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Abstract

Microglia are dynamic cells that constitute the brain’s innate immune system. Recently, research 

has demonstrated microglial roles beyond immunity, which include homeostatic roles in the 

central nervous system. The function of microglia is an active area of study, with insights into 

changes in neurogenesis and synaptic pruning being discovered in both health and disease. In 

epilepsy, activated microglia contribute to several changes that occur during epileptogenesis. In 

this review, we focus on the effects of microglia on neurogenesis and synaptic pruning, and 

discuss the current state of anti-seizure drugs and how they affect microglia during these 

processes. Our understanding of the role of microglia post-seizure is still limited and may be 

pivotal in recognizing new therapeutic targets for seizure intervention.
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INTRODUCTION

Epilepsy is a neurological disorder characterized by recurrent seizures. Microglia, the innate 

immune cells of the central nervous system (CNS), are increasingly recognized as mediators 

of seizures and contributors to the epileptogenic process. The progression to epilepsy is 

characterized by the presence of neuroinflammation, as well as structural and molecular 
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alterations in the brain, that subsequently lead to increased neuronal hyperexcitability and a 

lasting disposition towards spontaneous recurrent seizures (SRS)[1]. Microglia regulate 

neuroinflammation and axonal sprouting and have been reported to modulate neurogenesis. 

Following seizures, microglia are activated, functioning as resident macrophages of the brain 

and respond quickly to injury while trying to maintain the physiological processes under its 

control[2]. Changes in neuronal homeostasis are also observed, highlighting the diverse ways 

in which microglia could be contributing to the development of epilepsy.

This review will discuss the roles of microglia in neuroinflammation and neurogenesis, and 

how these contributions are altered post-seizure. We will examine microglia in the context of 

epileptogenesis, the process by which “the previously normal brain is functionally altered 

and biased towards the generation of abnormal electrical activity that subserves chronic 

seizures”[3]. Additionally, we will explore studies of pharmacological reagents and their 

effects on microglia as a therapeutic target to mitigate the epileptogenic process that drives 

epilepsy.

EPILEPSY

Epilepsy is a chronic brain disorder characterized by abnormal brain activity that causes 

seizures. The propensity to generate recurrent seizure events has neuropathological, 

cognitive, and social consequences[4]. Epileptic seizures are aberrant, excessive, or 

synchronous neuronal discharges and manifest in a variety of ways. According to the 

International League Against Epilepsy (ILAE), seizures are classified into three types based 

on their onset: generalized onset seizures do not have a determined area of origin and can 

affect both sides of the brain; focal onset seizures originate from one area of the brain; and 

unknown onset seizure when the onset is missed or obscured. Generalized onset seizures can 

present with a variety of manifestations that include non-motor and motor presentations: 

they range from absence seizures (that present with lapses in awareness, accompanied with 

staring into space, probably accompanied by rapid blinking and/or orofacial automatisms) to 

generalized tonic-clonic seizures with tonic and/or clonic spasms, and are always 

accompanied by loss of consciousness. Focal onset seizures may or may not be accompanied 

by a loss of awareness and their origin can be attributed to a specific area of the brain that 

causes motor or sensory changes, including taste or smell. Focal seizures may also result in a 

loss of awareness, manifested by a person who appears to be dazed, confused, and unable to 

respond to questions for several minutes. Focal seizures may become generalized if the 

original behavior, which was localized to one brain hemisphere, expands to behaviors that 

involve both sides of the brain[5]. The cause of epilepsy in many patients is not known, 

though acquired causes include stroke, traumatic brain injury (TBI), autoimmune disorders, 

infection, and tumors.

It is estimated that almost 10% of people will experience a seizure in their lifetime[6]. 

Epilepsy affects approximately 1.2% of the population in the United States alone[7]. Higher 

incidence rates have been reported in younger (early childhood and infancy) and older age 

groups (older than 55 years of age), while a lower prevalence is seen in the period between 

early adulthood and midlife[8]. The imbalance between excitatory and inhibitory 

neurotransmission (E/I imbalance), with a propensity towards increased excitation, is 
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believed to be the underlying cause of seizures in epilepsy. Research demonstrates 

hyperexcitability during ictogenesis, when excitatory glutamatergic activity is increased 

while inhibitory gamma aminobutyric acid (GABA) ergic activity is dampened[9–11]. 

Currently, the treatment of epilepsy varies from patient to patient. Anti-seizure medications 

are typically the first choice of therapy for subsequent seizure prevention. When medication 

fails, surgery has been successful in significantly decreasing or making patients seizure free, 

though only a small number of patients with focal onset seizures would qualify for surgical 

options[12]. When surgery is not an option, patients are treated with antiepileptic drugs 

(AEDs). There have been > 30 medicines that have been approved by the United States Food 

and Drug Administration (FDA) or the European Medicines Agency (EMA). Even though 

many seizure medication options exist, nearly 33% of patients fail to respond to them[13]. 

Some patients with pharmacologically refractory epilepsy try to control seizures by 

exploring dietary changes, such as employing the ketogenic diet, a high fat/low carbohydrate 

diet which can be successful in reducing seizures in about 50% of adult patients[14]. Though 

originally believed to result in an increase in levels of GABA production[15], there may be 

multiple mechanisms that contribute to its success in seizure cessation[16]. Neurostimulatory 

devices, such as deep brain or vagus nerve stimulation therapies, have also been used with 

varying success, as they help to normalize the excitatory state of the brain[17].

Epileptogenesis

Epileptogenesis is the process by which structural and molecular changes occur in the brain 

and predispose towards epileptic seizures[18]. The epileptogenic process can be initiated by 

multiple underlying causes such as tumors, infections, stroke, and brain injuries. 

Epileptogenesis occurs prior to an unprovoked seizure and continues beyond the event. It is a 

dynamic process that can occur very quickly, after brain injury or stroke, or over an extended 

period of time (up to months in animal models, and years in humans)[18,19]. This window 

presents a temporal opportunity for treatment approaches, but also provides challenges for 

studying the process. Understanding the pathophysiological changes that occur during 

epileptogenesis is a pivotal part of developing new therapies.

Changes during epileptogenesis occur in both neuronal and glial cells, all of which 

contribute to the dysfunction of neuronal circuits. The mechanisms underlying 

epileptogenesis suggest that the pathophysiological and compensatory changes are 

connected. Animal models of epileptogenesis have displayed histologically-detectable 

changes, such as sprouting along the mossy fiber pathway, neurogenesis, and gliosis [Figure 

1] alterations, all of which can contribute to the potential for hyperexcitability[20]. The 

condition most frequently associated with mossy fiber sprouting is temporal lobe epilepsy 

(TLE), the most common type of epilepsy in adults[21], but can occur in epilepsy patients 

without TLE[22]. Sprouting occurs when granule cell axons in the inner molecular layer 

(mossy fibers) project into the hilus of the dentate gyrus and CA3 region of the hippocampal 

formation, creating their own dendritic field. Mossy fibers synapse onto hilar mossy cells, 

CA3 pyramidal cells, and interneurons[23] to create de novo recurrent excitatory circuits. 

Aberrant sprouting in a model of TLE was reported to contribute to excitatory feedback 

loops of normal and ectopic granule cells[24]. Another study described aberrant mossy fibers 

that drive inhibitory basket cells to reduce neuronal excitability[25]. Mossy fiber sprouting is 
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increased through the activation of several granule cell factors, such as neuromodulin and 

brain-derived neurotrophic factor (BDNF)[26], and involves the secretion and deposition of 

molecules of the extracellular matrix that facilitate aberrant growth[27–29]. The number of 

granule cells also affects mossy fiber sprouting. Hippocampal neurogenesis, which leads to 

the formation of new granule cells, is increased shortly after an epileptic seizure, but the 

increase is transient. The development of new granule cells, and their ectopic integration into 

neuronal networks contribute to aberrant mossy fiber sprouting that is evident post-seizure.

Reactive gliosis has also been identified as a contributor to epileptogenesis in genetic and 

chemically-induced animal models of epilepsy[30]. Activated astrocytes and microglia 

exhibit changes that promote network hyperexcitability[31,32]. Microglia can be activated by 

cytokines and monocytes circulating in blood[33], neurotransmitters released by activated or 

damaged neurons, or by molecules migrating across the blood brain barrier (BBB)[31]. 

Disruption of the BBB during status epilepticus (SE) leads to the transport of plasma 

proteins and immune cells into the brain. The combined effects on astrocytic functions, ion 

concentration changes, entry of infiltrating systemic components, and potential pathogens 

into the CNS may lead to neuronal dysfunction, neuroinflammation, and 

neurodegeneration[34]. The BBB plays a pivotal role in diseases associated with neuronal 

hyperexcitability such as epilepsy, TBI, and post-stroke seizure activity[35–37]. Microglia-

neuron signaling had been shown initially by the release of the neuronal chemokine 

fractalkine, which activates the CXC-chemokine receptor 1 (CXCR1) on microglia. 

Neurogenesis, synaptic plasticity, and neuronal survival have all been reported to be affected 

by the CXCR1 signaling pathway[31]. Cytokine release of IL-1β and tumor necrosis factor-α 
(TNF-α) and other signals (such as HMGB1 and ATP) from activated astrocytes and 

microglia lead to hyperexcitability in neurons[38,39]. Precise targeting of reactive astrocytes 

and microglia for therapeutic intervention during epilepsy and epileptogenesis may be 

beneficial due to microglial involvement in the processes of neurogenesis, axonal sprouting, 

and neuroinflammation.

Models of epilepsy

The pursuit of AEDs has provided > 30 medications, with many that were developed in the 

1980s[40]. Although several animal models of epilepsy exist, clinically validated models, 

ones that are validated to predict efficacy and tolerability, are limited and currently only 

consist of three models: the maximal electroshock (MES) seizure protocol, subcutaneous 

pentylenetetrazol (scPTZ) acute seizure tests, and the kindled rodent model of chronic 

hyperexcitability[41]. Though not validated, multiple other animal models have been 

developed that have contributed to the understanding of the premise of new therapeutic 

options[42]. Still, newer drugs continue to have similar adverse events or side effects without 

exhibiting greater efficacy[43]. Variation in seizure models can result in acute or chronic 

seizure paradigms, differences in severity, or the intervening time until seizures start[44]. 

Acute models lack persisting changes, like a decrease in seizure threshold or spontaneous 

seizures. Chronic seizure models of epilepsy accommodate a period during which 

epileptogenesis takes place and may better represent human epilepsy[45]. Newer models, 

such as the post-SE model, kindling[46], or genetic models, have become more extensively 

used due to their ability to result in spontaneous seizures. The kindling model, where 
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repeated electrical stimulation leads to enhanced seizure susceptibility, is commonly utilized 

as it has been associated with seizure induced plasticity and provides a way to study such 

plasticity. Combining SRS with convulsive behavior or video-electroencephalogram (EEG) 

represents a more accurate epilepsy model, though it is not considered a clinically validated 

model for AED discovery.

The chemical induction of status epilepticus, usually by injection of kainic acid or 

pilocarpine[47,48], can result in animals exhibiting SRSs days to weeks after SE, and allows 

for the determination of post-seizure changes in the brain neuropil. Models using 

chemoconvulsants and kindling have provided researchers with a way to study changes in 

mossy fiber sprouting, neurogenesis, and neuroinflammation post-seizure.

MICROGLIA

Microglia, which make up approximately 10% of the brain’s cells, are the central nervous 

system’s primary form of immune defense. Originally thought to only serve immune 

response functions, they are now widely recognized to perform important functions that 

contribute to the development and maintenance of a healthy brain. Microglia are dynamic 

cells that survey their environment for injury or infection. Ramified microglia rapidly and 

constantly extend and retract their processes to assess the environment[49]. By evaluating 

their surroundings, microglia can actively participate in neurogenesis[50,51], neurotrophic 

functions[52], neuronal phagocytosis[53], modulation of axonal processes[54], synapse 

formation and pruning[55–57]. It has also been proposed that microglia aid in 

neurotransmitter clearance, specifically glutamate[58], due to their upregulation of glutamate 

transporter GLT-1 in a cortical injury model[59]. Many of these functions however, are 

reported to be similarly performed by astrocytes.

Microglial contribution to epileptogenesis

Models of epilepsy provide insight into neuronal and glial behavior post-seizure. Microglia 

sense the injury, and their activation cascade is initiated[60,61] as they migrate to the region 

of insult, where they then remain activated for about 4–5 weeks post-seizure[62], creating an 

inflammatory environment around the site of seizure onset. The extent and duration of 

microglial activation depends on the model used[63]. Most, though not all, chronic seizure 

models of epileptogenesis present a persistent inflammatory state in neural tissue[64]. After 

an inciting event, inflammatory cascades can either begin in the CNS, or be activated by 

molecules in the systemic circulation via breakdown of the BBB[65]. The seizure-induced 

activation of microglia can be visualized and followed non-invasively by positron emission 

tomography using 11C-PK11195, a radiolabeled TSPO (a selective translocator protein) that 

is expressed at low levels in the healthy CNS, but upregulated when neuroinflammation is 

initiated. Although TSPO does not distinguish between microglia and infiltrating 

macrophages[66], its upregulation provides clear proof of the neuroinflammatory state of 

post-seizure CNS. Acute neuroinflammation is thought to contribute to chronic 

neuroinflammation states or worsen a pre-existing state[67]. Understanding how and when 

microglia are activated after seizures, and how they contribute over time to 

neuroinflammation may provide a target for downregulating or attenuating epileptogenesis.
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Cytokines are signaling molecules that modulate inflammatory responses and are produced 

by neurons and glial cells after seizures. Interleukin-1β (IL-1β), IL-2, and IL-6 are present in 

the brain at low concentrations, which increase post-seizure[68]. Following seizures, mRNA 

expression of IL-1β, IL-6, TNF-α, TGF-β, and vascular endothelial growth factor (VEGF) 

were all reported to be upregulated ithe hippocampus. IL-1β may induce seizures by 

upregulating N-methyl-D-aspartate (NMDA) receptors on post-synaptic cells[69]. Studies 

also suggest that uncontrolled levels of IL-1β impair synaptic plasticity and cause neuronal 

dysfunction[70]. Other studies have demonstrated that IL-1β decreased GABA-mediated 

neurotransmission, leading to neuronal hyperexcitability and seizures[71]. When IL-1β 
activity was blocked, acute or recurrent seizures were reduced in rodent models[38,72,73]. 

Anakinra, a recombinant IL-1 receptor antagonist, was successfully used in a clinical study 

to treat febrile infection-related epilepsy syndrome (FIRES), demonstrating that IL-1β may 

be a crucial target in controlling seizure recurrence[74]. TNF-α is released by microglia and 

astrocytes, when low levels of glutamate are detected, to maintain neuronal excitation levels 

by upregulating synapses[75]. TNF-α also increases microglial glutamate release through 

glutaminase and gap junction regulation[76] and regulates the adhesion molecule N-cadherin, 

which is involved in the organization of synapses[77]. Like IL-1β, TNF-α also affects GABA 

levels by increasing GABA receptor endocytosis, reducing its inhibitory action[78]. Another 

pro-inflammatory cytokine, IL-6, is upregulated by TNF-α and IL-1β. IL-6 has been 

reported to decrease hippocampal neurogenesis while increasing microgliosis, possibly 

contributing to epileptogenesis[79].

Changes in microglia post-seizure

The question of microglial activation status and its effects post-seizure have yet to be 

answered. Microglia modulate the severity of early seizures in a pilocarpine model with 

lipopolysaccharide (LPS) preconditioning[80]: ablation of microglia prior to seizure onset 

resulted in dramatic increases of seizure severity. Since no other cell types were affected by 

the method of microglia ablation[81,82], it is suggested that microglia may play a role early 

on in seizure induction to protect the CNS from exaggerated neuronal activity. The presence 

of microglia may thus be beneficial during seizure; however, evidence suggests that their 

activation may be detrimental post-seizure. Minocycline, a tetracyclic antibiotic that has 

anti-inflammatory properties, has been shown to act as an inhibitor of microglial 

proliferation/activation[83]. Studies that used minocycline have reported that it protects 

against neuronal cell death after seizures, thus indicating that microglia contribute to 

neurodegeneration following seizures[84]. Other studies demonstrated that a 2-week course 

of minocycline post-status epilepticus decreased the number, duration, and severity of 

spontaneous recurrent seizures, suggesting that microglia are involved in the propagation of 

these SRS[85–87]. It should also be noted, on the other hand, that there are studies that show 

only partial effectiveness by minocycline[88], or inability to reverse the increase of 

epileptogenesis[89,90].

Inflammatory cytokines increase neuronal excitability and are believed to contribute to 

epileptogenesis[91]. Though inflammatory cytokines are expressed by several cell types in 

the brain, microglia-specific pro-inflammatory cytokines, such as IL-1β, IL6 and TNF-α, 

showed increased expression three days after SE but had diminished by day 21[63]. Levels of 
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anti-inflammatory cytokines, such as Arg1, IL-4 and IL-10, were also increased. These data 

contribute to the existing controversy on the role that microglia and cytokines play post-

seizure. Additionally, Toll-like receptor (TLR) signaling has been implicated in the 

production of cytokines in seizure models. Studies have demonstrated that the 

downregulation of TLR3 and TLR4 activities reduces recurrent and acute seizures, 

respectively[92,93]. Another study showed that the activated TLR4 pathway (mediated by 

MyD88) was part of the molecular response contributing to a pro-inflammatory environment 

post-SE[94]. Matsuda et al.[95] reported that microglia secrete TNF-α to decrease the 

proliferation of neural progenitor cells (NPCs) in the subgranular zone (SGZ) and 

demonstrated that microglial activation is partly mediated through TLR9 post-SE. These 

studies emphasize the need for a better understanding of the role of cytokine signaling post-

seizure.

NEUROGENESIS

Neurogenesis, the incorporation of new neurons into the hippocampus, is a controlled 

process that affects fundamental brain activities such as memory formation and learning. 

Neurogenesis, and the newborn cells generated, contribute to brain plasticity and can be 

followed through maturation using specific markers. The progression from newborn cells to 

mature neurons can be tracked using markers such as Nestin and Sox-2 for newborn cells, 

doublecortin and polysialylated neuronal cell adhesion molecule for immature neural 

progenitor cells, and NeuN for mature neurons[96]. In recent years, there has been an 

increased effort to determine some of the major regulators of the neurogenic process in the 

adult brain[97–99]. Neurogenesis, mediated by the activation and differentiation of adult 

neural stem cells (NSCs), has been documented to occur primarily in two regions of the 

adult CNS: the subventricular zone (SVZ) of the lateral ventricles, and within the SGZ of the 

dentate gyrus (DG) in the hippocampus[100,101]. Neurogenesis in the hippocampus will be 

the main focus of this section, as the hippocampal region has been intimately linked and 

affected by seizures and epilepsy.

In rodent models of neurogenesis, radial glia-like NSCs located in the SGZ give rise to 

NPCs[102]. The neurogenic process involves five intricate stages, ultimately leading to the 

integration of newly mature granule cells in the hippocampus. During the first stage, NSCs 

proliferate and generate neural progenitors in the SGZ. Stage 2 is the continuous phase of 

survival, where NSC and progenitor cells are lost through apoptosis, in this early part of the 

process. During stage 3, progenitor cells undergo fate determination and differentiate into 

immature neurons. In stage 4, immature neurons migrate a short distance within the granule 

cell layer where they continue their maturation and integrate (Stage 5) into the hippocampal 

circuitry, receiving input from the entorhinal cortex, and projecting axons to the CA3 (mossy 

fibers) and hilar regions of the hippocampus[101,103–106], which further synapse with CA1 

pyramidal cells[107].

In epilepsy, while the stimuli to trigger adult neurogenesis are activated, the orchestrated 

differentiation process is dysregulated at various steps. The newly formed granule neurons 

do not integrate appropriately into the dentate gyrus, thus forming aberrant connections with 

other neuronal cells, and contributes to epilepsy and associated cognitive decline[108–110].
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The role of microglia in physiological neurogenesis

Variations in neurogenesis properties from the embryonic stages to adulthood have been 

studied and show that newborn neuron populations decrease with age[111], potentially due to 

a lowered ability of NSCs to regenerate[112], or changes in environmental cues in the 

hippocampus, including an activated state of microglia[113]. Microglia have been shown to 

participate in neurogenesis, during multiple stages of the process through the contribution of 

factors that affect the proliferation and survival of NSCs[114,115]. Cognitive decline has been 

correlated with decreased neurogenesis[116], and studies provide support to the idea that 

exercise or enriched environments result in an increase in neurogenesis[117–119], which may 

be modulated by microglial activation[120]. A pro-inflammatory environment has been 

demonstrated to inhibit adult neurogenesis, while anti-inflammatory treatments were able to 

rescue the phenotype[121,122]. All these findings demonstrate the need to understand the role 

of microglia in neurogenesis that takes place in the physiological and pathological CNS. The 

function of microglia is most likely influenced by the environmental signals in a particular 

setting, which will dictate the direction of their activation status.

Microglia constantly survey their environment and are in the proximity of all cell types 

during neurogenesis, including newborn neurons. They are also involved in the phagocytosis 

of NPCs and neuroblasts in a homeostatic role for maintaining neurogenic stem cells without 

releasing pro-inflammatory cytokines[51]. In concordance with these data, ablating microglia 

in the DG inhibited adult neurogenesis by diminishing neuroblast survival[123]. Although 

these effects are most likely mediated by the secretion of cytokines and by microglial-

regulated phagocytosis, the influence of microglia on neurogenesis also extends beyond 

these molecular steps and events. There is a growing body of evidence demonstrating that 

microglial receptors can modulate their activity in neurogenesis. For example, microglial 

P2Y13 receptor was recently described to contribute to microglial structural integrity. When 

the P2Y13 receptor is knocked out, increases in proliferation of NPCs and new neurons are 

observed, and this may be another way to regulate neurogenesis[124]. CX3CR1 has also been 

demonstrated to be involved in the regulation of adult neurogenesis: microglia have been 

reported to activate NPCs through CX3CR1 pathways in the hippocampus[125], and 

CX3CR1 null (−/−) mice exhibited impaired connectivity and aberrant synapse 

formation[126]. This was further supported by genetic and pharmacological inhibition of 

CX3CR1 signaling, which also led to aberrant neurogenesis[127,128].

Abundant data show that microglia are critical in adult neurogenesis and regulate several 

stages of accurate incorporation of new neurons into the hippocampal circuitry. As several 

seizure disorders and models manifest predominantly in the hippocampus, the effects of 

epileptic activity on SGZ neurogenesis is starting to be uncovered.

Neurogenesis and the pathophysiology of epilepsy

Adult neurogenesis increases following SE in animal models, resulting in an increased 

number of granule cells[129,130]. These additional granule cells undergo aberrant 

differentiation, axonal sprouting, and ectopic displacement in the hilar region of the dentate 

gyrus[109,131,132]. Ectopic granule cells are thought to contribute to pro-epileptic 

activity[133–135]; studies show that axonal sprouting and aberrant placement of granule cells 
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were reduced when newborn granule cells were eliminated[132]. Following SE, microglia 

regulate the number of new granule cells through selective phagocytosis to maintain 

homeostasis in the dentate gyrus circuitry[136] and are capable of engulfing viable neurons in 

the hippocampus as well[137]. It has been suggested that microglia modulate each step 

(proliferation, survival, and maturation) of adult neurogenesis in both homeostasis and 

epileptic states[138], though their exact role in the integration of new cells has not been 

elucidated. Microglia may also suppress aberrant neurogenesis through the secretion of 

TNF-α[95], potentially leading to anti-epileptic effects [Figure 2]. Recent studies depleting 

microglia from the SVZ suggested that they might not be necessary for NSC 

proliferation[139,140], although this has not been shown in the hippocampus.

CONCLUSION

Investigation of inflammatory and neurogenic processes in epilepsy has revealed potential 

and critical roles of microglia in several facets of seizure generation. Epilepsy patients take 

AED with the aim of preventing seizures, yet studies looking at the anti-inflammatory and 

neurogenic effects of these drugs are sparse. Interrogating the literature for effects of AEDs 

in vivo on microglia, an important modulator of these processes, result in surprisingly few 

reports[141–143].

In vitro studies on microglial cells as mediators of inflammation have demonstrated that 

topiramate, a second generation AED, decreased the release of IL-1β, IL-6 and TNF-α[144]. 

Other AEDs such as levetiracetam, gabapentin, and phenobarbital showed slight 

modification in cytokine production[145]. The first generation AED valproic acid, was shown 

to increase IL-6 and TNF-α production in LPS-induced microglial cells[145], which contrasts 

with in vivo results where TNF-α and IL-1β were decreased after valproic acid 

treatment[143]. It was also demonstrated that the AED levetiracetam suppressed 

neuroinflammation and phagocytosis in a pilocarpine induced SE model[143]. Itoh et al.[146] 

reported that levetiracetam lessened microglial activation, as demonstrated by lower 

numbers of Iba-1 positive microglia, higher ramified shape, and low expression of pro-

inflammatory cytokines. While the results of in vitro studies may eventually be applicable to 

the clinic, they highlight the need for clarification of the effects of AEDs on inflammation in 

vivo.

Studies concerning AEDs and neurogenesis are also extremely limited. Pregabalin, a widely 

used AED with an unknown mechanism of action, has been shown to accelerate the 

maturation of granule cells in the dentate gyrus[147]. In rats, lamotrigine increased the 

number of newborn cells in the hippocampus[148] and increased neurogenesis[149]. Valproic 

acid also induced neurogenesis, but these effects were not induced by phenobarbital and 

topiramate[149].

Epileptogenic changes in the brain are provoked by inflammation and increased neurogenic 

levels post-seizure. To control this process, a greater understanding of microglial 

contributions is needed and could provide a mechanism and target for a new generation of 

AEDs.
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Figure 1. 
Granule cell neurogenesis and mossy fiber sprouting. A: Neurogenesis occurs in the dentate 

gyrus of the hippocampus. The cells proliferate in the subgranular zone and then migrate a 

short distance to the granule cell layer where they differentiate into mature granule cells; B: 

the axons of granule cells (mossy fibers) normally project to the cells in the CA3 region of 

the dentate gyrus; C: during seizures, several factors contribute to aberrant migration of 

granule cells that leads to their ectopic placement in the hilus. Ectopic granule cells (red 

cells) form functioning neural connections to the pyramidal neurons in the CA3 region and 

contribute to hyperexcitability and epileptogenesis through aberrant ‘sprouting’ along the 

mossy fiber pathway. Image created with BioRender.com
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Figure 2. 
Microglial responses in fnflammation and neurogenesis. A: Microglia activate in response to 

damage associated molecular patterns (DAMPs) released by injured neurons post-seizure. 

Upon activation, microglial adopt one of two phenotypes: M1-like, which presents a pro-

inflammatory profile that consists of decreased expression of neurotrophic factors and 

increased levels of pro-inflammatory chemokines and cytokines and reactive oxygen 

species, or M2-like, which is an anti-inflammatory response that includes the resolution of 

the inflammatory profile, neurogenesis and the clearance of debris; B: during neurogenesis 

in the hippocampus, unchallenged microglia clear cellular debris and control the number of 

newborn neuronal cells through phagocytosis. Post-seizure, the increased numbers of 

newborn cells may be cleared by microglia to reduce the potential for ectopic connections 

that contribute to pro-epileptic activity. Image created with Biorender.com

Victor and Tsirka Page 19

Neuroimmunol Neuroinflamm. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Biorender.com

	Abstract
	INTRODUCTION
	EPILEPSY
	Epileptogenesis
	Models of epilepsy

	MICROGLIA
	Microglial contribution to epileptogenesis
	Changes in microglia post-seizure

	NEUROGENESIS
	The role of microglia in physiological neurogenesis
	Neurogenesis and the pathophysiology of epilepsy

	CONCLUSION
	References
	Figure 1.
	Figure 2.

