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Commentary

BACKGROUND
Polygenic risk scores (PRS), commonly referred to as genetic 
or genomic risk scores, aggregate the effects of multiple genetic 
variants into a single composite estimate of genetic risk. PRS 
scores are typically used to predict the risk of developing a 
disease or to explain the phenotypic variation, and are derived 
from the effect sizes observed in large‑scale genome‑wide 
association studies (GWAS). Unlike rare monogenic diseases 
such as cystic fibrosis, which are attributable to genetic variants 
in single genes, with large effects on disease status, common 
complex diseases such as type 2 diabetes mellitus (T2DM) are 
polygenic, with risk contributed by a panel of genetic variants 
present throughout the genome. The concept of integrating 
information from these multiple genetic variants into a single 
metric of genetic risk was initially proposed in the shape of 
genetic risk scores, which generally limited the score to include 
single‑nucleotide polymorphisms (SNPs) that were common 
and reached genome‑wide significance in the initial GWASs. 
In contrast, PRS incorporates information from a much larger 
set of genetic variants, typically hundreds of thousands, 
including SNPs below the threshold for genome‑wide 
statistical significance, and often with much more modest 
effect sizes.[1] Indeed, recent findings have pointed to how 
polygenic background could also increase the accuracy of 
risk estimation for individuals with monogenic risk variant in 
conditions such as familial hypercholesterolaemia, hereditary 
breast and ovarian cancer, and Lynch syndrome.[2]

DEVELOPMENT IN PRS APPROACHES
Initial PRS approaches were constructed using linear or logistic 
regression models to quantify individual SNP effect sizes. 
However, recent work has demonstrated that in the presence 
of linkage disequilibrium (LD), prediction accuracy of the 
commonly used approach of LD pruning/clumping followed 
by P value thresholding is inadequate.[3] More recent PRS 
approaches have used shrinkage and Bayesian methods such as 
lassosum, LDpred and PRS‑CS.[3‑5] In particular, Khera et al.[6] 
demonstrated that by taking a genome‑wide PRS approach 
with LDpred, they were able to identify 1.5%–8.0% of the 
population at greater than three‑fold increased risk of five 
common diseases, including coronary artery disease (CAD), 
atrial fibrillation, T2DM, inflammatory bowel disease and 
breast cancer. This was especially striking for CAD, where 
the observed prevalence of 8% is 20‑fold higher than that of 
the carrier frequency of rare monogenic mutations conferring 
comparable risk. Indeed, these PRS provide predictive utility 

independently and additively to conventional clinical risk 
scores.[7,8] Having a high PRS contributed 21%–38% higher 
lifetime risk and 4–9 years earlier disease onset compared 
to an average PRS across common diseases. In fact, 13% of 
early‑onset coronary heart disease cases were predicted only 
with the addition of PRS in the assessment model.[7] Work 
in UK Biobank also demonstrated in parallel that inclusion 
of PRS, in addition to traditional risk factors, increased 
approximately 7% in the number of events prevented.[8]

ROLE OF ETHNICITY IN PRS
Recent evidence has demonstrated the importance of using 
ethnic‑appropriate PRS in disease risk prediction. Martin 
et al.[9] showed that PRS based on European‑derived summary 
statistics had substantially lower accuracy when applied to 
non‑European populations across 17 anthropometric and blood 
panel traits; accuracy was 1.6–4.5‑fold lower on average in 
Hispanic/Latino Americans, South Asians, East Asians and 
Africans, compared to Europeans. This is corroborated by our 
own data (under review), in which we show that PRS for T2DM 
prediction in South Asians are significantly more accurate 
when based on South Asian rather than European association 
test results. These observations are particularly relevant to 
Asian populations such as Singapore, where we are strongly 
dependent on European‑derived summary statistics for PRS, 
given that almost 80% of all current GWAS participants are 
of European ancestry.[9] The limited availability of genomic 
data for Asian populations underpins the current national 
effort in performing whole genome sequencing in a cohort of 
100,000 individuals (SG100K) as part of Singapore’s National 
Precision Medicine programme. This will allow us to assess the 
impact of combining an individual’s PRS, lifestyle information 
and clinical information on chronic disease risk prediction 
and the associated implementation of early intervention, 
through lifestyle modification and/or early pharmacological 
intervention. Given the multi‑ethnic make‑up of the Singapore 
population, these population‑specific PRS will prove invaluable 
in applying PRS to the greatest benefit in Singapore.

CHALLENGES AND THE FUTURE OF PRS UTILITY
Despite the potential benefits that clinical usage of PRS may 
bring, there remain many challenges and critical considerations 
in the journey to implementation. One concern is the quality 
control surrounding PRS generation, and where it should 
sit compared to typical clinical genetic testing, which is 
performed in Clinical Laboratory Improvement Amendments 
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(CLIA)‑certified (or equivalent) laboratories and includes 
genetic counselling sessions. It is therefore essential to ensure 
education and training of healthcare professionals, as well as 
the general public, in the interpretation and understanding of 
these novel scores. Funding mechanisms should be in place to 
establish who should be responsible for the cost of genotyping 
and PRS generation, how best to handle any incidental findings, 
and whether PRS could be shared between primary health 
institutions and private practitioners. Public trust must be 
built, as PRS could be perceived by some as discriminating or 
stigmatising, and there may be concerns about its impact on 
one’s insurance policies. There are also concerns around equal 
utility, and efforts such as SG100K, which aim to increase the 
genetic diversity of participants in GWAS, will help to improve 
utility for all groups, especially for underrepresented Asian 
communities. To ensure long‑term successful implementation 
of PRS in routine clinical care, it is critical to demonstrate 
health and economic benefits. Public health and economic 
benefits will differ greatly depending on the actual use case 
for PRS, and considering possible clinical actions such as 
cost of intervention and screening strategies.[10] A significant 
health economics benefit could be achieved by the generation 
of multiple concurrent PRS for multiple diseases based on a 
single genotyping, and leveraging on the panel to optimise 
treatment and screening strategies across endpoints.
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