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In this paper, we introduce a new framework for generating synthetic vascular
trees, based on rigorous model-based mathematical optimization. Our main
contribution is the reformulation of finding the optimal global tree geometry
into a nonlinear optimization problem (NLP). This rigorous mathematical for-
mulation accommodates efficient solution algorithms such as the interior point
method and allows us to easily change boundary conditions and constraints
applied to the tree.Moreover, it creates trifurcations in addition to bifurcations.
A second contribution is the addition of an optimization stage for the tree top-
ology. Here, we combine constrained constructive optimization (CCO) with a
heuristic approach to search among possible tree topologies. We combine the
NLP formulation and the topology optimization into a single algorithmic
approach. Finally, we attempt the validation of our newmodel-based optimiz-
ation framework using a detailed corrosion cast of a human liver, which allows
a quantitative comparison of the synthetic tree structurewith the tree structure
determined experimentally down to the fifth generation. The results show that
our new framework is capable of generating asymmetric synthetic trees that
match the available physiological corrosion cast data better than trees
generated by the standard CCO approach.
1. Introduction
The cardiovascular system of the human body supplies the cells with vital
nutrients by permitting blood to circulate throughout the body [1]. The heart
pumps the blood through vessels, categorized into arteries (transporting
blood away from the heart) and veins (transporting blood towards the heart).
The cardiovascular system is further divided into the pulmonary circulation
and the systemic circulation. In the pulmonary circulation, deoxygenated
blood is carried from the heart to the lungs, and oxygenated blood returns to
the heart. By contrast, the systemic circulation carries oxygenated blood from
the heart to the rest of the body, reaching the other organs. The blood enters
these organs through different branches of the aorta, where arteries distribute
it. The arteries split into smaller and smaller arteries until they reach the arter-
ioles, which are the last arterial branches prior to entering the microcirculation.
After the blood is distributed at the microcirculatory level and interacts with the
organ’s cells, the capillaries merge to bring the deoxygenated blood back
through the venules, which merge into veins. Finally, the blood leaves the sys-
temic circulation through either the superior or inferior vena cava back to the
heart. The complete cardiovascular system is schematically shown in figure 1.

Formally, the systemic circulation can be divided into two functional parts:
macrocirculation and microcirculation. In the microcirculation, nutrients and
oxygen diffuse towards the organ’s cells. Here, the main functions of the

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0087&domain=pdf&date_stamp=2022-06-15
mailto:etienne.jessen@tu-darmstadt.de
https://doi.org/10.6084/m9.figshare.c.6016888
https://doi.org/10.6084/m9.figshare.c.6016888
http://orcid.org/
http://orcid.org/0000-0003-0276-6029
https://orcid.org/0000-0002-6343-9809
https://orcid.org/0000-0003-1962-238X
https://orcid.org/0000-0002-9068-6311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


lungs

pulmonary veinpulmonary
artery

vena cava

upper body

hepatic vein

sy
st

em
ic

ci
rc

ul
at

io
n

pu
lm

on
ar

y
ci

rc
ul

at
io

n

renal vein

aorta

liver

vessels transporting
oxygenated blood

vessels transporting
deoxygenated blood

vessels involved in
gas exchange

hepatic artery

hepatic portal vein

renal artery

kidneys

lower body

stomach,
intestines

Figure 1. Schematic overview of the cardiovascular system [2].
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different organs are carried out, e.g. synthesizing proteins
and detoxification in the liver. By contrast, macrocirculation
mainly distributes oxygenated blood evenly throughout the
organs and then recollects the deoxygenated blood. The
task of distributing and collecting blood leads to specific
branching patterns inside the organs. These sets of branches,
at least one for arteries and one for veins inside each organ,
are called vascular trees. The general structure of a vascular
tree mainly depends on the organ supplied, with the main
factors being the organ’s shape, the amount of blood
supply and the microcirculation structure. Furthermore, a
distinction between solid organs (such as the liver) and
hollow organs (such as the stomach) must be made.

In general, vascular trees are patient specific, and clinicians
cannot derive them from statistical measures alone. Having
detailed patient-specific data on vascular trees is essential to
help further improve many clinical treatment strategies, for
example determining suitable cut patterns in liver resection
or optimizing targeted chemotherapy for cancer patients. An
essential tool for obtaining patient-specific data on vascular
trees in vivo is non-invasive medical imaging such as com-
puted tomography (CT) or magnetic resonance imaging
(MRI). Their maximum resolution for in vivo imaging, how-
ever, even with the advances made in the last decade, is still
limited. Therefore, to understand vascular trees down to the
arterioles and venules, ex vivo methods must be used, but
these are often time-consuming and require specialized equip-
ment, making them expensive. Examples are cryomicrotomes
in human hearts [3] or corrosion casting of the liver [4]. The
latter uses curable resin and a maceration process to extract a
cast of the blood vessels from the organ.

An alternative approach is based on the synthetic gener-
ation of vascular trees with the help of a computer. Starting
from available low-resolution patient-specific imaging data,
synthetic vascular trees can potentially fill in the missing
data to obtain a high-resolution model-based representation
of the hierarchical vascular system. These synthetic vascular
trees are based on optimality principles whose goal is to
minimize the metabolic cost [5–7]. The assumption is that
the individual branchings, defining the structure of the tree
on the macroscale, form under these principles. Most existing
methods generate vascular trees based on these optimization
principles and assume that flow is distributed evenly into a
pre-defined perfusion volume. Such synthetic trees can be
generated for any pre-arteriolar refinement level. A number
of different methods exist that differ in terms of the optimiz-
ation algorithms and the constraints for guiding the
optimization.

The most well-known approach for generating vascular
trees is the constrained constructive optimization (CCO)
method, first proposed by Schreiner & Buxbaum [8] and
later extended to three-dimensional non-convex domains [9].
It is based on modelling blood flow using Poiseuille’s law
and optimizing bifurcations using Murray’s law [10]. The
underlying algorithm starts from an initial vascular structure
and iteratively adds new segments while optimizing the
local tree structure (topology and geometry) at each bifur-
cation. Since CCO plays a central role in the topology
optimization of our framework, we review the method in
more detail later. CCO can reproduce a qualitatively reason-
able distribution of segments, but fails to capture the
asymmetric branching patterns that characterizemost real vas-
cular trees. Several adaptations to CCO have been proposed
that attempt to remove this limitation, for example using
new constraints or new intermediate processing steps for gen-
erating organ-specific vascular systems [11–13]. Moreover,
owing to the sampling of new segments the results of CCO-
generated trees are largely dependent on random seeds [14].
In Hahn et al. [15], an alternativemethod known as global con-
structive optimization (GCO) was introduced. It starts by
defining random points inside the perfusion volume. These
points are kept fixed throughout the optimization and are
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the leaf nodes of the resulting vascular tree. The goal is now to
construct the topology and positions of the internal nodes of
the vascular tree. Optimization is driven by successively con-
necting all leaf nodes to existing internal nodes (starting with
only the root node) and then using splitting and pruning steps
to create new internal nodes. Thus themethod iterates through
suboptimal global structures until the tree reaches a suitable
level of refinement. Organ-specific methods for generating
vascular trees have also been introduced, e.g. for the stomach
[11] and the liver [13,16,17].

A recent method, proposed by Keelan et al. [18], is based
on the assumption that the limitations in the results of CCO
and its variants are caused by the fact that only optima of
the local tree structure are explored. Instead of adding inter-
mediate or post-processing steps to CCO, a new approach
based on simulated annealing (SA) was introduced to
search for the optimum of the global tree structure. Like
GCO, this approach generates the leaf nodes beforehand.
The optimization step consists in adjusting the topology
and geometry of the vascular tree iteratively. It was claimed
that the approach will converge against the global minimum
if the number of iterations goes to infinity. Results also show
a visual convergence of trees with different initial structures
to very similar global structures after optimization, a feature
no other introduced method was able to reproduce. However,
as SA is used for both topology and geometry optimization,
the algorithm is extremely costly for decently sized three-
dimensional vascular trees and global convergence cannot
be guaranteed.

In this paper, we introduce a new framework for generat-
ing synthetic vascular trees, which rigorously mitigates the
limitations of the CCO approach, achieving results similar
to the SA-based method but at a significantly lower compu-
tational cost. We start by casting the problem of finding the
optimal global tree geometry into a nonlinear optimization
problem (NLP). We then specialize the global model for opti-
mizing the local geometry of a single new branching. This
rigorous mathematical formulation accommodates efficient
solution algorithms and makes changes in boundary con-
ditions and constraints trivial. The framework also includes
a discrete optimization step for iterating between different
topologies. To this end, it combines CCO with a heuristic
subtree-swapping step motivated by the SA approach [18].
We combine the geometry and topology optimization steps
into a single algorithmic approach. Unlike the standard
CCO approach and its variants, we reduce the resulting
volume of the tree significantly and limit the influence of
random samples on the final global tree structure. Based on
the formal separation of topology and geometry optimiz-
ation, the efficiency of the algorithm is significantly
improved compared with the SA approach. The new frame-
work allows us to generate a synthetic tree inside a non-
convex organ up to the pre-arteriolar level, where the micro-
circulation starts and the tree transmutes into a meshed
network of micro-vessels.
2. Methods
2.1. Model assumptions
We model the vascular tree as a branching network T ¼ ðV, AÞ,
consisting of nodes u [ V and segments a [ A. The segments
are assumed to be rigid and straight cylindrical tubes, and each
segment a ¼ uv is defined by its radius ra and the geometric
locations of its proximal node xu and distal node xv, yielding
the length ‘a ¼ kxu � xvk. The goal is to generate the vascular
tree inside a given (non-convex) perfusion volume V , R3,
while homogeneously distributing all terminal nodes (leaves)
v [ L. The network is perfused at steady state by blood, starting
at the feeding artery (root segment) down to the leaves at the terminal
segments. In a real vascular system, the tree transmutes into an
arcade network of micro-vessels [19] (mathematically a general
meshed graph with cycles) when reaching the arteriolar level
(radii in the range 0.02–0.1mm). As such, the pre-arteriolar level
marks a conceptual cut-point of this model since the underlying
assumptions are no longer justified [8]. To simplify the model,
blood is assumed to be an incompressible, homogeneous Newto-
nian fluid. Further assuming laminar flow, we can express the
hydrodynamic resistance Ra of segment a by Poiseuille’s law as

Ra ¼ 8h
p

‘a
r4a

8 a [ A, ð2:1Þ

where h denotes the dynamic viscosity of blood which is assumed
constant with η= 3.6 cP. We note, however, that the typical radius
of the smallest arteries in the pre-arteriolar level is in the range
0.1–0.2mm, and the so-called Fåhræus–Lindqvist effect [20]
should be taken into account for these vessels with

hðraÞ ¼ 1:125
�
kþ k2

h
6 expð�170ra=mmÞ � 2:44 expð�8:09

ðra=mmÞ0:64Þ þ 2:2
i� ð2:2Þ

and

k ¼ r2a
ðra � 0:00055mmÞ2 : ð2:3Þ

This effect describes the change of the blood viscosity based on the
vessel diameter and, in particular, the decrease of viscosity as the
vessel diameter decreases. This stems from the fact that in smaller
vessels the blood cells tend to be in the centre, forcing plasma
towards the walls, which decreases the peripheral friction. The
pressure drop Dpa over segment a can now be computed by

Dpa ¼ RaQa 8 a [ A, ð2:4Þ
where Qa is the volumetric blood flow through segment a. At indi-
vidual branchings, the relationship between a parent segment and
its daughter segments obeys the power law

rguv ¼
X
vw[A

rgvw 8 v [ VnL, ð2:5Þ

where g is the branching exponent. It has the value 3.0 inMurray’s law
[10], which is shown to yield a balance between minimizing the
metabolic cost of maintaining blood and power loss for moving
blood [21]. In the literature, g values from2.0 to 3.0 are generally con-
sidered valid for vascular trees [22–26], with, for example, g = 2.55
minimizing pulsatile flow [25] and g = 2.7 minimizing vascular
wall material [26]. As noted in Schwen & Preusser [13], a constant
value g might not be very realistic and g should be considered
dependent on the branching generation in future.

In addition to the model assumptions, a set of physiological
constraints are needed to construct the vascular tree. As
suggested in Schreiner & Buxbaum [8], we assume that the tree
minimizes the metabolic cost of maintaining blood inside the
tree, which is proportional to the tree’s volume,

fT ¼
X
a[A

p‘ar2a : ð2:6Þ

We further constrain the tree to have equal pressure pterm at
all terminal nodes, which are the entry points into the
microcirculatory network. Since the tree induces a given total
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Figure 2. Schematic overview of CCO’s growth algorithm, showing the three main steps. Steps (b) and (c) are repeated for all neighbouring segments of the new
terminal point. (a) Sampling of a new terminal point, (b) connection to an existing segment and (c) optimization of a new bifurcation.
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perfusion Qperf (at the root node) across an overall pressure drop
Dp ¼ pperf � pterm, this constraint leads to equal outflow at each
terminal node.
20220087
2.2. Constrained constructive optimization
Before we introduce our framework, we first describe CCO in
more detail and illustrate key properties of its results via a repre-
sentative benchmark example. We note that, for visualizing trees,
we employ the software POV-Ray [27], where we represent
branching points as spheres and segments as cylinders.
2.2.1. Algorithmic background and key properties
CCO can generate a vascular tree under the assumptions and
boundary conditions described above. The main idea behind
CCO is to grow the vascular tree incrementally by adding new
segments one by one. Each addition consists of three steps.
Step 1 is to sample a new terminal point xterm uniformly inside
the perfusion volume. The distance of the sampled point to
each existing segment must be larger than a pre-defined
threshold. This threshold ensures that the new terminal point is
compatible with the current tree geometry and leads to a uniform
distribution of all terminal points inside the perfusion volume.
The distance between the sampled point and a segment is
computed by evaluating the orthogonal projection onto the
convex line segment. The required threshold is lowered with
each iteration to accommodate the growing number of segments
inside the perfusion volume. After a new terminal point is found,
it is connected to an existing segment in step 2, leading to a new
bifurcation. In step 3, the location of this newly created bifur-
cation is optimized for the lowest total tree volume. Steps 2
and 3 are repeated only for the Ncon closest segments of xterm,
and the connection with the lowest total volume is chosen as per-
manent. The number Ncon of different connections tested will be
investigated later. The entire approach is visualized in figure 2.
The search for the best connection is an optimization of the
local topology, while the search for the best location of the bifur-
cation point is an optimization of the local geometry of the tree.

The growth algorithm for a tree can run either until a pre-
scribed number of segments are connected or until the radius
of new terminal segments is below a certain threshold (usually
the minimum radius of the pre-arteriolar level, rmin ¼ 0:1mm).
The main computational burden of CCO is the geometry optim-
ization that follows the introduction of the new bifurcation in
each iteration. After a new terminal point is connected to the
tree, the constraints and boundary conditions (e.g. equal terminal
outflow) do not hold any longer. The hydrodynamic resistance of
each segment on the path from the new bifurcation to the root
needs to be rescaled to account for this newly created segment,
subsequently inducing a rescaling of the root radius. Therefore,
all radii need to be recomputed. This rescaling of the tree is a
recursive computation starting from the new terminal segment,
which is described in detail in Karch et al. [9]. Each time the
position of a bifurcation is changed, the tree needs to be rescaled
in such a manner.

Synthetic trees generated by the CCO approach show good
visual agreement with morphological data and have comparable
mean radii over all generations. However, one of the most signifi-
cant drawbacks of CCO is the inability to generate trees with
asymmetric bifurcation ratios. In vascular systems, blood is trans-
ported over long distances inside bigger arteries, while only
being in small arteries for a short distance. This leads to direct
connections between small arteries and large trunks and to
small bifurcation ratios. Only when approaching the smallest
arteries can a shift to larger bifurcation ratios be observed. In con-
trast to these specific structures, CCO-generated trees tend to be
more symmetric across all segments with flow evenly splitting
into both branch segments. Many augmented versions of
CCO were proposed to tackle this, often introducing post-
processing steps and new constraints.
2.2.2. Representative benchmark example
To summarize important characteristics of CCO-generated vas-
cular trees and to establish a consistent way of quantifying
them, we apply standard CCO to the benchmark problem intro-
duced in Karch et al. [28]. The perfusion volume is a shallow
rectangular box, and the root node is located at one of the cor-
ners. The model parameters are summarized in table 1.

As stated above, CCO performs an optimization of the local
tree structure. The topology optimization consists of connecting a
newly sampled terminal node to different segments one after
another. Only neighbouring segments are connected, and a maxi-
mum number Ncon of connections is tested to make the
computation more efficient. To determine an appropriate choice
for Ncon in our example, we generated seven trees with different
values of Ncon, summarized in table 1. The total volumes of the
resulting trees are compared in figure 3. Our results suggest a
value of Ncon ¼ 32, as testing more connections had no significant
influence on the final tree volume while increasing the overall com-
putation time. We note that wewill also use the valueNcon ¼ 32 for
all further computations throughout the paper, including those in
the context of our new framework that we will introduce below.

Because of the iterative nature of the CCO approach, seg-
ments that are generated early on tend to define the overall
hierarchy of the final tree. This phenomenon is illustrated in
figure 4 for different numbers of terminal points. We observe
that, after adding 50 terminal points only, the core structure is
nearly identical to that of the final tree with 6000 terminal



Table 1. Model parameters of the benchmark problem due to Karch et al. [28]

parameter meaning value

Vperf perfusion volume 9 × 7 × 1.6 cm

pperf perfusion pressure 100 mm Hg

pterm terminal pressure 60 mm Hg

Nterm number of terminal

segments

6000

Qperf perfusion flow (at root) 500 ml min−1

h blood viscosity 3.6 cP

g branching exponent 2.55

Ncon maximum number of

connections tested

{2, 4, 8, 16, 32, 64, 128}

no. connections tested

2 4 8 16 32 64 128
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Figure 3. Total tree volume for different numbers of connection tests
(Nterm ¼ 6000).
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points. The reason for this is that CCO only changes the position
of one bifurcation in each iteration. Therefore, positions of old
bifurcations are fixed, and the corresponding segments do not
change after initial generation. All previously optimized bifur-
cations, however, are no longer optimal after the next iteration.
Furthermore, employing only subsequent disconnected geome-
try optimization steps tends to favour symmetric bifurcations,
even for segments that appear further down the tree hierarchy.

The bias of missing re-adjustments after adding new bifur-
cations is further amplified by the bias of the specific random
seed on the initial sampling and the order in which samples
are connected. This bias is illustrated in figure 5, where we
used the same terminal points for each tree but connected
them in the order defined by their random seed. We can observe
that three different random seeds lead to three very different tree
structures. Because of the dependence of the tree’s topology on
the sampled terminal points, only qualitative comparisons are
possible. A quantitative comparison of the exact segment
locations against a real vascular system is not possible because
results of the CCO method are not reproducible without pre-
defining a fixed random seed.
2.3. A new approach based on optimizing the global
geometry

The drawbacks of CCO are all due, at least partially, to optimizing
only the local tree structure at each bifurcation. To mitigate this
significant limitation and the associated problems, we introduce
a new framework for generating synthetic trees that optimizes
their geometry and topology. To this end, we formulate an NLP
to optimize the global tree geometry, considering all branchings
simultaneously. We furthermore add a heuristic step for the
optimization of the tree topology. We cast these optimization
steps into an algorithmic framework that uses CCO as a tool to
grow the tree in between these optimization steps.
2.3.1. Geometry optimization
We start with a CCO-generated tree T ¼ ðV, AÞ whose continu-
ous variables serve as the initial estimate of the global
geometry. We assume that we are given (for instance, via medi-
cal imaging) the root subtree of depth k with topology
Tk ¼ ðVk, AkÞ, node locations �xu, u [ Vk, as well as segment
radii �ra and lengths �‘uv ¼ k�xu � �xvk, a ¼ uv [ Ak. If k = 0, only
the root location �x0 is provided. Locations �xu of all terminal
nodes u [ L are given by sampling their spatial distribution.
To circumvent the computationally expensive recursive compu-
tation of the radii r ¼ ðraÞa[A as in Karch et al. [9] and similarly
of the node pressures p ¼ ðpuÞu[V, we include them together
with the lengths ‘ ¼ ð‘aÞa[A in the vector of optimization vari-
ables, y = (x, p, ‘, r), where x ¼ ðxuÞu[V. We have physical lower
bounds ‘�, r� on ‘a, ra, respectively, and we add artificial
upper bounds ‘+, r+ for numerical efficiency. Then y has to be
an element of the box Y ¼ R4jVj � ½‘�, ‘þ�jAj � ½r�, rþ�jAj of
dimension 4jVj þ 2jAj ¼ 6jVj � 2, and our NLP reads:

min
y[Y

X
a[A

‘ar2a ; ð2:7Þ

s.t. 0 ¼ xu � �xu, u [ Vk < L; ð2:8Þ
0 ¼ ‘a � �‘a, a [ Ak; ð2:9Þ
0 ¼ ra � �ra, a [ Ak; ð2:10Þ
0 ¼ ‘2uv � kxu � xvk2, uv [ AnAk; ð2:11Þ
0 ¼ rguv �

X
vw[A

rgvw, v [ VnðVk < LÞ; ð2:12Þ

0 ¼ pu � pv � 8h
p

� �
Quv‘uv=r4uv; uv [ A; ð2:13Þ

0 ¼ pu; u [ L; ð2:14Þ
and 0 ¼ p0 � Dp: ð2:15Þ
Here, (2.8)–(2.10) fix the geometry of the root tree Tk and the
locations of all terminal nodes. Constraints (2.11) and (2.12)
ensure consistency of ‘uv with xu, xv and Murray’s law, respect-
ively, outside Tk. The pressure drops across segment uv and
the terminal pressure pu are given by (2.13) and (2.14), respect-
ively, where Quv ¼

P
vw[A Qvw for v [ Vnðf0g< LÞ (Kirchoff’s

law) and Quv ¼ Qperf= Lj j for v [ L (homogeneous flow distri-
bution). Constraint (2.15) fixes the pressure drop from the root
node to the terminal nodes at the prescribed value Δp. Moreover,
we set pterm ¼ 0 without loss of generality.

We use lower bounds r− = 0.1 mm, the radius of vessels
entering the microcirculatory network [8], and ‘�¼ 0:2mm to
satisfy the conditions for Poiseuille flow to hold also for the smal-
lest vessels. The upper bounds are ‘þ ¼ 2maxa[A ‘ina and
rþ ¼ 2maxa[A rina , where ‘ina , r

in
a refer to the initial CCO-generated

tree. If the length of a non-terminal segment becomes smaller
than its diameter we delete it. We then replace this degenerate
segment with its branch segment, which may create a
trifurcation.

We use our benchmark problem due to Karch et al. [28] with
Nterm ¼ 6000 terminal segments to assess the effect of geometry
optimization via the NLP described above. To this end, we first
compare visualizations of the complete tree structure generated
via standard CCO in figure 6a and geometrically optimized
afterwards by solving the NLP in figure 6b. We overlay the geome-
tries of both trees in figure 6c and observe that, although at this
stage the tree topology remains the same, the two methods lead
to significant differences in tree geometry. As a result of the
NLP, the total volume of the tree is reduced by 4:1% compared



(a) (b) (c)

Figure 4. Different stages of a synthetic tree during CCO-driven growth. (a) Nterm ¼ 50, (b) Nterm ¼ 500 and (c) Nterm ¼ 6000.

(a) (b) (c)

Figure 5. Different random seeds during CCO-driven growth (Nterm ¼ 500). (a) Seed 1, (b) seed 2 and (c) seed 3.
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with the standard CCO tree. Furthermore, 566 trifurcations are
created during the optimization.

As a measure of the symmetry between branches, the branch-
ing ratio of node u is defined as [8]

du ¼ minfruv : uv [ Ag
maxfruv : uv [ Ag 8u [ VnL: ð2:16Þ

To show the impact of repeated geometry optimizations on the
overall branching asymmetry, we compute the branching ratios
(2.16) over all generations.

Remark 2.1. To classify the hierarchy throughout the tree, each
segment is assigned to a generation according to the Strahler
ordering method [29]. The ordering starts from the leaf nodes,
which are initially assigned to the order 1. At each branching,
the parent node is assigned the maximum order of its children.
If the children belong to the same order, the parent is assigned
the order of its children plus 1. For each generation, the Strahler
order is applied contrariwise, starting with the root segment at
generation 1.

Figure 7 plots the branching ratios for the first seven gener-
ations for the geometrically optimized tree and the standard
CCO-generated tree. We observe that optimizing the global geo-
metry improves the branching asymmetry over generations
2–6. We note that, for higher generations, branching ratios of
both trees become more symmetric. This is consistent with obser-
vations in corrosion casts [4], where smaller vessels also tend to
bifurcate more symmetrically.

Optimizing the global geometry repeatedly during the
branching process proves beneficial, especially for very large
trees, but doing this each time after a node is added is computa-
tionally expensive. To reduce the associated computational cost,
our idea is to run this optimization after several nodes are added.
To determine an appropriate rule that balances accuracy and
computational cost, we conduct a sensitivity study for the
current benchmark problem with Nterm ¼ 1000. Based on the
results of this study (shown in figure 8), we find that carrying
out geometry optimization after Ngeo ¼ 20 new nodes is an
appropriate compromise for sparser trees, which we will increase
step-wise during growth to a maximum of 500 for the densest
trees (more than 20 000 nodes). We will apply this rule in all
computations in the remainder of this paper.

2.3.2. Topology optimization
We have seen that optimizing the global geometry reduces the
total volume of the vascular tree and improves its asymmetric
branching pattern. However, the locations of nodes still depend
primarily on the sampling of the terminal points in the CCO
algorithm. To reduce the associated bias, we propose an
additional topology optimization step for an intermediate tree
structure with fewer total segments. We use the property of
CCO that initial samples are not changed significantly during
growth by continuing the growth from this intermediate vascular
structure.

We optimize the topology by exchanging pairs of proximal
points from one parent segment to another and then optimizing
the global geometry using the NLP model. This is similar to the
local search for the best connection in the standard CCO algor-
ithm, with the key property of also allowing the swapping of
entire subtrees. Our topology optimization approach is discrete,
and the total number of possible topologies for a binary branch-
ing tree with n nodes is given by the Catalan number,

Cn ¼ 1
nþ 1

2n
n

� �
: ð2:17Þ

For only Nterm ¼ 500 segments this still involves 50 000 possible
swaps per iteration. To reduce this number, we delete infeasible
swaps that create a cycle (an ancestor node is connected to the
current node) and swaps where the initial new segment length
is at least two times larger than the current segment length.
During tests, we observed that these swaps almost never lead
to improved topologies. Since the root subtree Tk and the



(a) (b)

(c)

Figure 6. Comparison of complete tree structures (with Nterm ¼ 6000). (a) Standard CCO-driven growth, (b) CCO + geometry optimization via NLP and (c) overlaid
geometries (red = standard CCO, green = CCO + geometry optimization).
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leaf locations are kept fixed, this restricts the search to local top-
ology changes. The number of possible swaps per iteration then
drops to around 7500.

This number is still too large to search the entire possible
solution space. We therefore deploy SA [30], a metaheuristic
approach, to search the discrete solution space. Instead of
accepting a new topology only when it yields a smaller
volume than the current one, SA accepts worse topologies
with a probability of

p ¼ exp �DfT
T

� �
, ð2:18Þ

where DfT ¼ f jT � f iT is the change in cost associated with going
from topology i to topology j. T is the SA temperature, which is
‘large’ initially and is then ‘cooled down’ after each iteration.
This means that SA can ‘climb out’ of local minima and
search a wider solution space. Figure 9 shows the total
volume of 10 different trees during topology optimization
with SA in a box plot, illustrating the effectiveness of the
approach. We observe that not only the topology optimization
significantly reduces the total volume but also the variance
between different trees is reduced. This indicates that the differ-
ent random seeds converge to nearly identical tree structures.

Since we use CCO to obtain the initial tree topology, the
initial temperature T0 does not need to be chosen too large,
which significantly reduces computation time.

2.3.3. Combining geometry and topology optimization
To complete our new optimization framework, we combine geo-
metry and topology optimization. We specify the perfusion
volume to be filled, the number of terminal segments Nterm

and the initial root subtree of depth k (or proximal point of
root for k = 0). After initialization of the problem, we use CCO
to grow the tree until it has 500 terminal segments. We optimize
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the topology of this initial tree, as described in §2.3.2. From this
near-optimal tree, we restart CCO until Nterm segments are
added. After each Ngeo iteration step, we optimize the global
tree geometry by solving the NLP. The structure of our frame-
work is shown in algorithm 1.

Algorithm 1. New optimization framework.

1: for i ¼ Vkj j, . . . ,Nterm do
2: Generate new terminal point xterm
3: Determine best branching location x on best connec-

tion segment j with proximal node u
4: if kx� xuk . ‘� then
5: Connect xterm to segment j at position x
6: else
7: Connect xterm to node u at position xu
8: end if
9: if i ¼¼ 500 then
10: Optimize tree topology using SA approach
11: else if i . 500 and i mod Ngeo ¼¼ 0 then
12: Optimize global tree geometry by solving NLP
13: Heuristically increase Ngeo based on density of

current tree
14: end if
15: end for
16: Optimize global tree geometry by solving NLP
17: Replace degenerate segments with their branch segments

Our new optimization framework together with the CCO
algorithm was implemented in the programming language Julia
[31] and will be the basis for further studies of the perfusion
behaviour inside the liver. We plan to make the entire framework
open access in the next 2 years. The NLP is solved by an interior
point method using the solver Ipopt [32] and the linear solver
Mumps [33].

All computations were done on a desktop computer with 32
GB of random-access memory (RAM) and an Intel Core i9-9900k
@5Ghz with 16 processing threads.

To measure the computation cost of each component of our
framework, we measured the computing times for three different
cases. The first two cases include the benchmark problem with
Nterm ¼ 500 and Nterm ¼ 6000, respectively, and the third is the
generation of a portal vein (PV), described in §3, with
Nterm ¼ 24 000. We formally divide our framework into CCO-
driven growth, geometry optimization during growth and top-
ology optimization on the reduced tree (Nterm ¼ 500). The
results are shown in table 2. It becomes clear that (except for
Nterm ¼ 24 000) the topology optimization using the SA approach
is the most expensive part of the framework, even though we are
limiting it to only 500 terminal segments. By contrast, optimizing
the global geometry during growth is efficient even for the PV
problem. It takes 45 s to solve the NLP for 24 000 terminal
segments.

Using our current benchmark example, figure 10 enables a
visual comparison of the complete vascular tree that is geometri-
cally optimized via solving the NLP and the complete vascular
tree that is geometrically and topologically optimized. We observe
that the geometrically and topologically optimized tree differs
significantly from the tree that is only geometrically optimized.

To better illustrate the importance of topology optimization,
we consider the three geometrically optimized trees with
Nterm ¼ 500 that are shown in the left column of figure 11.
They are juxtaposed to the corresponding versions after having
applied the topology optimization.

For the current benchmark, topology optimization further
reduces the total volume of the tree by up to 6%, resulting in a
total volume decrease of up to 11% with respect to the standard
CCO-generated trees. We can also observe in figure 11 that all
three trees, although generated with different random seeds,
converge towards very similar tree structures. This convergence
is also highlighted in figure 12, where we overlaid the different
trees before and after topology optimization, respectively. In
particular, we see in all three results a prominent large trunk
going from the bottom right corner to the top left corner, connect-
ing two main branches on the top side and one main branch on
the bottom side.
3. Validation
We have developed a framework based on mathematical
optimization that allows us to generate synthetic vascular



Table 2. Computing times of the new optimization framework for three different cases.

benchmark
portal vein

(Nterm ¼ 500) (Nterm ¼ 6000) (Nterm ¼ 24 000)

CCO-driven growth 10 s 565 s 8640 s

geometry optimization 15 s 285 s 2930 s

topology optimization 4820 s 4970 s 6126 s

(a) (b)

(c)

Figure 10. Vascular trees before and after topology optimization (Nterm ¼ 6000). (a) Geometry optimization only (via series of NLPs), (b) geometry and topology
optimization (via series of NLPs + discrete topology testing) and (c) overlaid geometries (red = geometry optimization only, green = geometry and topology
optimization).
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trees with reproducible topology and geometry for general
non-convex perfusion volumes. We can now validate the over-
all approach against real vascular systems. To this end, we
consider the hepatic vascular systems in the human liver.
Blood flow through the liver on the organism scale is shown
in figure 13. In contrast to other organs, the liver has two sup-
plying trees. The first one is supplied through the hepatic artery
(HA) from the heart, and the second one is supplied through
the PV from the digestive tract. The blood leaves the liver
through a single draining tree into the hepatic veins (HVs), lead-
ing into the inferior vena cava (IVC).
In the scope of this work, we focus on the supplying tree
that stems from the PV. We apply our framework for gener-
ating a synthetic hepatic tree that we can then assess via a
real hepatic tree that is experimentally characterized via a
detailed vascular corrosion cast of a human liver.
3.1. Vascular corrosion casting
As in vivo medical imaging cannot provide detailed represen-
tations of hepatic tree structures, we resort to ex vivo vascular
corrosion casting, as described in detail by Debbaut et al. [4].



(a) (b)

(d)(c)

(f)(e)

Figure 11. Trees generated with different random seeds before and after topology optimization (Nterm ¼ 500). (a) Seed 1 (geometrically optimized), (b) seed 1
(geometrically + topologically optimized), (c) seed 2 (geometrically optimized), (d ) seed 2 (geometrically + topologically optimized), (e) seed 3 (geometrically
optimized) and ( f ) seed 3 (geometrically + topologically optimized).
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We compare the synthetic trees against a human liver
previously discarded for transplantation owing to failed real-
location. The protocol conforms to the ethical guidelines of
the 1975 Declaration of Helsinki, and was approved by the
ethics committee of the University Hospitals Leuven, Bel-
gium, and by the Belgian Liver and Intestine Committee as
foreseen by the initial protocol, as stated in Debbaut et al.
[4]. The ex vivo liver (weight ≈1.9 kg) was first connected to
a machine perfusion preservation device (Organ Recovery
Systems, Zaventem, Belgium). During a 24 h period, the
liver was continuously perfused under pressure control
through the HA at 25 mm Hg and the PV at 7 mm Hg. The
blood left the liver through the HVs and IVC. Perfusion of
the liver allows the preservation of the vasculature and par-
enchyma. Moreover, it keeps the blood vessels open. The
colour-dyed casting resin was added to both the HA and
PV simultaneously until a sufficient quantity emerged from
the IVC. Afterwards, inlet and outlet vessels were clamped



(a) (b)

Figure 12. Overlaid geometries of different random seeds before and after topology optimization (Nterm ¼ 500; green = seed 1, red = seed 2, purple = seed 3). (a)
Seeds (geometrically optimized) and (b) seeds (geometrically + topologically optimized).
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Figure 13. Schematic overview of the liver inside the systemic circulation;
from Debbaut [34].
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to avoid resin leakage during the polymerization step, which
took approximately 2 h. After 2 days in a macerating bath, the
corrosion cast was ready for imaging. The liver cast was
imaged in globo and the resulting image dataset was recon-
structed using Octopus software (Ghent University, Ghent,
Belgium). Imaging was done using a high-resolution micro-
CT scanner. The whole cast was imaged at a resolution of
102 μm, recovering vessels down to a diameter of approxi-
mately 0.5 mm. Because of labour intensity reasons, a
second analysis was carried out only on a smaller subsample
(about 88 × 68 × 80 mm) at a resolution of 71 μm. For this
sample, vessels down to a diameter of approximately 0.08
mmwere recovered for later processing. The complete casting
and micro-CT set-up is illustrated in [4]. More detailed infor-
mation on the vascular corrosion casting and micro-CT
scanning can be found in [35].
The resulting micro-CT dataset was processed and seg-
mented based on the grey values of the images. The
separation of arterial and venous vessels was facilitated by
the contrast agent used in the HA resin. The separation of
the PV and HV trees, however, was more challenging because
of similar grey values and touching vessels, requiring manual
segmentation. After the segmentation, a three-dimensional
reconstruction of each tree was calculated. The resulting geo-
metries are shown in figure 14.

A detailed visual inspection of the tree representations
shows that, in addition to bifurcations, all trees also exhibit
a number of trifurcations. We also observe monopodial
branches sprouting from parent vessels at angles close to
90�. After the first generations, the HA vessels typically run
parallel to the PV vessels. This trend continues down to the
microcirculation. From the macro- to the mesocirculation,
the mean radii decreased to 0.08mm at the most distal meso-
circulation generation 13 in the sample studied in [4]. At the
microcirculation level, blood reaches the functional units of
the liver, called hepatic lobules. This smallest scale of the cir-
culation exhibits entirely different flow characteristics [19]
that we cannot describe with our model. Instead, more
specific models as in [36] would be needed.
3.2. Comparison and assessment
The synthetic generation of the PV tree is based on the per-
fusion volume of the experimentally investigated tree from
Debbaut et al. [4] and the physiological parameters taken
from Kretowski et al. [37]; see table 3. We generate the vascu-
lar tree with Nterm ¼ 24 000 segments, both with the standard
CCO method and with our new framework as described in
§2.3.3. Our framework takes 4 h 50min, while the standard
CCO method takes 2 h 37min; see table 2.

We start the analysis by a qualitative comparison of the
segment parameters averaged over each generation. In
figure 15, we compare the number of segments and segment
radii between standard CCO, our method based on optimiz-
ing the global geometry and the reference values calculated
by Debbaut et al. [4] based on corrosion cast measurements,
for each generation of the hierarchical tree structure. We
can observe in figure 15a that the number of vessels per gen-
eration deviates only slightly between all three cases.



(a) (b)

(d)(c)

Figure 14. Representations of all three vascular hepatic trees obtained from imaging of the corrosion cast as obtained in [4]. (a) Segmented image of all three
vascular trees, (b) segmented image of the PV, (c) segmented image of the HVs and (d ) segmented image of the HA.

Table 3. Physiological parameters required for the generation of a hepatic
vascular tree (portal vein); adapted from Kretowski et al. [37]

parameter meaning value

Vperf perfusion volume ≈1500 cm3

pperf perfusion pressure 12 mm Hg

pterm terminal pressure 8 mm Hg

Nterm number of terminal segments 6000

Qperf perfusion flow (at root) 1000 ml min−1

h blood viscosity 3.6 cP

g branching exponent 3.0

Ncon number of connections tested 30

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220087

12
Comparing the average radius per generation in figure 15b,
however, indicates that our method fits the corrosion cast
data better than the standard CCO results for the important
lower generations between 1 and 6. Optimizing the global
geometry shortens the overall segment length of the inter-
mediate generations, leading to larger radii overall. By
contrast, CCO overestimates the lengths in these generations
owing to the limiting view of optimizing the local geometry
only, which leads to smaller radii overall. For higher gener-
ations beyond 7, both methods seem to underestimate the
corrosion cast data. However, we note that the choice of the
branching exponent g significantly influences the values of
the vessel radii, limiting the possible improvement due to
the optimization framework. The improvement in the branch-
ing asymmetries in figure 15c is also significant, especially for
generations 4–6. The high branching ratio for generation 1
signifies that the root segment branches symmetrically into
daughter branches with similar radius. The branching asym-
metries for the lower generations increased, leading to an
increase in monopodial branches and an overall higher
number of thicker vessels, which is also visually more com-
parable to the corrosion cast. The branching ratios tend to
be larger for the higher generations and are comparable for
both the standard CCO and our method. This is also sup-
ported by Debbaut et al. [4] in the corrosion cast of a
smaller mesoscale sample.

Finally, figure 16 shows the synthetically generated tree
structure of the PV and the corrosion cast data below each
other. In addition to bifurcations, the corrosion cast data exhi-
bit 34 trifurcations. In our method, the tree exhibits 41
trifurcations over the first seven generations, whereas in stan-
dard CCO trifurcations are impossible by design.
Furthermore, the number of monopodial branches increased
from 341 to 521 from the standard CCO tree to our tree.
Lastly, the visual comparison of the synthetic tree structure
based on optimizing the global geometry with the corrosion
cast data shows good agreement, especially for the early gen-
erations. In particular, in both trees, the root vessels split
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Figure 15. Key statistics of the portal vein tree: our method versus CCO and corrosion cast measurements. (a) Number of vessels, (b) mean radii and (c) mean
branching ratios.
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horizontally (with respect to the depicted view) and have
seven major arteries (generations 2 and 3) splitting from
there. Zooming in to the bottom right corner, we observe
that both trees show highly similar branching patterns. We
also see, however, that, in other areas, there are pronounced
differences. For instance, the bottom centre of the synthetic
tree is supplied uniformly via a larger vessel that diagonally
stretches downwards, whereas the corresponding area in the
corrosion cast is nearly empty. Also, the overall distribution
of the radii of the vessles is qualitatively different, as was
already indicated in figure 15b. However, we want to high-
light that the influence of different values for the branching
exponent g had only a limited impact on the overall topology
and vessel positions.
4. Discussion and outlook
The core assumption behind the synthetic generation of vas-
cular trees is that their physiological formation is governed
by optimality principles to reduce the overall metabolic
demand. Current synthetic tree generation methods such as
CCO are capable of reproducing qualitative measures of
their real counterparts, but fail to achieve comparable branch-
ing patterns. Furthermore, owing to dependence on random
sequences, methods such as CCO cannot guarantee reprodu-
cibility of their results, making a quantitative comparison
and validation nearly impossible. We showed that these
drawbacks also stem from the fact that standard methods
such as CCO are based only on optimizing the local tree
structure.

In this paper, we developed a new powerful framework
for generating synthetic vascular trees to mitigate the above
limitations. The fundamental basis of our framework is the
search for a minimum in both the tree’s global geometry
and global topology. In contrast to standard methods, we
split this search into a distinct geometry optimization and a
topology optimization. This allows us to formulate the geo-
metry optimization as an NLP. Unlike other methods, this
permits efficient solution algorithms such as the interior
point method, vastly improving the overall computation
time. We combine CCO with a subtree-swapping procedure
for the topology optimization to search between different
topologies iteratively. In each iteration, we optimize the geo-
metry of the new topology by solving the NLP. We use a
metaheuristic algorithm, similar to SA, to either accept or
reject a new topology. Finally, we combine these steps into
a single algorithmic approach.

Our new algorithm is capable of generating synthetic
trees with up to 11 generations. As input, we only need the
(non-convex) volume that is perfused and the root segment’s
entry point. The resulting trees showed improved branching
patterns while reducing the metabolic cost by up to 11%. Fur-
thermore, results are reproducible, and the influence of
random seeds on the global structure is significantly reduced.
This allowed us to directly compare a synthetic hepatic tree
against the PV of a liver corrosion cast. Our comparison
showed similar branching patterns and comparable



(a)

(b)

Figure 16. The complete portal vein tree: synthetically generated tree structure versus corrosion cast data. (a) Corrosion cast and (b) our method.
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geometric locations of both the segments and branchings. In
areas where the influence of the geometry of the HVs is not
strong, these similarities reach down to the fifth generation.
Also, the number of trifurcations and monopodial branches
formed during growth is close to that of the real hepatic
tree characterized by the corrosion cast data.

The direct comparison with the corrosion cast data also
showed some limitations of the current framework that we
would like to address in future work. Formally, we can cat-
egorize these into model related, application (liver) related
and method related. On the model part, we made significant
assumptions, namely for the blood viscosity and the cost
function. The blood viscosity should take the Fåhræus–
Lindqvist effect into account. The cost function only con-
siders the total volume as the minimization goal. In
addition, the assumption of a constant value of a branching
exponent g needs to re-evaluated. During all tests, the influ-
ence of g on the radii of the vessels was significant. Lastly,
further factors such as the transport cost of blood should
be considered as additional optimization goals. The results
for the liver application highlighted key areas where the
synthetic tree deviated significantly from the corrosion cast
(mainly at the bottom centre). We hypothesize that this devi-
ation is due to the missing HVs and HA that are not
considered in the synthetic model but are present in the cor-
rosion cast; see figure 14. This region is also close to where
the gallbladder is typically situated. This will be similar in
other organs with clearly defined inflow and outflow
trees. As such, our framework should be extended to
allow the generation of both trees in a coupled manner.
All these extensions of the framework will certainly increase
the overall computational complexity. This means that the
method’s efficiency must be further improved. Currently,
using the NLP model for geometry optimization is both
robust and efficient, and CCO combined with the heuristic
subtree-swapping procedure is a good practical approach
for searching the discrete space. However, a proper mixed-
integer nonlinear optimization model (MINLP) for topology
optimization would be desirable. Such a MINLP model pro-
vides a rigorous formulation of the combined topology and
geometry optimization, and it is necessary if we wish to
replace heuristic topology optimization approaches such
as SA by rigorous mathematical methods such as branch-
and-bound algorithms. Although solving the MINLP is
extremely hard and would require a substantial mathemat-
ical research effort, it might ultimately produce better
topologies, and it could even provide optimality certificates
for the solutions.
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We expect that our framework could be helpful in several
applications. First, synthetic trees generated by this frame-
work could help to improve the interpretation of medical
images by, for example, artificially increasing the density of
the initial segmented tree to the desired pre-arteriolar level.
Such dense trees could give valuable input to the functional
assessment of organs such as the liver [38] and the heart
[39]. One primary application domain would be the treat-
ment of cancer. Synthetic trees could compute the blood
flow towards the tumour, supporting various clinical
decisions, e.g. the dosage of chemotherapeutic agents.
Another example would be liver resection, where part of
the liver containing the tumour is surgically removed [40].
Here, synthetic trees could help identify optimal cut patterns,
which reduce the risk of liver failure while increasing the
probability of cutting away the complete tumour.
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