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Abstract

Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals 

across multiple contexts, increasing power to detect associations while accounting for confounding 

effects arising from within-individual variation. However, traditional approaches to fitting these 

models can be computationally intractable. Here, we describe an efficient and exact method for 

fitting a multiple-context linear mixed model. Whereas existing exact methods may be cubic 

in their time complexity with respect to the number of individuals, our approach for multiple-

context LMMs (mcLMM) is linear. These improvements allow for large-scale analyses requiring 

computing time and memory magnitudes of order less than existing methods. As examples, we 

apply our approach to identify expression quantitative trait loci from large-scale gene expression 

data measured across multiple tissues as well as joint analyses of multiple phenotypes in genome-

wide association studies at biobank scale.
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1 Introduction

Over the last decade, the scale of genomic datasets has steadily increased. These datasets 

have grown to the size of hundreds of thousands of individuals [3] with millions soon to 

come [21]. Similarly, datasets for transcriptomics and epigenomics are growing to thousands 

of samples [1, 5, 14]. These studies provide valuable insight into the relationship between 

our genome and complex phenotypes [23].

Identifying these associations requires statistical models that can account for biases in 

study design that can negatively influence results through false positives or decreased 

power. Linear mixed models (LMMs) have been a popular choice for controlling these 

biases in genomic studies, utilizing variance components to account for issues such as 

population stratification [8]. These models can also be used to analyze studies with 

repeated measurements from individuals, such as replicates or measurements across different 

contexts. Meta-Tissue [20] is a method that applies this model in the context of identifying 

expression quantitative trait loci (eQTLs) across multiple tissues. In this framework, gene 

expression is measured in several tissues from the same individuals and the LMM is utilized 

to test the association between these values and genotypes. A meta-analytic approach is 

used to combined effects across multiple tissues to increase the power of detecting eQTLs. 

This approach has also been applied to increase power in genome-wide association studies 

(GWAS) by testing the association between genotypes and multiple related phenotypes [7].

However, these approaches are computationally intensive. Existing approaches for fitting 

these models are cubic in time complexity with respect to the number of samples across 

all contexts [8, 26]. Here, we present an ultra-fast LMM framework specifically for multiple-

context studies. Our method, mcLMM, is linear in complexity with respect to the number 

of individuals and allows for statistical tests in a manner of hours rather than days or years 

with existing approaches. To illustrate the computational efficiency of mcLMM, we compare 

the runtime and memory usage of our method with EMMA and GEMMA [8, 26], two 

popular approaches for fitting these models. We further apply mcLMM to identify a large 

number of eQTLs in the Genotype-Tissue Expression (GTEx) dataset [5] and compare our 

results from METASOFT [6], which performs the meta-analysis of the mcLMM output, to a 

recent meta-analytic approach known as mash [22]. Finally, to demonstrate the practicality 

of mcLMM on modern datasets, we perform a multiple-phenotype GWAS combining over a 

million observations sampled from hundreds of thousands of individuals in the UK Biobank 

[3] within hours.

2 Methods

2.1 Linear Mixed Model

For multiple-context experiments with n individuals, t contexts, and c covariates, we fit the 

following linear mixed model

y = Xβ + u + e (1)
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Where u ∼ N 0, σg2K , e ∼ N 0, σe2I , y ∈ Rnt is a vectorized representation of the responses, 

X ∈ Rnt × tc is the matrix of covariates, β ∈ Rtc is the vector of estimated coefficients 

K ∈ Rnt × nt is a binary matrix where Ki, j = 1 indicates that sample i and sample j in Y come 

from the same individual, and I ∈ Rnt × nt is an identity matrix. X is structured such that 

both an intercept and the covariate effects are fit within each context. For sake of simplicity, 

dimensions of nt assume that there is no missing data; however, this is not a requirement 

for the model. We note that this definition of K models within-individual variability as a 

random-effect, while within-context or across-individual variability is not included.

The full and restricted log-likelihood functions for this model are

lF y; β, σg, δ = 1
2 −Nlog 2πσg2 − log( H ) − 1

σg2
(y − Xβ)TH−1(y − Xβ) (2)

lR y; β, σg, δ = lF y; β, σg, σe + 1
2 tclog 2πσg2 + log XTX − log XTH−1X (3)

where N is the total number of measurements made across the individuals and contexts 

δ =
σe2

σg2
 and H = K + δI [24]. These likelihood functions are maximized with the generalized 

least squares estimator β = XTH−1X −1XTH−1y and σg
2 = R

N  in the full log-likelihood and 

σg
2 = R

N − tc  in the restricted log-likelihood, where R = (y − Xβ )TH−1(y − Xβ ) Our goal is to 

maximize these likelihood functions to estimate the optimal δ .

2.2 Likelihood refactoring in the general case

The EMMA algorithm optimizes these likelihoods for δ by refactoring them in terms of 

constants calculated from eigendecompositions of H and SHS, where S = I − X XTX −1XT , 

that allow linear complexity optimization iterations with respect to the number of 

individuals [8]. The GEMMA algorithm further increases efficiency by replacing the SHS 
eigendecomposition with a matrix-vector multiplication [26]. Both approaches require the 

eigendecomposition of at least one N by N matrix which is typically cubic in complexity. 

Here, we show that our specific definition of K as a binary indicator matrix allows us to 

refactor these likelihood functions without any eigendecomposition steps. It should be noted 

that EMMA and GEMMA can fit this model for any positive semidefinite K, while mcLMM 

is restricted to the definition described above.

We note that previous work has shown similar speedups when the matrix K is low rank 

and has a block structure as described here [10]. This work, FaST-LMM, shows that 

the likelihood functions can be computed in linear time with respect to the number of 

individuals after singular value decomposition of a matrix with complexity that is also 

linear with respect to the number of individuals. We improve upon these methods by 

recognizing that the eigenvalues of the K matrix are known beforehand, which allows for 
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further efficiency in fitting this model. Furthermore, the FaST-LMM model assumes that all 

individuals within each context share additional covariance while mcLMM assumes that all 

contexts observed within an individual share additional covariance.

First, note that H = K+δI is a block diagonal matrix. Specifically, each block corresponds 

to an individual i with ti contexts measured, where ti is less than or equal to t depending on 

the number of contexts observed for individual i. Each block is equal to 1ti + δIti ∈ Rti × ti

where 1ti is a ti by ti matrix composed entirely of 1. These properties of H make its 

eigendecomposition and inverse directly known.

The eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues of 

each block. Moreover, the eigenvalues of 1ti + δIti  are ti + δ with multiplicity 1 and δ with 

multiplicity ti - 1. Therefore, H has eigenvalues δ with multiplicity N - n and ti + δ for each 

ti. This provides our first refactoring

log( H ) = (N − n)log(δ) + ∑
i = 1

n
log ti + δ (4)

The inverse of a block diagonal matrix can also be computed by inverting each block 

individually. Moreover, using the Sherman-Morrison formula [16], the inverse of [1ti + δIti] 

is known

1ti + δIti
−1 = − 1

t + δ1ti + 1
δ Iti (5)

Given each entry of H−1, we can show algebraically that

XTH−1X = 1
δ (E − D) (6)

Ei, j =
∑

ind ∈ f(i)
xind, g(i)xind, g(j) if f(i) = f(j)

0 if f(i) ≠ f(j)
(7)

Di, j = ∑
g ∈  groups 

1
tg + δ ∑

ind ∈ f(i), f(j), g
xind, g(i)xind, g(j) (8)

where f (i) = i%t (modulo operator) provides the context of a given 0-indexed column of X, 

g(i) = i//t (integer division) provides the covariate of a given index. A group g defines the 

set of individuals that share the same number of measured contexts tg. The expression “ind 

∈ f(i), f(j), g″ indicates the set of all individuals that have tg measured contexts that include 

context i and j.
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Note that with all values independent of δ pre-computed, specifically the sum of covariate 

interactions within the sets of individuals indicated above, E is constant with respect to δ 
and each entry of the symmetric matrix D can be calculated in linear time with respect 

to the number of groups, which is less than or equal to the number of contexts t. For a 

given δ, we can compute XTH−1X in O(t(tc)2) time complexity. Both the restricted and full 

log-likelihoods require the calculation of (XTH−1X)−1. The restricted log-likelihood requires 

the additional calculation of log XTH−1X . To calculate both of these terms, we perform 

a Cholesky decomposition of XTH−1X = LL∗, where * indicates the conjugate transpose. 

Given this decomposition, we can compute

log XTH−1X = ∑
i = 1

tc
2log Li, i (9)

XTH−1X −1 = L∗ −1L−1 (10)

These operations can be done in O((tc)3) time complexity.

Let P(X) denote a projection matrix and M(X) = (I — P(X)). Note that both P(X) and M (X) 

are idempotent. The term remaining term in the likelihood functions, R, can be reformulated 

as follows

y − Xβ = y − X XTH−1X −1XTH−1y
= I − X XTH−1X −1XTH−1 y
= (I − P (X))y
= M(X)y

(11)

M(X)TH−1 = I − X XTH−1X −1XTH−1 T
H−1

= I − H−1X XTH−1X −1XT H−1

= H−1 − H−1X XTH−1X −1XTH−1

= H−1 I − X XTH−1X −1XTH−1

= H−1M(X)

(12)

R = (y − Xβ )TH−1(y − Xβ )
= yTM(X)TH−1M(X)y
= yTH−1M(X)M(X)y
= yTH−1M(X)y
= yTH−1y − yTH−1X XTH−1X −1XTH−1y

= a − bT XTH−1X −1b
= a − bT L∗ −1L−1b

(13)
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The scalar a and vector b are a function of δ and can be algebraically formulated as

a = 1
δ ∑

i = 1

N
yi2 − ∑

g ∈  groups 

1
tg + δ ∑

ind ∈ g
∑yind

2
(14)

bi = 1
δ ∑

ind ∈  context (i)
xind, g(i)yind, f(i) −

∑
g ∈  groups 

1
tg + δ ∑

ind ∈ f(i), g
xind, g(i) ∑yind

(15)

where ∑yind indicates the sum of responses across all contexts for an individual. With values 

independent of δ pre-calculated, a and b can be calculated in linear time with respect to the 

number of groups.

Note that Equations 16 and 17 remove terms that are independent of δ since they are not 

required for finding its optimal value, indicated by the ≈ symbol. We can reformulate the 

entire likelihood functions as follows

lF y; β, σg, δ = 1
2 −Nlog 2πσg2 − log( H ) − 1

σg2
(y − Xβ)TH−1(y − Xβ)

= 1
2 −Nlog 2π R

N − log( H ) − N

= 1
2 −Nlog 2π R

N − (N − n)log(δ) + ∑
i = 1

n
log ti + δ − N

≈ − Nlog a − bT L∗ −1L−1b − (N − n)log(δ) + ∑
i = 1

n
log ti + δ

(16)

lR y; β, σg, δ = lF y; β, σg, σe + 1
2 tclog 2πσg2 + log XTX − log XTH−1X

≈ (tc − N)log a − bT L∗ −1L−1b

− (N − n)log(δ) + ∑
i = 1

n
log ti + δ − ∑

i = 1

tc
2log Li, i

(17)

These likelihoods are maximized for δ  using the optimize function in R. Each likelihood 

evaluation has a time complexity of O((tc)3 + n).

2.3 Likelihood refactoring with no missing data

When there is no missing data, the likelihood functions can be further simplified. Note that 

in this case, N = nt and all ti = t. Hence,
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log( H ) = (N − n)log(δ) + ∑
i = 1

n
log ti + δ

= (nt − n)log(δ) + nlog(t + δ)
(18)

If the input terms y, X, and K are permuted resulting in samples being sorted in order of 

context, and the covariates in X are sorted in order of context, we can decompose H and X 
into

H = 1t + δIt ⊗ In (19)

X = It ⊗ Xdense  (20)

where ⊗ indicates the Kronecker product and Xdense  ∈ Rn × c is a typical representation 

of the covariates for each individual without multiple contexts (i.e. samples as rows and 

covariates as columns). Utilizing the properties of Kronecker products, we can perform the 

following reformulation

XTH−1X −1 = It ⊗ Xdense 
T 1t + δIt ⊗ In

−1 It ⊗ Xdense 
−1

= 1t + δIt
−1 ⊗ Xdense 

T Xdense 
−1

= 1t + δIt ⊗ Xdense 
T Xdense 

−1
(21)

log XTH−1X −1 = log 1t + δIt ⊗ Xdense
T Xdense 

−1

= log 1t + δIt
c Xdense 

T Xdense 
−1 t

= clog 1t + δIt + tlog Xdense 
T Xdense 

−1

= clog 1
(t + δ)δt − 1 + tlog Xdense 

T Xdense 
−1

= c( − log(t + δ) − (t − 1)log(δ)) + tlog Xdense 
T Xdense 

−1

(22)

Note that the remaining determinant in Equation 22 will not need to be calculated since it is 

independent of δ. Next, we show that β  is independent of δ.
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β = XTH−1X −1XTH−1y
= 1t + δIt ⊗ Xdense 

T Xdense 
−1 XTH−1y

= 1t + δIt ⊗ Xdense 
T Xdense 

−1 It ⊗ Xdense 
T 1t + δIt

−1 ⊗ In y

= 1t + δIt ⊗ Xdense 
T Xdense 

−1Xdense 
T 1t + δIt

−1 ⊗ In y

= 1t + δIt 1t + δIt
−1 ⊗ Xdense 

T Xdense 
−1Xdense 

T y

= It ⊗ Xdense 
T Xdense 

−1Xdense 
T y

(23)

This form of β  shows that the optimal coefficients are equivalent to fitting separate ordinary 

least squares (OLS) models for each context. We compute β  by concatenating these OLS 

estimates. Given this term, we can also compute the residuals of this model s = (y − Xβ ) and 

reformulate R as follows.

R = (y − Xβ )TH−1(y − Xβ )
= sTH−1s

= ∑
i = 1

nt
si ∑

j = 1

nt
sjHj, i

−1

= 1
δ ∑

i = 1

nt
si2 + 1

δ(t + δ) − ∑
i = 1

n
∑sind(i)

2

(24)

The term ∑sind(i) denotes the sum of residuals for an individual across all contexts. Let 

u = ∑i = 1
nt si2 and v = − ∑i = 1

n ∑sind(i)
2.

R = 1
δ u + 1

δ(t + δ)v (25)

Now we can reformulate the log-likelihoods, omitting terms that do not depend on δ.

lF(δ) = − ntlog(R) − log( H )

= − ntlog 1
δ u + 1

δ(t + δ)v − (nt − n)log(δ) − nlog(t + δ)

= − ntlog u + 1
t + δv + nlog δ

t + δ

(26)

lR(δ) = (tc − nt)log(R) − log( H ) − log XTH−1X −1

= (tc − nt)log u + 1
t + δv + (c − n)log t + δ

δ
(27)

Both functions are differentiable with respect to δ. Moreover, both derivatives have the same 

root
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δ = −tu − v
u + v (28)

The scalar values u and v can be calculated by performing a separate OLS regression 

for each context, which can be completed in O(t(nc2 + c3)) time for a naive OLS 

implementation. Compared to the methods described above, this approach requires no 

iterative optimization and the estimate is optimal. Our implementation has a time complexity 

of O(c3 + nc2 + tcn).

2.4 Resource requirement simulation comparison

We installed EMMA v1.1.2 and manually built GEMMA from its GitHub source (genetics-

statistics/GEMMA.git, commit 9c5dfbc). We edited the source code of GEMMA to prevent 

the automatic addition of intercept term in the design matrix (commented out lines 1946 to 

1954 of src/param.cpp).

Data were simulated using the mcLMM package. Sample sizes of 100, 200, 300, 400, and 

500 were simulated with 50 contexts. Context sizes of 4, 8, 16, 32, and 64 were simulated 

with 500 samples. Data were simulated with σe2 = 0.2 and σg2 = 0.4 and a sampling rate of 0.5. 

Memory usage of each method was measured using the peakRAM R package (v 1.0.2).

2.5 False positive rate simulation

We simulated gene expression levels in multiple tissues for individuals where there were 

no eQTLs. In other words, gene expression levels were not affected by any SNPs. We 

considered 10,000 genes and 100 SNPs resulting in one million gene-SNP pairs. We 

simulated 1,000 individuals. We also examined false positive rates with 500 and 800 

individuals. We generated 49 such datasets where the number of tissues varied from 2 to 50. 

To simulate the genotypes for each subject, we randomly generated two haplotypes (vectors 

consisting of 0 and 1) assuming a minor allele frequency (MAF) of 30%. To simulate 

gene expression levels from multiple tissues among the same individuals, we sampled gene 

expression from the following multivariate normal distribution:

y ∼ N 0, σg2K + σe2I (29)

where y is an N × T vector representing the gene expression levels of N individuals in T 
tissues and K is an NT × NT matrix corresponding the correlation between the subjects 

across the tissues. Ki,j = 1 when i and j are from two tissues of the same individuals, Ki,j 
= 0 otherwise. Here, we let σg = σe = 0.5. We used a custom R function (included with the 

mcLMM package) to simulate data from this distribution, which is based on sampling with a 

smaller covariance matrix for each block of measurements from an individual.

After generating the simulation datasets, we first ran mcLMM to obtain the estimated effect 

sizes and their standard errors, as well as the correlation matrices. The results from mcLMM 

were used as the input of METASOFT for meta-analysis to evaluate the significance. False 
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positive rate was calculated as the proportion of gene-SNP pairs with p-values smaller than 

the significance level (α = 0.05).

2.6 True positive simulations

We developed the true positive simulation framework based on a previous study describing 

mash [22]. We simulated effects for 20,000 gene-SNP pairs in 44 tissues, 400 of which have 

non-null effects (true positives) and 19,600 of which have null effects. Let (βjr denote the 

effects of the gene-SNP pair j in context/tissue r and βj is a vector of effects across various 

tissues, including null effects and non-null effects. We simulated the gene expression levels 

for 1,000 individuals as:

y = βjr
T X + e (30)

where X denotes the genotypes of the individuals that were simulated as described in the 

false positive rate simulation. e ∼ N 0, σg2K + σe2I , which is similar to the simulation in the 

false positive rate simulation. For βj, we defined two types of non-null effects and simulated 

them in different ways:

▀ Shared, structured effects: non-null effects are shared in all tissues and the sharing is 

structured. The non-null effects are similar in effect sizes and directions (up-regulation 

or down-regulation) across all tissues, and this similarity would be stronger among some 

subsets of tissues. For 19,600 null effects, we set βj = 0. For 400 non-null effects, 

we assumed that each βj independently followed a multivariate normal distribution with 

mean 0 and variance wUk, where k is an index number randomly sample from 1, . . . , 8. 

ω = ω′ , ω′ ∼ N(0, 1) represents a scaling factor to help capture the full range of effects. Uk 

are 44 × 44 data-driven covariance matrices learned from the GTEx dataset, which are 

provided in [22].

▀ Shared, unstructured effects: non-null effects are shared in all tissues but the sharing is 

unstructured or independent across different tissues. For 19,600 null effects, we set βj = 0. 

For 400 non-null effects, we sampled βj from a multivariate normal distribution with mean 

of 0 and variance of 0.01I, where I is a 44 × 44 identity matrix.

After simulating the gene expression levels y, we first ran mcLMM on the simulated datasets 

to acquire the estimated effect sizes and their standard errors, as well as the correlation 

matrices. We then applied METASOFT for meta-analysis with mcLMM outputs to evaluate 

the significance. For mash, we first performed simple linear regression to get the estimates 

of the effects and their standard errors in each tissue separately. These estimates and 

standard errors were used as the inputs for mash, which returned the measure of significance 

for each effect, the local false sign rate (lfsr). Finally, we employed the “pROC” R package 

[15] to calculate the receiver operating characteristic (ROC) curve and area under the ROC 

curve with the significance measures (p-values for mcLMM and METASOFT, lfsr for mash) 

and the correct labels of null effects and non-null effects.
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2.7 Analysis of the GTEx dataset

The Genotype-Tissue Expression (GTEx) v8 dataset [5] was used in this study. We down-

loaded the gene expression data, the summary statistics of single-tissue cis-eQTL data using 

a 1 MB window around each gene, and the covariates in the eQTL analysis from GTEx 

portal (https://gtexportal.org/home/datasets). The subject-level genotypes were acquired 

from dbGaP accession number phs000424.v8.p2. The GTEx v8 dataset includes 49 tissues 

from 838 donors. We selected 15,627 genes that were expressed in all 49 tissues. We only 

included SNPs with minor allele frequency (MAF) greater than 1% and missing rate lower 

than 5%. We applied mash and mcLMM plus METASOFT to the GTEx v8 dataset in our 

analysis.

Since mash requires observation of the correlation structure among non-significant tests and 

data-driven covariance matrices before fitting its model, we prepared its input by selecting 

the top SNP with the smallest p-value and 49 random SNPs (or all other SNPs if there were 

fewer than 49 SNPs left in a gene) in every gene from the eQTL analysis in the GTEx v8 

dataset. There were 560,475 gene-SNP pairs in total. mash uses the estimated effect sizes 

and standard errors of these gene-SNP pairs to learn the correlation structure of different 

conditions/tissues. We used the top significant SNPs to set up the data-driven covariances. 

We then fit mash to the random set of gene-SNP pairs with the canonical and data-driven 

covariances. With the fitted mash model, we computed the posterior summaries including 

local false sign rate (lfsr) [18] for the selected gene-SNP pairs to estimate the significance. 

We defined significant gene-SNP pairs as those with lfsr < 0.05 in any tissues.

We applied mcLMM to the same set of gene-SNP pairs. We regressed out unwanted 

confounding factors in gene expression levels for each tissue with a linear model using 

covariates provided by GTEx. Covariates of each sample included top 5 genotyping 

principal components, PEER factors [17] (15 factors for tissues with fewer than 150 

samples, 30 factors for those with 150–250 samples, 45 factors for those with 250–350 

samples, and 60 factors for those with more than 350 samples), sequencing platform, 

and sex. We ran mcLMM with the genotypes and processed gene expression levels of 

all 838 individuals across 49 GTEx tissues for each gene-SNP pair. Missing values in 

gene expression were included in the mcLMM input. The effect sizes, standard errors, 

and correlation matrices estimated by mcLMM were meta-analyzed with METASOFT to 

evaluate the significance under both the fixed effects (FE) and random effects (RE2) models. 

The resulting p-values were converted to q-values [19] to control false discovery rates. A 

gene-SNP pair was considered significant if its false discovery rate (FDR) was smaller than 

5%.

2.8 Analysis of the UK Biobank dataset

This work was conducted using the UK Biobank Resource under application 33127. 

Samples were filtered for Caucasian individuals (Data-Field 22006)). Hard imputed 

genotype data from the UK Biobank were LD pruned using a window size of 50, step size 

of 1, and correlation threshold of 0.2. SNPs were further filtered for minor allele frequency 

of at least 0.01 and a Hardy-Weinberg equilibrium p-value greater than 1e-7 using Plink 2 

[4]. Samples were filtered for unrelated individuals with KING using a cutoff value of 0.125 
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[11]. Genotype data were split by chromosome and converted to bigsnpr format (v 1.4.4) for 

memory efficiency [12].

The following data fields were retrieved: age at recruitment (Data-Field 31), sex (Data-Field 

21022), BMI (Data-Field 23104), body fat percentage (Data-Field 23099), 10 genetic 

principal components (Data-Field 22009), HDL Cholesterol (Data-Field 30760), LDL 

Direct (Data-Field 30780), Apolipoprotein A (Data-Field 30630), Apolipoprotein B (Data-

Field 30640), and Triglycerides (Data-Field 30870). Continuous phenotypes were visually 

inspected and triglycerides were log-transformed due to skewness. Data were filtered for 

complete observations. All fields were scaled to unit variance and centered at 0.

HDL cholesterol, LDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglycerides 

were combined as response variables in the LMM and age, sex, BMI, body fat percentage, 

and the top 10 genetic principal components were used as additional covariates in the 

model. Each SNP was marginally fit with mcLMM. The coefficients output by this model 

for each phenotype were meta-analyzed to calculate FE p-values using METASOFT as 

packaged with Meta-Tissue v 0.5. The top GWAS hits for five different chromosomes (one 

per chromosome) were validated using the NHGRI-EBI GWAS catalog [2] and compared to 

studies for LDL and HDL cholesterol (GCST008035 and GCST008037).

3 Results

3.1 mcLMM is computationally efficient

To demonstrate the efficiency of mcLMM compared to existing approaches, we applied 

our method to simulated data of varying sample sizes and number of contexts. For these 

simulations, we simulated a sampling rate of 0.5, which indicates that only half of all 

possible individual-context pairs of observations are expected to be sampled.

We first applied our method to simulations with a fixed number of 50 contexts and varied the 

sample size from 100 to 500. From these experiments, we observed that mcLMM requires 

computational time orders of magnitude less than EMMA and GEMMA. Similarly, when we 

fixed the number of samples at 500 and varied the context sizes from 4 to 64, we observed 

dramatically reduced runtimes for mcLMM.

In these experiments, mcLMM also significantly reduces the memory footprint compared to 

EMMA and GEMMA, since we avoid creating any nt by nt matrices. In these simulations, 

existing approaches quickly grow memory requirements, with usages that grow to dozens 

of gigabytes for modestly sized datasets in the thousands of samples. mcLMM allows 

large-scale studies to be performed on relatively little computational resources (Figure 1).

In cases where there is no missing data, mcLMM allows for further speedups. We ran 

similar simulations to compare mcLMM with no missing data (optimal model) and mcLMM 

with missing data (iterative model). We observed a dramatic speedup, with sample sizes of 

500,000 individuals across 10 contexts completed in under 10 seconds for the optimal model 

compared to around 15 minutes for the iterative model.
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3.2 mcLMM enables powerful meta analyses to detect eQTLs

We utilized mcLMM to reduce the computational resource requirements of the Meta-Tissue 

pipeline, which fits a multiple-context LMM and combines the resulting effect sizes using 

METASOFT [20]. While powerful, the existing approach utilizes EMMA to fit the LMM. 

For a recent release from the GTEx consortium [5], each pair of genes and single nucleotide 

polymorphisms (SNPs) required over two hours to run. Across hundreds of thousands of 

gene-SNP pairs, this method would require years of computational runtime to complete. 

Utilizing mcLMM, we were able to complete this analysis in 3 days parallelized over each 

chromosome.

We compared our approach to a method known as mash [22]. This approach utilizes effect 

sizes estimated within each context independently and employs a Bayesian approach to 

combine their results for meta-analysis. In order to estimate the power of these methods, 

we performed simulations as described in the methods. In null simulations, we observed 

well-controlled false positive rates at α = 0.05 for mcLMM coupled with METASOFT. 

In our simulation with true positives, we observed an increased area under the receiver 

operating characteristic (AUROC) for mcLMM coupled with the random effects (RE2) 

METASOFT model compared to mash (Figure 2).

Next, we compared the number of significant associations identified in the GTEx dataset. 

The mash approach utilized gene-SNP effect sizes estimated by the GTEx consortium within 

each tissue independently. Concordant with our simulations, we observed that the Meta-

Tissue approach, utilizing mcLMM for vast speedup, identified more significant eQTLs than 

mash (Figure 3). These associations allow researchers to better understand the link between 

genetic variation and complex phenotypes through possible mediation of gene expression.

3.3 mcLMM scales to millions of samples across related phenotypes

As a practical application of the efficiency of mcLMM, we performed a multiple phenotype 

GWAS in the UK Biobank. A multiple phenotype GWAS associates SNPs with several 

related phenotypes in order to increase the effective sample size for greater power, under the 

assumption that the phenotypes are significantly correlated. For our analysis, we combined 

HDL and LDL cholesterol, Apolipoprotein A and B, and triglyceride levels across 323,266 

unrelated caucasian individuals in the UK Biobank. In total, 1,616,330 observations of these 

related phenotypes were fit as responses in the LMM.

The mcLMM approach completed this analysis over 211,642 SNPs with an additional 

14 covariates, parallelized over each chromosome, within a day. Each chromosome was 

analyzed on a single core machine with 32 GB of memory, with each test taking around 

2 seconds to complete. We identified several significant loci, a subset of which replicate 

previous findings for specific phenotypes included in the model, such as HDL cholesterol 

[25] (Figure 4). Existing approaches, namely EMMA and GEMMA, require orders of 

magnitude more memory to begin this analyses and could not be run on the available 

computational resources.
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4 Discussion

We presented mcLMM, an efficient method for fitting LMMs used for multiple-context 

association studies. Our method provides exact results and scales linearly in time and 

memory with respect to sample size, while existing methods are cubic. This efficiency 

allows mcLMM to process hundreds of thousands of samples over several contexts within 

a day on minimal computational resources, as we showed in simulation and in the UK 

Biobank. The association parameters learned by mcLMM can further be utilized with 

the METASOFT framework to provide powerful meta-analysis of the associations, as we 

showed in the GTEx dataset.

Previous approaches have derived related speedups for LMMs when the matrix K is low 

rank, such as in the case when multiple samples are genetically identical or clustered in 

genome wide association studies as described in FaST-LMM [10]. In this approach, the 

authors show that the likelihood function can be evaluated in linear time with respect to the 

number of individuals after singular value decomposition of a matrix that is also linear with 

respect to the number of individuals. Other work has similarly used block structures and 

Kronecker refactorizations in studies with structured designs, such as multi-trait GWAS, to 

significantly speed up these approaches as well [9, 13].

Our approach builds upon these findings and we optimize the method specifically for the 

low rank matrix with known eigenvalues described in the model, thus avoiding any spectral 

or singular value decompositions. Furthermore, when there is no missing data, our method 

can compute the optimal model parameters with a closed form solution requiring no iterative 

optimization of likelihood functions. We also note that mcLMM models covariance across 

contexts within an individual while the FaST-LMM approach, described above, models 

covariance across individuals within each context. This specific model fit by mcLMM arises 

in multiple-context association studies, such as the approach employed by Meta Tissue 

[20] for identifying eQTLs across tissues utilizing the cubic EMMA algorithm. Applied 

within this framework for eQTL and multi-trait genome wide association studies, our 

method provides exact results and scales to hundreds of thousands of samples with minimal 

computational resources.
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Figure 1. 
Resource requirements of mcLMM, GEMMA, and EMMA across various simulated 

individual and context sizes with missing values (sampling rate of 0.5). For varying 

individuals, contexts were fixed at 50. For varying contexts, individuals were fixed at 500. 

(A-B) Runtime with log10(seconds) on the y-axis and number of individuals or contexts 

simulated on the x-axis. (C-D) Memory usage (GB) on the y-axis and number of individuals 

or contexts simulated on the x-axis.
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Figure 2. 
AUROC curves of mcLMM+METASOFT (fixed effects and random effects models) and 

mash in simulated data, assuming the effects of gene-SNP pairs are (A) shared and 

unstructured, and (B) shared and structured.
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Figure 3. 
Venn diagram of significant eQTLs identified by meta-analysis methods in the GTEx 

dataset. We compared mcLMM using the fixed effects (FE) and random effects (RE2) 

models in METASOFT to mash. Note that areas are not proportional to the number of 

eQTLs in each region. mcLMM+METASOFT (RE2) identified a total of 321,117 significant 

associations that contained 225,818 eQTLs identified by mash.
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Figure 4. 
Multiple phenotype GWAS results from UK Biobank. Five phenotypes (LDL cholesterol, 

HDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglyceride levels) were used 

as responses in the mcLMM framework. The model was fit with 1,616,330 observations 

from 323,266 unrelated Caucasian individuals. In total, 211,642 SNPs were tested with an 

additional 14 covariates. Each test required around 2 seconds to run on a 32GB machine and 

was parallelized over each chromosome. The -log10 of the p-values are plot on the y-axis 

and genomic positions on the x-axis. The horizontal dashed line indicates the genome wide 

significance level at p = 0.05/1e6. The top hit for 5 different chromosomes is annotated with 

the gene containing the SNP. These genes have been previously identified as associated with 

a subset of these phenotypes.
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