOTAIR down-

regulates the expression of MDR1, MRP1, and ABCB1

and decreases DOX and TZB resistance.43 Knockdown of

BC032585 increases MDR1 and promotes DOX and PTX

resistance.55 LINC00968 targets MRP1 to reverse MDR.56

RP11-770J1.3 confers PTX resistance by increasing MRP,

BCRP and P-gp.71 Low expression of EPB41LA4-AS2

promotes DOC resistance by upregulating ABCB1.72

EMT
The EMT process is a cell biological program that con-

verts epithelial cells, which connects cells, to mesenchy-

mal cells, which show higher motility and invasiveness.116

The EMT process is activated during malignant progres-

sion, which leads to the completion of many steps of the

Figure 2 lncRNA-mediated mechanisms involved in the regulation of drug resistance in breast cancer. The black round frames represent ways of action and the colorful

square frames represent cellular or molecular targets. The green arrows indicate promoting effect and the red “T” symbols indicate inhibiting effect.

Abbreviations: BC, breast cancer; ceRNA, competing endogenous RNAs; EMT, epithelial–mesenchymal transition.
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invasion-metastasis cascade in cancer cells and results in

cancer metastasis, relapse, and MDR.117 Some lncRNAs

activate the EMT process to promote drug resistance

in BC. Knockdown of linc00152 reverses DOX resistance

by suppressing cell viability, invasion, migration, and

EMT.61 Knockdown of LOL prevents EMT and reverses

TAM resistance by sponging let-7 miRNAs.82

Conclusion
Drug resistance limits the clinical treatment of BC, which

has prompted extensive investigation into the underlying

mechanisms. Dysregulated lncRNAs play important roles

in the regulation of drug resistance in BC through complex

mechanisms. LncRNAs show potential as diagnostic, prog-

nostic, and/or predictive biomarkers for clinical use because

they are present in body fluids and exosomes.20 An effective

and individualized treatment strategy based on these

lncRNAs could be designed to predict the response to

treatment in BC, which could prevent the use of ineffective

therapies that might lead to severe side-effects.

Targeted molecular therapies are designed to bind spe-

cific targets to alter cell functions, which always act as

adjuvant therapies after operation or with classical

therapies.118 Many methods have been developed to target

a particular ncRNA, which is depended on the expression

pattern of miRNAs or lncRNAs, including antisense oli-

gonucleotides (antagomiRs/ASOs), miRNA ablation via

viral, liposomal, and nanoparticles.119 Some new gene

editing technology also show the possibility of potential

application, such as CRISPR/Cas9 (Clustered Regularly

Interspaced Short Palindromic Repeats – associated

nuclease-9).120 CRISPR/Cas9 has been studied extensively

in hepatocellular carcinoma and ovarian cancer, while few

studies report the use of this technology in lncRNA editing

in BC. The insertions and deletions induced by CRISPR/

Cas9 system seem not susceptible in lncRNAs.121

In addition to lncRNAs, the other two main ncRNAs

(miRNAs and circRNAs) are also involved in drug resis-

tance in many cancers including BC. For instance, miR-

181a promotes ADR resistance in BC by inhibiting cell

apoptosis via Bcl-2.122 Overexpression of circRNA

0025202 reverses TAM resistance by sponging miR-182-

5p in BC.123 Therefore, targeted drugs based on these

selective dysregulated ncRNAs might be a novel strategy

for future clinical application.

Most studies have proved the relationship between

drug resistance in BC cells and ncRNAs. Few of these

researches revealed this in vivo or even in clinical

treatment. Injecting anti-miR-21 oligonucleotides into

xenograft mouse model inhibits the growth of breast

tumor.124 Silence of miR-21 reverses topotecan, taxol,

and TZB resistance in BC cells.125 Therefore, classical

chemotherapy combined with anti-miR-21 treatment may

reduce drug resistance in BC patients.

A miRNA-targeted drug, miravirsen,126 is currently

being tested for the treatment of hepatitis C virus (HCV)

infection in a phase Ⅱ clinical trial. However, miravirsen is

the first and only targeted drug based on ncRNAs developed

to date. There are no reports describing lncRNA- or

circRNA-based targeted drugs for the treatment of cancer.

Although lncRNAs provide a possible new research

direction to elucidate the mechanism of drug resistance

in BC, therapies based on lncRNAs have not been applied

to the clinical treatment of BC. Treatments based on

lncRNAs are associated with the same limitations as treat-

ment based on small interfering RNAs, such as chemical

modification and issues related to the delivery of

lncRNAs.22 However, there are additional limitations speci-

fic to the clinical application of lncRNAs. The safety of

targeted therapies, which is based on biological technologies,

is an area that must be studied thoroughly. Therapies invol-

ving RNA interference were shown to be toxic in preclinical

mouse models.127 The development of mutations is another

problem that warrants investigation. Whether these biologi-

cal markers can maintain their function continually, in other

words, whether the effect is persistent, affects the efficacy of

treatment. Another potential problem is the cost to patients.

Collecting and detecting lncRNAs, as well as gene detection,

are performed by real-time PCR and next-generation sequen-

cing. Both technologies require trained professional techni-

cians and precise and expensive instruments, which may lead

to a significant finical burden to patients. Another challenge

about lncRNA research is that many lncRNA species lack

conservation.128 Many lncRNAs related with human cancer

do not exhibit sequence conservation in mammalian, which

limit the pre-clinical mouse studies for lncRNA-based target

therapy. To date due to these complexity and challenge, few

studies have investigated the efficacy of lncRNAs as thera-

peutic targets in BC patients.

Although lncRNAs play an important role in drug

resistance in BC via various mechanisms, the specific

efficiency of target therapies based on different mechan-

isms remain unclear. Select an appropriate target therapy

can help patients get better efficacy and prognosis.

However, there are few studies and animal experiments

on this area, let alone clinical application. On the other
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hand, as lncRNAs exit in blood and body fluid of patients,

collecting and testing lncRNAs may be feasible. Maybe in

the future, lncRNAs can be used to predict the efficacy of

different therapies to select an appreciate and sensitive

target therapy for BC patients. More studies are needed

to compare the efficacy of target therapy based on different

mechanisms, to design an individual therapeutic plan in

different BC patients.

In conclusion, studies indicate that lncRNAs play

a significant role in drug resistance in BC. LncRNAs show

potential as biomarkers to predict the response to treatment

or reverse drug resistance in the future. Up to date, molecu-

lar targeted drugs based on lncRNAs remain to be devel-

oped. More extensive and comprehensive studies, especially

clinical studies, are needed to elucidate the mechanisms of

drug resistance and develop therapies based on lncRNAs.
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