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SNAP predicts effect of mutations on protein function
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ABSTRACT

Summary: Many non-synonymous single nucleotide polymor-
phisms (nsSNPs) in humans are suspected to impact protein
function. Here, we present a publicly available server implementation
of the method SNAP (screening for non-acceptable polymorphisms)
that predicts the functional effects of single amino acid substitutions.
SNAP identifies over 80% of the non-neutral mutations at 77%
accuracy and over 76% of the neutral mutations at 80% accuracy
at its default threshold. Each prediction is associated with a
reliability index that correlates with accuracy and thereby enables
experimentalists to zoom into the most promising predictions.
Availability:  Web-server: http://www.rostlab.org/services/SNAP;
downloadable program available upon request.

Contact: bromberg@rostlab.org

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Non-synonymous SNPs (nsSNPs) are associated with disease:
Estimates expect as many as 200 000 nsSNPs in human (Halushka
et al., 1999) and about 24 000—60 000 in an individual (Cargill et al.,
1999); this implies about 1-2 mutants per protein. While most of
these likely do not alter protein function (Ng and Henikoff, 2006),
many non-neutral nsSNPs contribute to individual fitness. Disease
studies typically face the challenge finding a needle (SNP yielding
particular phenotype) in a haystack (all known SNPs). For example,
many of the thousands of mutations associated with cancer do not
actually lead to the disease. Evaluating functional effects of known
nsSNPs is essential for understanding genotype/phenotype relations
and for curing diseases. Computational mutagenesis methods can
be useful in this endeavor if they can explain the motivation behind
assigning a mutant to neutral or non-neutral class or if they can
provide a measure for the reliability of a particular prediction.
Screening for non-acceptable polymorphisms is accurate and
provides a measure of reliability: here, we present the first web-
server implementation of SNAP (screening for non-acceptable
polymorphisms), a method that combines many sequence analysis
tools in a battery of neural networks to predict the functional effects
of nsSNPs (Bromberg and Rost, 2007, 2008). SNAP was developed
using annotations extracted from PMD, the Protein Mutant Database
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(Kawabata et al., 1999; Nishikawa et al., 1994). SNAP needs
only sequence as input; it uses sequence-based predictions of
solvent accessibility and secondary structure from PROF (Rost,
2000, unpublished data; Rost, 2005; Rost and Sander, 1994),
flexibility from PROFbval (Schlessinger et al., 2006), functional
effects from SIFT (Ng and Henikoff, 2003), as well as conservation
information from PSI-BLAST (Altschul et al., 1997) and PSIC
(Sunyaev et al., 1999), and Pfam annotations (Bateman et al., 2004).
If available, SNAP can also benefit from SwissProt annotations
(Bairoch and Apweiler, 2000). In sustained cross-validation, SNAP
correctly identified ~80% of the non-neutral substitutions at 77%
accuracy (often referred to as specificity, i.e. correct non-neutral
predictions/all predicted as non-neutral) at its default threshold.
When we increase the threshold, accuracy rises at the expense of
coverage (fewer of the observed non-neutral nsSNPs are identified).
This balance is reflected in a crucial new feature, the reliability index
(RI) for each SNAP prediction that ranges from 0 (low) to 9 (high):

RI=INT(OUTyon—neutral — OUTheutra1)/ 10 (D

where OUTy is the raw value of one of the two SNAP output units.

When given alternative prediction methods, investigators often
identify a subset of predictions for which methods agree. This
approach may increase accuracy over any single method at the
expense of coverage. Well-calibrated method-internal reliability
indices can be much more efficient than a combination of different
methods (Rost and Eyrich, 2001). Simply put: ‘A basket of rotten
fruit does not make for a good fruit salad’ (Chris Sander, CASP1).
The SNAP RI has been carefully calibrated.

2 INPUT/OUTPUT

Users submit the wild-type sequence along with their mutants.
A comma-separated list gives mutants as: XiY, where X is the wild-
type amino acid, Y is the mutant and i is the number of the residue
(i = 1 for N-terminus). X is not required and a star (*) can replace
either i or Y. Any combination of characters following these rules
is acceptable; e.g. X** = replace all residues X in all positions by
all other amino acids, *Y = replace all residues in all positions
by Y. Users may provide a threshold for the minimal RI [Equation
(1)] and/or for the expected accuracy of predictions that will be
reported back. These two values correlate; when both are provided,
the server chooses the one yielding better predictions. For each
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Fig. 1. Examples of SNAP functionality. (A) SNAP-server predictions
for mutations in INS_HUMAN associated with hyperproinsulenemia and
diabetes-mellitus type II (Chan et al., 1987; Sakura et al., 1986; Shoelson et
al., 1983). (B) SNAP predictions for comprehensive in silico mutagenesis
(all-to-alanine). The crystal structure [PDB 2omg (Norrman et al., 2007)]
shows an insulin NPH hexamer [insulin co-crystallized with zinc (sphere at
the center) in presence of protamine/urea (not highlighted); picture produced
by GRASP2 (Petrey and Honig, 2003)]. Red represents mutations predicted
as non-neutral and blue represents neutral predictions. Residues in wire
depiction are the same as in (A): V92, H34, F48 and F49 of INS_HUMAN
(A chain V3, B chain H10, F24 and F25). SNAP predicts all of these to impact
function when mutated to alanine. (C) More reliably predicted residues are
predicted more accurately: for instance, >90% of the predictions with a
reliability index = 6 are expected to be right.

mutant, SNAP returns three values (Fig. 1A): the binary prediction
(neutral/non-neutral), the RI (range 0-9) and the expected accuracy
that estimates accuracy [Equation (1)] on a large dataset at the given
RI (i.e. accuracy of test set predictions calculated for each neutral
and non-neutral RI; Fig. 1C, Supplementary Online Material Fig.
SOM_1).

At this point, SNAP may take more than an hour to return
results (processing status can be tracked on the original submission
page). Therefore, most requests will be answered by an email
containing a link to the results page. It is also highly recommended
to check existing mutant evaluations [available immediately under
the ‘known variants’ tab; referenced by RefSeq id (Pruitt et al., 2007)
and dbSNP id (Sherry et al., 2001)] prior to submitting sequences
for processing. In the near future, PredictProtein (Rost et al., 2004)
that provides the framework for SNAP, will store sequences and
retrieve predictions for additional mutants in real time. Full sequence
analysis (e.g. in silico alanine scans; Fig. 1B) is possible for short
proteins (<150 total mutants/protein) via applicable server query.
Analysis of longer sequences and/or local SNAP installation is
currently available through the authors.
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