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The mTOR pathway plays a central role in many cellular processes, such as cellular
growth, protein synthesis, glucose, and lipid metabolism. Aberrant regulation of mTOR is
a hallmark of many cancers, including hematological malignancies. mTOR inhibitors, such
as Rapamycin and Rapamycin analogs (Rapalogs), have become a promising class of
agents to treat malignant blood diseases—either alone or in combination with other
treatment regimens. This review highlights experimental evidence underlying the
molecular mechanisms of mTOR inhibitors and summarizes their evolving role in the
treatment of hematologic disease, including leukemia, lymphoma, myeloma, immune
hemocytopenia, and graft-versus-host disease (GVHD). Based on data presented in this
review, we believe that mTOR inhibitors are becoming a trusted therapeutic in the clinical
hematologist’s toolbelt and should be considered more routinely in combination therapy
for the management of hematologic disease.
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The mammalian target of rapamycin (mTOR) is a downstream target of multiple signaling
pathways involved in biological activities, including the familiar PI3K/Akt/mTOR signaling
pathway, which plays an important role in cell growth, differentiation, metastasis and survival,
and has become an important target of cancer treatment. Rapamycin (Rapa), the first mTOR
inhibitor, was initially used as an immunosuppressive drug in the field of solid organ
transplantation (1). In-depth studies of rapamycin and its analogs (Rapalogs), and of the mTOR
signaling pathway, have led to the understanding that Rapalogs can not only induce tumor cell
apoptosis, cell cycle arrest and signal transduction inhibition, but that they also affect gene
transcription and epigenetic regulation. The mTOR signaling pathway is critical in normal
myeloid and lymphoid development and function. Moreover, hyperactivation of mTOR is a
hallmark of many hematological diseases and provides a strong rationale for the use of mTOR
inhibitors (mTORi), such as Rapalogs. The primary focus of this review is to 1) review the literature on
the regulation and outcome of the mTOR signaling pathways from a basic research perspective, and 2)
summarize the use of mTOR inhibitors to target aberrant mTOR activation and signaling in
hematological diseases, such as acute leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma,
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multiple myeloma, GVHD, and Waldenström macroglobulinemia.
We also provide our perspective on the evolution of this field, as the
application and efficacy of mTOR inhibitors becomes more widely
recognized in the field of blood disorders.
mTOR AND mTOR INHIBITORS

The mammalian target of rapamycin (mTOR) is a large (289
kDa), conserved serine protein kinase, belonging to the PI3K
kinase family. mTOR can integrate the stimulatory signals from
nutrients, growth factors and environmental pressure, and
regulate cell growth, proliferation, differentiation, and cell cycle
progression. In the immune system, mTOR can transmit and
integrate signals from the immune microenvironment, and is
considered a key regulator of immune metabolism and function
(2). At present, it is believed that there are two dominant,
upstream signaling pathways for mTOR, one is the PI3K/Akt/
mTOR pathway, which interacts with mTOR to positively
regulate, and the other is the LKB1/AMPK/mTOR pathway,
which has primarily been reported as a negative regulator of
mTOR (3, 4).

mTOR exerts its activity via the formation of two catalytically
distinct complexes, mTORC1 and mTORC2 (5). mTORC1
complex is composed of mLST8, PRAS40, Deptor, and Raptor.
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mTORC2 complex is composed of Rictor, mSIN1, Protor,
mLST8, and Deptor. In general, mTORC1 plays a more
dominant role in regulating cellular anabolic processes, while
the effect of the mTORC2 signaling pathway is primarily through
Akt Studies have shown that mTORC1 signaling pathway plays
an important role in the metabolism of glucose, lipids,
nucleotides, and proteins as well as in the regulation of
mitochondrial biogenesis (6). The downstream signaling
molecules of mTORC1 are primarily P70S6K (p70 ribosomal
S6 kinase) and 4E-BP1 (eukaryotic transcription initiation factor
binding protein), by which protein translation and synthesis are
increased (Figure 1). On the other hand, mTORC2 is primarily
involved in the insulin signaling pathway to regulate glucose and
lipid metabolism (7). Importantly, when mTORC1 is completely
inhibited by mTOR inhibitors, mTORC2 signaling is
preserved (8).

Several pharmacological agents have been developed which
inhibit mTOR (mTOR inhibitors; referred to broadly here as
mTORi), including Rapamycin and its analogs. Rapamycin,
clinically named sirolimus (SRL), was a macrolide antibiotic
discovered in the 1970s (9). SRL has many functional properties,
including inhibition of yeast growth, anti-cancer, anti-aging and
anti-atherosclerotic effects as well as immune regulation (10–12).
In the context of immune regulation, SRL can inhibit T cell
activation and proliferation, and restrain B cell activation and
FIGURE 1 | The mTOR signaling pathway and Rapalog therapeutic mechanisms. mTOR modulates a variety of cellular activities through mTORC1 and mTORC2.
MTOR can respond to extracellular stimuli, such as cytokines, growth factors and DNA stress, which mainly regulate cell growth, cell cycle, and other physiological
activities through PI3K/Akt/mTOR pathway. Normally, TSC1/TSC2 forms a dimer complex, which is an inhibitor of small GTPase Rheb, and Rheb is a necessary
stimulating protein for mTOR activation. Hence the mTORC1 activity is critically inhibited by TSC1/TSC2 complex. When Akt is activated, it can phosphorylate ser939
and thr1462 of TSC2 and inhibit the formation of TSC1/TSC2 complex, thus relieving the inhibition of Rheb, then activated Rheb sensitized mTOR function.
Additionally, PI3K activates the ribosome to increase mTORC2 reaction. In a word, PI3K promotes the mTOR activates. Another important pathway of mTOR is
regulated by AMPK. Firstly, AMPK directly phosphorylates Raptor to inhibit mTORC1 activity. Raptor is the downstream molecule of AMPK, and TSC2 is not involved
in this process. Secondly, AMPK can also activate TSC1/TSC2 complex and inhibit mTORC1 activity as described above. Therefore, unlike the PI3K, AMPK restrains
the mTOR function. Rapalogs can combine the FKBP12 and inhibit the kinase activity of mTORC1 and mTORC2, ultimately regulate various biological functions of
cells, that is the mechanism of mTOR inhibitors. Arrows indicate activation and bars represent inhibition.
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antibody production caused by antigens and cytokines (13). In
the clinic, SRL is primarily used in the prevention of organ
rejection after solid organ transplantation, as well as for the
treatment of autoimmune diseases (14). With the development
of Rapamycin analogs in recent years, Rapalogs, many studies
have reported their therapeutic effects on hematological
diseases (15).

To date, the most common Rapalogs are: Everolimus (Eve,
RAD-001), Deforolimus (Def, Ridaforolimus), Zotarolimus
(Zot), and Temsirolimus (Tem, CCI-779) (Figure 2).
Everolimus is an mTOR inhibitor developed by Novartis
(Switzerland), which is a 40-o-(2-hydroxyethyl) derivative of
rapamycin, with the molecular formula C53H83NO14, (958 kDa).
In March 2009, the drug received accelerated approval from the
FDA for the treatment of kidney cancer (16, 17). Deforolimus is a
C40 derivative of Rapa, which is a semi-synthetic derivative
designed by Computer-aided drug design (CADD) with
molecular formula C53H84NO14P (990 kDa) (18). Def is still
considered an investigational agent in the management of
advanced solid tumors, such as sarcoma (19) and breast cancer
(20). Only clinical study reported using Def for the treatment of
the hematological malignancy lymphoma, and the overall
response rate (ORR) was 50% (21). Zotarolimus is a Rapa
derivative developed by Abbott and Medtronic. It is a C40
tetrazole substitute of Rapa, with molecular formula
C52H79N5O12 (966 kDa). Compared with Rapa, Zot has a
shorter half-life in vivo. The mechanism of Zot is similar to
Rapa. Zot combines with FKBP12 to form a complex, which bind
to mTOR protein kinase to form a trimer, inhibits the activity of
mTOR by preventing its phosphorylation, and prevents cell cycle
progression from G1 to S phase (22). It was designed for use as a
coating in stents with phosphorylcholine as a carrier.
Temsirolimus, also named 42-[3-hydroxy-2- (hydroxymethyl)-
2-methylpropionate], is a Rapa derivative with molecular
formula C56H87NO16 (1030 kDa). It is a Rapa soluble esterified
Frontiers in Oncology | www.frontiersin.org 3
derivative officially approved by the US FDA in 2007, which
inhibits the translation of several key proteins for cell cycle
regulation. These effects lead to cell cycle arrest in the G1
phase, therefore also known as Cell Cycle Inhibitor-779 (CCI-
779). In August 2007, FDA approved temsirolimus as a first-line
treatment for advanced renal cancer. At present, it is marketed as
a treatment of renal cancer, and is being investigated in the clinic
for the treatment of breast cancer (23), lymphoma (24), lung
cancer (25), and many other tumors (26).
APPLICATIONS OF mTORI IN
HEMATOLOGICAL MALIGNANCIES

Acute Leukemia
Acute myeloid leukemia (AML) is a type of cancer of the bone
marrow in which myeloid stem cells differentiate and accumulate
as abnormal myeloblasts in the bone marrow, impair
erythropoiesis/hematopoiesis and eventually migrate
throughout the body. Although mTOR activation is frequently
observed in AML blasts, the precise function and the
downstream targets of mTOR in this disease are poorly
understood. Feng et al. revealed that PFKFB3 was a novel
downstream substrate of mTOR signaling pathway, and found
that up-regulation of PFKFB3 via aberrant mTOR signaling was
essential for AML cell survival. Moreover, PFKFB3 inhibitor
PFK15 and rapamycin synergistically ablated AML cell
proliferation (THP1 and OCI-AML3 cells) (27). Xu et al.
found that PI3K/Akt/mTOR pathway was up-regulated in
most AML cells . Rapa combined with etoposide, a
chemotherapy, enhanced the effect of etoposide on primary
AML cells; moreover, leukemia progenitor cells were more
sensitive to Rapa than normal progenitor cells (28, 29). Brown
et al. have found that rapamycin inhibited growth of B-precursor
FIGURE 2 | Chemical structure of five mTOR inhibitors.
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ALL cell lines in vitro, as evidenced by apoptotic cell death. Mice
with advanced ALL and were treated with rapamycin as a single
agent exhibited enhanced survival compared to control-treated
ALL-bearing animals (30). Avellino et al. reported SRL (+/-
doxorubicin) can promote the apoptosis of primary pediatric
ALL blast cells in vitro, indicating that rapamycin targets two
pathways that are crucial for cell survival and chemoresistance of
malignant lymphoblasts (PI3k/Akt and FKBP51/NF-kB) (31). In
a phase I/II study of everolimus in combination with
HyperCVAD in patients with R/R ALL, ORR was in 41% and
significantly higher in first salvage patients as compared with
second salvage or beyond. Moreover the inhibition of
phosphorylation of S6K1 did not correlate with response, and
the combination regimen did not increased toxicity than
HyperCVAD alone (32). Thus, the combination of Rapalogs
with some chemotherapies may be an effective regimen for AML
and ALL.

Results of clinical trials using Rapalogs as a single agent have
shown very limited response in AML patients, such as sirolimus
(33), deforolimus (21), or everolimus (34). There are also reports
of combination strategies; for example, SRL was combined with
MEC (mitoxantrone, etoposide, cytarabine) to treat patients with
relapsed, refractory, or untreated high-risk AML. The ORR to the
combination regimen was 16%–47% (35–37), which suggested
SRL and MEC may be an effective option as a treatment regimen
for AML. However, Burnett et al. added everolimus to
consolidation therapy in AML, and reported there was no
difference in relapse-free survival and overall survival (38).
This study suggests that the addition of everolimus to
chemotherapy provides no benefit (38). Interestingly, Recher
et al. found that some primary AML cells have innate Rapa-
resistance, due to several mechanisms, including FKBP-12
mutations, high eIF-4/4E-BP1 ratio, defective regulation of
p27kip1, and c-myc amplification (33). Taken together,
combination of Rapalogs with other chemotherapies might be
an effective regimen for patients with high-risk acute leukemia;
however, stratification of patients who are likely to respond to
these regimens, perhaps based on underlying mutation patterns,
must be better understood.

Myelodysplastic Syndrome
Myelodysplastic syndrome (MDS) is a group of hematopoietic
stem cell disorders, characterized by ineffective clonal
hematopoiesis leading to blood cytopenias, and convey a
variable risk of progression to AML (39). Activation of the
mTOR pathway in CD33+ cells from MDS patients by the
amino acid L-leucine in 5q- syndrome was reported by Yip BH
et al. (40). Importantly, in primary cells from high-risk MDS
patients, not only was mTOR activated but also its downstream
targets, P70S6K and 4E-BP1. Treatment with Rapa significantly
increased CD33+ cells apoptosis from high-risk MDS patients,
but not cells from healthy donors or those patients with low-risk
MDS (41). Mutated GSTT1 gene was detected in some MDS
patients and this mutation creates a sequence that is 63%
homologous to human FKBP-rapamycin associated protein
(FRAP). To examine the effect of mutant GSTT-1, two cell
lines (K562 and HL-60) were stably transfected with the
Frontiers in Oncology | www.frontiersin.org 4
mutant type GSTT1 gene. Expectedly, rapamycin induced
significant growth inhibition of those two cell lines, suggesting
that rapamycin could be included as a potential therapeutic
modality for high-risk MDS patients (42).

Platzbecker et al. (43) treated 19 MDS patients with SRL as a
single agent, and demonstrated that SRL might have some
activity in patients with more advanced MDS but lacked
efficacy in low-risk MDS patients. Martin et al. (44) treated 20
MDS patients with temsirolimus at a weekly dose of 25 mg;
however, only four (20%) reached the response assessment after
4 months without hematological improvement. Based on these
this response assessment, they concluded that Temsirolimus has
no beneficial effects in elderly MDS patients. However, because
MDS is a highly heterogeneous disease, a more in-depth study on
the therapeutic effect of Rapalogs in patients with MDS
is warranted.

Chronic Myeloid Leukemia
CML is a hematopoietic disorder characterized by the malignant
expansion of bone marrow stem cells, with the presence of a
reciprocal translocation between chromosomes 9 and 22 resulting
in activation of fusion gene BCR-ABL expression (45). It has been
found that BCR/ABL, a common driver mutation in CML,
mediates the expression of VEGF and its transcriptional
activator HIF1 through PI3K and mTOR pathways (46). It also
found that BCR/ABL regulates P70S6K and 4E-BP1 through
mTOR activation (47–49). In vitro, Rapamycin (combined with
celecoxib) induced cell cycle arrest and apoptosis of the CML cell
line K562. As we know, tyrosine kinase inhibitors (TKIs) are the
first line therapy for CML, implying that a combination of TKI
withmTORi could enhance the antitumor effects ofTKI treatment
onCML cells (50). Several groups have, indeed, demonstrated this
synergistic effect, combining imatinib with rapamycin (47, 51), or
everolimus (52) to overcomeTKI resistance in vitro, including cell
line K562, murine CML model and CML patients samples.
However, whether Rapalogs represent a new treatment
opportunity for TKI resistant CML remains to be investigated in
the clinic.

Myeloproliferative Neoplasms
MPNs often begin with an abnormal gene mutation or change in
a stem cell in the bone marrow, resulting in hemocytopenia and
splenomegaly, etc. Types of MPN include myelofibrosis,
polycythemia vera and essential thrombocythemia (53).
Bartalucci et al. found that mTOR signaling pathway was
activated in MPN including myelofibrosis (MF), which was
located downstream of JAK2 signaling pathway (54).
Guglielmelli et al. (55) carried out treatment of patients with
myelofibrosis with everolimus, resulting in 20% of patients’
spleens shrinking > 50%, 40% of patients’ spleens shrinking >
30%, and 15%–25% of patients with hematological reaction. In
other studies (56, 57), JAK2/V617F mutated leukemia cell lines
(HEL and SET2) and patients’ samples of PV or PMF were
sensitive to everolimus. Moreover, the combination of JAKs
inhibitor (ruxolitinib) and everolimus, showed synergy in
inducing cell-cycle arrest and blockade of cell proliferation
(58), which is promising for MPN treatment.
January 2021 | Volume 10 | Article 611690
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Hodgkin Lymphoma
Aberrant activation of the PI3K/Akt/mTOR pathway is a
hallmark of lymphomas, including Hodgkin lymphoma (HL)
(59, 60) and non-Hodgkin lymphomas (NHLs) (61, 62).
Abnormal activation of upstream or downstream molecules of
mTOR can cause disease development. mTOR mutations have
been described in diffuse large B-cell lymphoma (DLBCL)
samples (63), and activated ABC-DLBCL cell lines expressed
high level of S6K1, which is a downstream target of mTOR (64).
mTOR directly mediates Cyclin D1 downregulation through
glycogen synthase kinase (GSK)-3b in mantle cell lymphoma
(MCL) (65). Based on these observations and preclinical data,
clinical trial using Rapalogs have been carried out in patients
with lymphoma (66).

Everolimus has significant activity in relapsed/refractory (R/
R) HL and is currently listed as a treatment option for HL in the
National Comprehensive Cancer Network (NCCN) guidelines
(67). Everolimus demonstrates single-agent activity in treating
Hodgkin (67–71) and non-Hodgkin lymphoma (72–76), with
responses ranging from 20% to 47%. In a small phase 2 study, 19
patients with R/R HL were treated with single-agent everolimus
(10 mg/d), with an ORR of 47% (69). This was recapitulated in a
larger multicenter study of 57 patients with an ORR of 42%,
including five complete responses (CRs) and a median PFS of 9
months (68). The combination of sirolimus and HDAC inhibitor
(vorinostat) is well-tolerated with encouraging activity in very
heavily pretreated patients with Hodgkin lymphoma who are
refractory to standard therapies. In 28 patients enrolled and
accepted SRL and vorinostat scheme, the ORR was 57% (CR
32%+PR 25%) (77, 78). The emergence of effective new drugs in
the treatment HL, including CD30 mAbs and checkpoint
inhibitors, such as PD-(L)1 mAbs, may limit the broad
application of mTORi in this setting. However, mTORi may be
useful in later lines of therapy for difficult-to-treat, multidrug-
exposed patients with R/R HL.
Non-Hodgkin Lymphomas
There are also clinical trials using Rapalogs to treat NHL, for
example, temsirolimus is used for relapsed MCL with an ORR
38-47% (79, 80). A phase I b clinical trial investigated
temsirolimus in association with R-CHOP (R-CHOP-T), or
high-dose cytarabine plus rituximab (R-DHA-T), or
fludarabine, cyclophosphamide plus rituximab (R-FC-T).
Regarding efficacy, ORR during treatment period was 40% for
R-CHOP-T including two patients who reached CR, 43% for R-
FC-T including three patients who reached CR, and 47% for R-
DHA-T including six patients who reached CR (81). In another
study, Temsirolimus combined with bortezomib in DLBCL
achieved an ORR of 31% (82). Yet another study investigated
single-agent temsirolimus 25 mg weekly administrated in three
groups of patients with relapsed aggressive and indolent
lymphomas: group A (diffuse large B-cell lymphoma,
transformed follicular lymphoma), group B (follicular
lymphoma), and group C (chronic lymphocytic leukemia/small
lymphocytic lymphoma, and other indolent lymphomas). Group
A had an overall and complete response rate of 28.1% and 12.5%,
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respectively, and median PFS of 2.6 months and median OS of
7.2 months. Group B had overall and complete response rates of
53.8% and 25.6%, respectively, and median PFS of 12.7 months;
median OS has not yet been reached. Group C had a partial
response rate of 11% with no complete responders (83).
Everolimus has been used to treat R/R marginal zone
lymphomas (MZLs) with an ORR of 25% (75). Temsirolimus
and everolimus are not very effective in lymphoma, which may
be due to inhibition of mTORC1 but not mTORC2, resulting in
feedback activation of PI3K/Akt (84). As for chronic
lymphocytic leukemia (CLL), Decker et al. found that
Rapamycin mediates the arrest of B cells of CLL in G1 phase
(85). Three cases of lymphoproliferative diseases after
transplantation have been successfully treated with rituximab
and Rapamycin (86). Clinical evidence indicate that everolimus
has a positive effect in patients with lymphoplasmacytic
lymphoma/Waldenström macroglobulinemia (LPL/WM) and
ORR can reach 70% (87). Taken together, subtypes of
lymphoma may respond differently to mTORi; additional
studies are needed to clarify the benefit/risk ratio of mTORi
use in these settings.

Multiple Myeloma
Multiple myeloma (MM) is a hematological malignancy
characterized by abnormal production of immunoglobulins by
malignant plasma cells (PCs). Previous studies have indicated
that the PI3K/Akt/mTOR signaling pathway is aberrantly
activated in MM cells (88, 89). MM blast cells secrete growth
factor IL-6 and IGF-1 to activate PI3K/Akt, which induce
abnormal expression of mTOR (90). Following curcumin
treatment, mRNA and protein expression levels of mTOR were
decreased, inducing apoptosis in MM cell lines, indicating a
potential novel therapy for MM (91). Lamanuzzi A et al. (92)
evaluated endothelial cells (ECs) from 20 patients with
monoclonal gammopathy of undetermined significance
(MGUS) and 47 patients with MM, and found higher
activation of mTORC2 downstream effectors, suggesting a
major role of mTORC2 in the angiogenic switch to MM.
Inhibition of mTORC2 with lenalidomide and bortezomib
exhibited a synergistic anti-angiogenic effect (92). Combining
rapamycin with resveratrol has a synergistic effect in inhibition
of myeloma cell line viability (93). Everolimus shows synergistic
anti-myeloma effects with bortezomib through inhibition of the
Akt/mTOR pathway in both the MM cell lines and MM-bearing
mice model (94, 95).

In a clinical trial, 17 patients with R/RMMwere administered
single-agent everolimus; the ORR was 59% including eight
patients with stable disease (SD), one with partial response
(PR), one with minor remission (MR) (96). In another trial, 26
patients were administered everolimus and lenalidomide for 21
days with a 7 days break between cycles. The ORR was 65%, the
median PFS was 5.5 months and median overall survival (OS)
was 29.5 months (97). Temsirolimus has also been combined
with lenalidomide in a phase I study in patients with relapsed
MM. In total, 21 patients were enrolled, two patients (10%)
achieved PR, and 15 patients (71%) had SD (98). In another
phase I/II study evaluated temsirolimus in combination with
January 2021 | Volume 10 | Article 611690
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weekly bortezomib in R/R MM patients, 14 of 43 (33%) patients
achieved ORR (99). There are currently multiple approved drugs
to treat multiple myeloma in front-line therapy; however, there is
still no cure for this serious disease. Thus, more studies are
needed to evaluate the potential benefit of incorporating mTORi
into late-line regimens in R/R MM patients.
APPLICATIONS IN NON-MALIGNANT
HEMOPATHIES

Immune Thrombocytopenic Purpura
The pathogenesis of immune thrombocytopenic purpura (ITP)
includes abnormal activation of autoreactive T and B cells, which
leads to immune destruction of platelets, providing a theoretical
basis for the application of rapamycin in ITP. Wang CY et al.
(100) found that platelet autophagy was diminished in ITP
patients, and platelet autophagy in ITP was regulated by the
PI3K/Akt/mTOR pathway. Rapamycin induced autophagy and
alleviated the destruction of ITP platelets (100). Rapamycin and
prednisone were used to treat adult chronic ITP (101). After
comparing the remission rates of rapamycin group and
cyclosporine group, as well as the levels of Treg cells, IL-10,
and TGF - b cytokines in responders, it was concluded that
rapamycin combined with low-dose dexamethasone could not
improve the remission rate, but the sustained remission time of
those treated with Rapamycin was significantly longer than that
of cyclosporine-treated patients, and the Rapa-responders’ Treg
cell level and Foxp3 mRNA expression level were significantly
higher than those treated with cyclosporine.

Bride et al. (102) conducted a multicenter prospective study
(NCT00392951) on rapamycin as a single therapy for refractory
autoimmune pancytopenia of 30 patients. The result showed that
rapamycin had a significant effect on secondary multicellular
hemocytopenia, such as secondary Hypogammaglobulinemia,
Evans Syndrome (ES), and SLE (systemic lupus erythematosus),
especially thrombocytopenia, with a CR rate of 67% (8/12). In this
report, all children (12) with autoimmune lymphoproliferative
syndrome (ALPS) achieved a durable CR, including rapid
improvement in autoimmune disease, lymphadenopathy, and
splenomegaly within 1–3 months of starting sirolimus. Double-
negative T cells were no longer detectable in most, suggesting a
targeted effect of sirolimus. Jasinski et al. (103) treated 17 patients
with sirolimus, among which were 12 ITP and 5 ES cases. As a
result, 73% of ITP patients achieved a CR by 3 months, while 50%
of ES patients had a CR. Of the patients that achieved CR, 90%
remained off all therapy for a median of 2 years.

Miano et al. (104) retrospectively analyzed primary ITP (10
cases) and ITP secondary to autoimmune lymphoproliferative
syndrome (nine cases) who received sirolimus treatment, and
had previously failed mycophenolate mofetil (MMF) therapy. As
a result, 5/10 primary ITP patients (50%) and 8/9 (89%)
secondary ITP patients responded to SRL respectively. Our
center initialed a prospective, single-arm clinical trial, in which
86 patients were included and given SRL administration. The
results showed that SRL treatment obtained an ORR of 85% at
Frontiers in Oncology | www.frontiersin.org 6
the 3rd month without serious drug toxicity. After 12 months
follow-up, the ORR remained at 65%. Importantly, in patients
who responded, SRL treatment was associated with a reduction
in the percentage of Th2, Th17 cells, and increase in the
percentage of monocytic-Myeloid-Derived Suppressor Cells
(M-MDSCs) and T regulatory cells (Tregs), indicating that SRL
may re-establish peripheral tolerance. To date, this is the largest
prospective study to date evaluating SRL as a rescue therapy in
patients with R/R ITP (105). ITP is a heterogeneous disease with
a complex pathobiology; based on our experience and others’, we
believe that mTORi can be effective in treating refractory ITP,
but more randomized controlled trials (RCTs) are needed to
support these observations.

Autoimmune Hemolytic Anemia
Sirolimus has benefited patients with primary autoimmune
cytopenias, possibly by stimulating Tregs (105, 106). In the
pathogenesis of AIHA, increased expansion or function of
Treg cells can inhibit the over-activation of effector T cells and
other immune cells, thus regulating the production of excess
RBC antibodies (107, 108). Mqadmi et al. (109) used CD25
monoclonal antibody to treat C57/B16 mice to deplete
CD4+CD25+ Treg cells in vivo, followed by injection allogeneic
red blood cells into the abdominal cavity of C57/B16 mice to
establish a murine AIHA model. These experiments showed that
incidence of AIHA in Treg deficient mice increased from 30% to
90%. CD4+CD25+ Treg cells purified from the spleen of mice
were re-injected into the diseased mice, leading to a reduction in
hemolysis and autoantibodies. Thus, CD4+ CD25+ Treg cells
play an important role in the pathogenesis of AIHA in animal
models (110, 111).

Miano et al. reported that sirolimus was effective in five
children with AIHA who did not respond to MMF previously.
In their center, sirolimus is used as a rescue treatment, given at
the dose of 2–3 mg/m2 once a day, for at least 3 month (112). In
refractory AIHA after intestinal transplant, four patients were
reported who had marked improvement of hemolysis, after
discontinuation of calcineurin inhibitor (CNI) and initiation of
sirolimus (113). It was recommended sirolimus as the second-
line treatment of AIHA in the case of failure to steroid treatment
in 2016 of ASH (American Society of Hematology) meeting
(114). Our center used sirolimus to treat the relapsed and
refractory AIHA. Sixteen (16) patients were included and
followed for at least 12 months; after 12 months, SRL was still
effective for 9/12 patients (56.25%), with 7/9 patients achieving
CR and 2/9 achieving PR. Five (5) of these patients had been
discontinued with no relapse, and the longest withdrawal time
without relapse was 24 months. The side effects of SRL were mild
and tolerable to the patients. In conclusion, SRL is effective for R/
R AIHA in adults, with mild side effects, and should be
considered as frontline therapy for treatment of the disease (115).

Autoimmune Lymphoproliferative
Syndrome
Autoimmune lymphoproliferative syndrome (ALPS) is mainly
caused by mutations in FAS mediated apoptosis pathway (116, 117).
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The pathogenesis of ALPS is that the double negative T cells
(DNT), expressing CD3+TCRab+ CD4-CD8-, cannot be
effectively removed due to apoptosis defects caused by FAS
mutation, resulting in abnormal activation of immature T cell
accumulation causes hepatosplenic lymphadenopathy. At the
same time, over-activation of B lymphocyte leads to the
increase of autoantibody production and the occurrence of
autoimmunity (118). mTOR signaling activity was also
enhanced in DNT cells, and mTOR inhibitors could
specifically reduce DNT in vivo, indicating that the mTOR
pathway is the main regulatory mechanism of lymphocyte
proliferation and abnormal differentiation of ALPS (119). In
2006, the results of an experimental study in animals provided
the first evidence that SRL can significantly improve the clinical
symptoms of ALPS rats (120). Sirolimus has been described as
useful in ALPS patients, in which it also reduced the count of
DNTs (121).

Currently, there are some cases of successful application of
sirolimus to control ALPS in adults and children (102, 122, 123).
In one case-study, a 9-month-old female infant diagnosed ALPS
with massive lymphadenopathy was treated with corticosteroids
and splenectomy, but the curative effect was poor. Treatment
with SRL (3 mg/m2) was initiated and the symptoms of
lymphadenopathy were relieved rapidly. After 6 weeks,
lymphadenopathy decreased and blood cell count improved
significantly (124). In another center, four steroid-resistant
ALPS patients were treated with SRL for 4 weeks; all had a
rapid complete or near complete response (123). SRL was used as
single agent in 12 ALPS patients for at least 6 months. The results
showed that SRL was effective in all ALS patients. It not only
improved the decreased blood cells, but also improved the
hyperplasia of lymphoid tissue (102). In a report, 16 ALPS
patients were treated with SRL as the second or further line,
after the multi-drug treatment failed. As a result, 12 (75%)
patients responded effectively (125). Recently, IL-6 stimulation
augmented mTOR activation in idiopathic multicentric
Castleman disease (iMCD) patients was reported, furthermore,
the degree of mTOR activation in iMCD was comparable to
ALPS. This finding supports inhibition of mTOR activation as a
novel therapeutic target for iMCD, and is currently under
investigation in a clinical study (NCT03933904) (126).

Acquired Aplastic Anemia and
Pure Red Cell Aplasia
Acquired aplastic anemia is characterized by a hypoplastic, fatty
bone marrow with profound reductions in hematopoietic stem/
progenitor cells that lead to defective mature blood cell production
and peripheral pancytopenia (127). In clinical observation, it was
found that the IFN-g level in serum and bone marrow of was
increased in ~30% of AA patients increased, while cytotoxic T cells
(CD8+ T cells) production of IFN-g promoted CD34+ pluripotent
hematopoietic progenitor cell apoptosis (128). The attack of
CD34+ cells by CD8+ T cells is the basis of AA, the effect of
CD8+ T cells can be eliminated by SRL mediated CD4+CD25+

Treg cells, which inhibit the process and promote the proliferation
of hematopoietic stem cells (129, 130). Rapamycin ameliorated
Frontiers in Oncology | www.frontiersin.org 7
this phenotype in an immune-mediated AA mice model and
inhibited the proliferation of T cells by preventing cell cycle
transition from G0 to G1 phase (131). Reports also show that
rapamycin can significantly enhance autophagy of Bone Marrow
Stromal Cells (BMSCs). Rapamycin can inhibit the adipogenic
differentiation of BM-MSCs in AA patients in a dose-dependent
manner, and the inhibition rate can reach 50%-85%. Rapamycin
can reduce the ratio of adipose tissue to bone marrow
hematopoietic tissue, so as to improve the hematopoietic
microenvironment of bone marrow. However, SRL may also
promote the apoptosis of MSC; accordingly, rapamycin should
be strictly controlled in clinical treatment (132). He et al. reported
two case of AA responsive to sirolimus (1 mg/d) combined with
cyclosporine (2 mg/kg/d) (133). In fact, controversial results are
also presented. A study observed 35 AA patients received h-ATG/
CsA/sirolimus, and the ORR at 3 months was 37% and 51% at 6
months, at last, it concluded that sirolimus (2 mg/day in adults
and 1 mg/m2/day in children) did not improve the response rate in
patients with severe AA when compared to standard h-ATG/CsA
treatment (134).

Sirolimus may not directly stimulate the growth and
differentiation of red blood cells, but it can antagonize the
inhibitory effect of PRCA patients’ serum on red blood cells,
and may play a role by inhibiting the components in serum
(135). In 2007, ASH meeting, Sirolimus (1 mg/day) successfully
treated a refractory case of congenital PRCA was reported (136).
Reportedly, three patients of multi-resistant PRCA treated with
SRL (2 mg/day), all responded well to SRL, and natural killer cell
(CD16+CD56+) count was decreased after long-term
administration of sirolimus (137). In 2018, 21 patients with
refractory/relapsed acquired PRCA administered with SRL, and
76.2% of the patients was responsive and 42.9% was complete
response (138). At present, there is still a need for multi-center
and large-scale RCT to verify the positive role of rapamycin in
acquired AA and PRCA.

Graft-Versus-Host Disease
SRL has been widely used to inhibit graft rejection after solid
organ transplantation; however, increasing evidence demonstrate
that SRL plays an active role in the prevention and treatment of
graft-versus-host disease (GVHD) following hematopoietic stem
cell transplantation (HSCT). GVHD is an exaggerated
inflammatory reaction mediated by donor lymphocytes against
host tissues. The conditioning regimen damages host tissues and
causes release of pro-inflammatory soluble factors such as TNFa,
IFN-g, IL-1, IL-6, and nitric oxide. Increased levels of these factors
lead to activation of host antigen presenting cells (APCs). Host
APCs migrate into lymphoid tissue and subsequently activate
donor immune cells, including T, B, and NK cells. This process
elicits a complex cascade of both lymphocyte subsets and soluble
inflammatory mediators. Lastly, these soluble and cellular
mediators synergize to amplify local tissue injury and further
promote inflammation and target tissue destruction (139, 140).
Coenen JJ et al. (141), reported rapamycin, not cyclosporine,
permits thymic generation and peripheral preservation of
CD4+CD25+FoxP3+ T cells. Treatment with cyclosporine led to
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a reduced generation of CD4+FoxP3+ T cells in GVHD mice
model, whereas prolonged rapamycin treatment allowed for
thymic generation of those cells. As peripheral tolerance
induction is a prerequisite for successful treatment outcome
after stem cell transplantation (SCT), this may challenge the use
of cyclosporine as standard drug of choice (141).

In2008,Armandetal. (142) found that sirolimus combinedwith
calcineurin inhibitor prevented GVHD in lymphoma patients after
bone marrow transplantation. The OS of patients in sirolimus
group was significantly prolonged (3-year OS, 66% for sirolimus
group vs. 38% for no sirolimus group). In 2016, Armand and his
colleagues (143), again reported a multicenter randomized trial
comparing sirolimus, tacrolimus and methotrexate to standard
method (tacrolimus, methotrexate and mycophenolate mofetil) in
lymphomapatients after SCT.As a result, therewas nodifference in
2-year OS, PFS, relapse, and chronic GVHD. However, the
sirolimus-containing arm had a significantly lower incidence of
grade II‐IV acute GVHD. In 2019, another multi-center,
randomized, phase 3 trial was reported. After HSCT, standard
GVHD prophylaxis regimen (cyclosporine and mycophenolate
mofetil) or the triple-drug combination regimen (cyclosporine,
mycophenolate mofetil, and sirolimus) was used to test the
efficacy of SRL. Consistent with previous findings, the incidence
of II‐IV aGVHD in the three-drug group (26%)was lower than that
in the standard group (52%) at 100 days. The new discoveries were
as following:TheNonRecurrentMortality (NRM) rate (16%)of the
three drug groups was lower than that of the standard group (32%)
(p=0.021) at 4 years;TheOSrate in the threedruggroupswashigher
than that in the standardgroup (p=0.035);ThePFS rates in the three
drug groups were higher than those in the standard group
(p=0.045); The incidence of Grade III to IV aGVHD and chronic
GVHD was of no differences (144). A meta-analysis included five
RCTs to assess the efficacy and safety of sirolimus-based GVHD
prophylaxis in patients after allogeneicHSCT, as the result, SIRwas
observed to significantly decrease the incidence of Grades II to IV
Frontiers in Oncology | www.frontiersin.org 8
aGVHD; However, the incidence of Grades III to IV aGVHD and
chronic GVHD was not decreased. SRL significantly increased
sinusoidal obstructive syndrome, Moreover, SRL did not improve
event-free survival and overall survival (145).

In addition to the above reports on the prevention of GVHD by
SRL, the following is the story of using sirolimus to treat GVHD.
Pidala et al. (146) initiated a multicenter randomized phase II trial
to assess the CR/PR rates of SRL versus prednisone to treat
patients with acute GVHD of standard risk. A total of 127
patients were enrolled and randomized. The day 28 CR/PR rates
were similar for sirolimus 64.8% vs. 73% for prednisone.
Interestingly, the day 28 rate of CR/PR with prednisone (≤0.25
mg/kg/day) was significantly lower than sirolimus (31.7% vs.
66.7%; P<0.001). Importantly, SRL was associated with reduced
steroid exposure and hyperglycemia, reduced grades 2 to 3
infections, improvement in immune suppression discontinuation
and patient-reported quality of life. For chronic GVHD treatment,
Carpenter PA et al. (147), claimed that the two-drug (prednisone/
sirolimus) and three-drug combination (prednisone/sirolimus/
CNI) did not differ in rates of 6-month CR and PR. In other
words, the results are the same whether CNI is not added to the
two-drug regimen. Importantly, the two-drug regimen is easier to
administer and is better tolerated. In our center, sirolimus was
used to treat steroid- resistant/steroid- dependent extensive
cGVHD. A total of 27 patients were enrolled and given
sirolimus combined with cyclosporine or tacrolimus to observe
the clinical efficacy and adverse events. Following the 6-month
follow-up, the ORR was 55.6%. At the 1-year follow-up, there were
five cases of CR and 11 cases of PR, ORR was 59.3%, PFS-12
reached 62.9% (17/27), and OS-12 was 100% (148).

In summary, SRL has demonstrated clinical benefit in both
the prevention and treatment of GVHD and may be preferred to
other regimens for patients after HSCT. There is currently
extensive clinical investigation of Rapalogs in the GVHD
setting (Table 1).
TABLE 1 | Current recruiting Rapalog clinical trial landscape in hematologic diseases.

Registration Number Rapalogs Phase Disease Status Interventions

1 NCT03963024 Sirolimus 1 GVHD Recruiting Sirolimus
2 NCT03225417 Sirolimus 1/2 GVHD Recruiting Sirolimus + Ixazomib + Tacrolimus
3 NCT02891603 Sirolimus 1/2 GVHD Recruiting Sirolimus + Pacritinib + Tacrolimus
4 NCT03128034 Sirolimus 1/2 GVHD Recruiting Sirolimus + CsA + MMF
5 NCT03192397 Sirolimus 2 GVHD Recruiting Sirolimus + MMF +PTCY
6 NCT03970096 Sirolimus 2 GVHD Recruiting Sirolimus + Tacrolimus + MTX+ATG
7 NCT01903473 Sirolimus 2 GVHD Recruiting Sirolimus + Treg infusion + Low dose IL-2
8 NCT02722668 Sirolimus 2 GVHD Recruiting Sirolimus + MMF + ATG
9 NCT03246906 Sirolimus 2 GVHD Recruiting Sirolimus + CsA + MMF vs. Sirolimus + CsA + PTCY
10 ChiCTR2000029921 Sirolimus 2 GVHD Recruiting Sirolimus + CNI
11 NCT02583893 Sirolimus 2 AML Recruiting Sirolimus + Mitoxantrone + Etoposide + Cytarabine
12 NCT03878524 Sirolimus, Everolimus 1/2 MDS, PMF Recruiting Sirolimus for MDS; Everolimus for PMF
13 NCT03697408 Everolimus 1/2 cHL Recruiting Everolimus + Itacitinib
14 NCT03190174 Nab-rapamycin 1/2 cHL Recruiting Nab-rapamycin + Nivolumab
15 NCT02693535 Temsirolimus 2 NHL, MM Recruiting Temsirolimus
16 ChiCTR1900020657 Sirolimus 2 ITP Recruiting Sirolimus + Dexamethasone
PTCY, Post-Transplantation Cyclophosphamide; MMF, mycophenolate mofetil; MTX, methotrexate; ATG, Antithymocyte globulin; CNI, Calcineurin Inhibitor; CsA, ciclosporin; PMF,
Primary myelofibrosis; cHL, classical Hodgkin lymphoma; Nab-rapamycin, Nanoparticle albumin-bound rapamycin.
The data are from https://www.clinicaltrials.gov/in America and www.chictr.org.cn in China. This table only includes the recruiting trails, and the “active not recruiting” and
“completed” are excluded.
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TABLE 2 | Clinical efficacy and safety of mTOR inhibitors in hematological disease.

Author (Ref) Disease(s) Patients
(n)

Drugs and Schedules Clinical Response Adverse events (AEs)

Kasner MT.
2018 (36)

Relapsed,
refractory, or
untreated
high-risk
AML

51 Sirolimus 12 mg d1, 4 mg d2-9;
Mitoxantrone 8 mg/m2, 5days;
Etoposide 100 mg/m2, 5 days;
Cytarabine 1 g/m2, 5 days.

ORR was 47% (33% CR, 2% CRi, 12% PR),
Blood p70S6 as a predictive biomarker for
clinical response.

No significant AEs.

Perl AE.
2009 (37)

Relapsed,
refractory, or
untreated
secondary
AML

27 Sirolimus 12 mg d1, 4 mg d2-9;
Mitoxantrone 8 mg/m2, 5 days;
Etoposide 100 mg/m2, 5 days;
Cytarabine 1 g/m2, 5 days.

ORR was 22% (15% CR, 7% PR), p70S6 as a
biomarker for SRL response.

Neutropenic fever,
Bacteremia,
Diarrhea,
Transaminase/bilirubin,
elevation,
Pneumonia

Daver N.
2015 (32)

Relapsed/
Refractory
ALL

24 HyperCVAD combined with continuous
oral everolimus, starting on day 0 of Cycle
1, at a dose of either 5 or 10 mg/day.

ORR was 41% (33% CR, 8% PR and NR 59%),
Everolimus inhibited phosphorylation of S6RP,
but did not correlate with response.

Mucositis,
Myelosuppression,
Hyperglycemia,
Transaminitis

Guglielmelli P.
2011 (55)

MPN 39 Everolimus in 3 dose-escalating cohorts
at 5.0, 7.5, and 10.0 mg daily for 3
months.

Response rate was 60%, whereas CCDN1
mRNA, phospho-p70S6K level, and WT1 mRNA
were identified as possible biomarkers.

Stomatitis,
Hypertriglyceridemia,
Skin disorders,
Musculoskeletal,
Hypercholesterolemia

Johnston PB.
2012 (68)

Hodgkin
lymphoma

57 Everolimus 10 mg/day until disease
progression or unacceptable toxicity.

The ORR and DCR were 42.1% and 77.2%,
including CR 8.8%. The median time to
response was 57 days, Median PFS was 9.0
months.

Fatigue,
Thrombocytopenia, Cough,
Rash, Pyrexia, Anemia,
Dyspnea, Back pain,
Diarrhea, Stomatitis,
Pneumonitis.

Janku F.
2014 (77)

Refractory
Hodgkin
lymphoma

28 Sirolimus 1–5 mg/day q28 days;
HDAC inhibitor vorinostat 100–400 mg/
day q28 days.

The ORR was 57% with 9 CRs (32%) and 7
PRs (25%).

Thrombocytopenia,
Anemia,
Transaminitis.

Tessoulin B.
2020 (81)

Relapsed
MCL

41 15, 25, and 50 mg dose level plus
RCHOP, or RDHA, or RFC

The ORR was 40% in RCHOP-T arm, 43%
RFC-T arm, and 47% in RDHA-T arm.

Blood count disorders,
metabolism troubles,
biologic investigations, and
infections.

Smith SM
2010 (83)

Relapsed
DLBCL, FL
and CLL

89 Single-agent temsirolimus 25 mg weekly Group A (DLBCL) had an ORR of 28.1% and
median PFS of 2.6 months. Group B (FL) had
ORR of 53.8% median PFS of 12.7 months;
Group C (CLL) had ORR of 11%.

Mild and/or reversible
myelosuppression and
mucositis

Ghobrial IM.
2010 (87)

WM 50 Everolimus 10 mg/day until progression. The ORR was 70%, with a PR of 42% and 28%
MR. CR 0.

Anemia, Leukopenia,
Neutropenia, Pneumonia,
Hypercholesterolemia,
Hyperglycemia.

Yee AJ.
2014 (97)

Relapsed/
refractory
multiple
myeloma

26 Lenalidomide 15 mg;
Everolimus 5 mg for 21 days with a 7-day
rest period.

The ORR was 65% (1 CR + 4 PR + 10 MR). The
median PFS was 5.5 months and median OS
was 29.5 months. Phosphorylated p70S6K at
Thr389 as biomarker.

Fatigue, Neutropenia,
Thrombocytopenia,
Neuropathy, and diarrhea,
all of which were
manageable with
supportive care and dose‐
reductions.

Hofmeister CC.
2011 (98)

Relapsed/
refractory
multiple
myeloma

21 Lenalidomide 15–25 mg/d d1-d21;
Temsirolimus 15–20 mg once per week
during a 28-day cycle.

Two patients (10%) achieved PR and 15
patients (71%) had SD.

Fatigue, Neutropenia,
Anemia,
Hypophosphatemia,
Hypokalemia, Rash,
Hypokalemia,
Hypophosphatemia,
Anorexia, Nausea, Taste
alterations.

Ghobrial IM.
2011 (99)

Relapsed/
refractory
multiple
myeloma

20 Temsirolimus 15 or 25 mg;
Bortezomib at 1.3 or 1.6 mg/m2 once a
week, with dose escalation until dose-
limiting adverse events were recorded.

14 of 43 (33%) patients achieved ORR. Thrombocytopenia,
Lymphopenia, Neutropenia
Leucopenia, Anemia,
Diarrhea.

(Continued)
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CONCLUSIONS AND FUTURE
DIRECTIONS

Rapalogs, as inhibitors of mTOR, have demonstrated clinical
value, not only in the regulation of abnormal immune responses
found in benign hematologic diseases, but also for the treatment of
hematological malignancies (Table 2). However, there are still
some challenges in the application of Rapalogs. First, at present,
most of the studies of Rapalogs are case reports of three-line or
further line drugs, which are not widely used in large-scale
populations, so there remains a lack of evidence—effectiveness
and long-term safety of Rapalogs need to be further studied.
Whether SRL can be used as a more advanced drug in the
treatment paradigm(s) needs to be evaluated by more extensive
clinical research. Second, it is necessary to improve the efficacy and
safety of Rapalogs, establishing the proper dosing regiments,
maintaining appropriate blood concentrations model to
optimize the current treatment. Third, many cytotoxic drugs are
Frontiers in Oncology | www.frontiersin.org 10
limited in the pediatric setting. The question arises, can Rapalogs
demonstrate an advantage over current therapies in convenience,
safety, and efficacy on pediatric patients? Finally, in clinical studies
to date, we found that there are inevitably some patients that do
not responded to Rapalogs, irrespective of primary disease. Can we
achieve precise treatment? Before treatment, can we accurately
stratify patients which are likely responders to Rapalogs? Perhaps
by detecting the activity of mTOR, specific mutations responsible
of driving mTOR activity or a deeper prognostic biomarker?
Additional work is required in this exciting and evolving area.
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Author (Ref) Disease(s) Patients
(n)

Drugs and Schedules Clinical Response Adverse events (AEs)

Feng YM.
2020 (105)

Relapsed/
refractory
ITP

86 Sirolimus 2–4 mg/day. By the third month, 40% CR and 45% PR,
whereby (ORR) of 85%. Percentage of Th2,
Th17 cells, M-MDSCs, and Tregs as biomarker
associated with response.

Hyperlipidemia,
Hypertransaminase,
Canker sores,
Skin rash,
Arthralgia.

Miano M.
2015 (125)

ALPS,
ALPS-related
syndrome,
and
autoimmune
cytopenia.

16 Sirolimus 2–3 mg/m2/day, at least 3M 12/16 children ORR75%, 11 with CR (69%), 1
with PR (6%).

Patients did not show an
increased incidence of
opportunistic infections with
mild headache being the
most common side effect.

Long ZB.
2018 (138).

Refractory/
relapsed
acquired
PRCA

21 Sirolimus 1–3 mg/day, at least 6M. The ORR was 76.2%, with a CR of 42.9%.
Tregs as biomarker associated with response.

Pneumonia, elevation of
creatinine, mild elevation of
transaminase, oral
mucositis, sinus
tachycardia, and elevation
of triglyceride and
cholesterol.

Wang L.
2015 (145)

Acute GVHD
and chronic
GVHD

395 (TAC, SRL and MTX or MMF)
TAC: -3 days, 0.02 mg/kg/day, 5–10 ng/
ml 100 days tapered;

SRL: 2 mg qd (-3 days ˜ +80 days), 3–12
ng/ml;
MTX: +1 day (15 mg/m2),+3 days,+6 days,
+11 days (10 mg/m2);
or MMF: +0 day ˜ +30 days (15 mg/kg tid),
30–40 days (15 mg/kg bid), in the absence
of GVHD, tapered off by day 96 to day
150.

SRL significantly decrease the incidence of
Grades II to IV aGVHD, but has no effect in
decreasing cGVHD. SRL did not improve EFS
and OS.

Sirolimus increased in the
incidence of SOS and TMA.

Pidala J, 2020
(146).

Acute GVHD 58 Prednisone 2 mg/kg/day;
SRL was given as a loading dose (6 mg
for those aged >12 years, 5 mg/m2 for
those aged ≤ 12 years), at least 56 days
(10–14 ng/ml until acute GVHD
resolution, then 5–10 ng/ml after
resolution until at least day 56).

Day 28 CR/PR rates were similar for sirolimus
64.8% vs. 73% for prednisone. The day 28 rate
of CR/PR with prednisone ≤0.25 mg/kg/day
was significantly higher for sirolimus than
prednisone (66.7% vs. 31.7%). No differences
were detected in DFS, relapse, NRM, and OS.

Hyperglycemia was lower in
the sirolimus group. The
rate of TMA within 6
months was higher in the
sirolimus group vs the
prednisone group.
January 2021 |
SRL, Sirolimus; CR, Complete remission; CRi, complete remission with incomplete hematologic recovery; PR, Partial remission; ORR, Overall response rate; DCR, Disease control rate;
MR, Minimal response; SD, Stable disease; HDAC, Histone deacetylase; MDSC, Myeloid derived suppressor cells; SOS, Sinusoidal obstruction syndrome; TMA, Thrombotic
Microangiopathy; TAC, tacrolimus; MTX, methotrexate; MMF, Mycophenolate mofetil; DFS, Disease-free Survival; NRM, Non-relapse Mortality; OS, Overall Survival.
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