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Abstract: Urban forms, such as size, shape, density, compactness, and fragmentation, are associated
with local air pollution concentrations. However, empirical analyses on how urban form improves or
degrades urban air quality are still limited and inconclusive, especially for those rapidly expanding
cities in developing countries. In this study, by using the improved STIRPAT (stochastic impacts by
regression on population, affluence, and technology) model, the quantitative impact of urban form
on near-surface PM2.5 and NO2 concentrations was identified in the 10 prefecture-level cities of the
Yangtze River Basin (YRB) from 2000 to 2013. Trend analyses showed a significant increasing trend
in both PM2.5 (9.69 × 10−4 µg·m−3

·year−1) and NO2 (1.73 × 10−4 ppb·year−1) for the whole study
period. Notably, a turning point of PM2.5 from increasing to decreasing trends occurred around 2007.
In addition, both pollutants showed a spatial agglomeration. The STIRPAT model demonstrated that
socioeconomic, transportation and urban form factors played an important role in alleviating the
increase of PM2.5 and NO2. In particular, a 1% decrease in urban extent density (UED) significantly
increased NO2 by 0.203%, but reduced PM2.5 by 0.033%. The proximity index (PI) measured as a city’s
compactness was significantly negatively correlated with PM2.5 and NO2. Conversely, a significant
positive relationship of PM2.5 and NO2 concentrations against the openness index (OI) was observed,
an important variable for measuring a city’s fragmentation. In addition, the environmental Kuznets
curve (EKC) hypothesis between per capita GDP and PM2.5 concentration was confirmed but failed
in NO2. Overall, this study encouraged a less fragmented and more compact urban form, which
helped alleviate local air pollution concentrations by enhancing urban connectivity, reducing vehicle
dependence, and facilitating the use of bicycles and walking.
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1. Introduction

Since the reform and opening up in China, along with the rapid urbanization process, air pollution
such as PM2.5, PM10, NO2, SO2 and O3 has become a serious problem [1,2]. As of 2016, 75.1% of
prefecture-level cities in China did not meet the urban air quality standards [3]. As a result, the number
of premature deaths caused by air pollution increased from 0.22 million in 2010 to 3.7 million in 2012.
In short, poor air quality in China has attracted great attention in recent years.
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Air quality is influenced by a variety of meteorological and socioeconomic factors [4–10]. However,
a number of empirical studies, primarily in developed countries, demonstrated that urban form, such as
size, shape, population density, compactness, and fragmentation has an important effect on local air
pollution [11–15]. For example, Clark et al. [12] reported that changes in population density, centrality
and transit supply led to 4%–14% growth in PM2.5 concentration in 111 urban zones of United States;
impacts equivalent in size to those from meteorological conditions. Likewise, in the United States,
fragmented cities experienced low air quality [14]. Moreover, Rodríguez et al. [15] demonstrated
that in 249 large urban zones across Europe, a fragmented and highly constructed urban form was
associated with higher PM10 and NO2 concentrations, but densely populated cities experienced higher
SO2 concentration. One related study was also conducted in East Asia from 2000 to 2010 by Larkin
et al. [16], confirming that urban area expansion was strongly correlated with NO2 but not PM2.5.
However, empirical research exploring the relationship between air pollution and urban form was still
limited, especially for those rapidly expanding cities in developing countries [17–19]. Therefore, in
this study, the Yangtze River Basin (YRB) in China, a zone with rapid urban expansion and serious air
pollution, was selected as the region of interest.

Even if most of the previous studies suggested that a less fragmented or a more compact urban
form was conducive to alleviating local air pollution emissions, the conclusions varied from region
to region [11,20,21]. For example, Fan et al. [21] observed that a less fragmented urban form indeed
mitigated air pollutant emissions in northern regions of China, but a polycentric form along with
the valleys or rivers was encouraged in southern regions of China to improve local air quality.
Besides, according to Cho and Choi [22], compact cities might lead to higher population density,
thereby increasing local CO and NO2 concentrations in Korea. Similarly, Bechle et al. [11] also found
that in 83 cities around the world, a city’s compactness was not significantly associated with NO2

concentration. Overall, the relationship between air pollution and urban form was inconclusive and
required further exploration.

Moreover, most research on this topic has been limited in terms of spatial coverage and temporal
continuity [23]. In China, since 2013, 1498 air quality monitoring sites have been launched to provide
continuous air pollution observations, including PM2.5, PM10, NO2, SO2 and O3 [5,24]. However,
the data before 2013 was missing and perhaps satellite remote sensing was an ideal technology for
addressing this problem. Thus, in this study, long-term annual mean near-surface PM2.5 and NO2

concentrations were derived from satellite imagery at a high spatial resolution of 0.01◦ × 0.01◦.
In short, the objectives of this study were to: (1) estimate spatiotemporal trends in near-surface

PM2.5 (1998–2016) and NO2 (1996–2012) concentrations over the YRB, (2) identify spatial autocorrelation
in the two air pollutants, if present, and (3) further explore the relationship between air pollution
and urban form in the 10 prefecture-level cities of the YRB from 2000 to 2013 by using the
improved stochastic impacts by regression on population, affluence, and technology (STIRPAT)
model. The organizational structure of this study is as follows. Section 2 introduces urban form data,
satellite-based PM2.5 and NO2 concentrations data, socioeconomic variables, and a series of analytical
methods. Section 3 analyzes spatiotemporal trends and spatial autocorrelation in PM2.5 and NO2

concentrations. The quantitative impact of urban form metrics on the two air pollution concentrations
is also estimated in Section 3. Moreover, Section 3 further discusses if there was the environmental
Kuznets curve (EKC) hypothesis, an inverted U-shape relationship between per capita income and the
two air pollution concentrations [23]. Finally, Section 4 provides a conclusion.

2. Data and Methods

2.1. Data

2.1.1. Urban Form Data

In this study, 10 prefecture-level cities over the YRB with rapid urban sprawl and serious air
pollution were selected as the region of interest to reveal the relationship between urban air pollution



Int. J. Environ. Res. Public Health 2019, 16, 3459 3 of 21

and urban form. Figure 1 shows, from east to west, Shanghai (SH), Changzhou (CZ), Anqing (AQ),
Wuhan (WH), Pingxiang (PX), Yiyang (YY), Zunyi (ZY), Suining (SN), Chengdu (CD) and Leshan (LS).
Generally, urban form is defined as the spatial land use configuration of the urban landscape [14,21].
Previous studies monitored the changes of urban form in the process of global urbanization by using
various indicators such as urban area, patch number and population density [16]. However, this was
not enough and more comprehensive urban form metrics were needed [17]. In this study, considering
the size, density, shape, compactness, and fragmentation of a city, five urban form metrics were selected
in the 10 prefecture-level cities of the YRB. The relevant vector data were provided by the NYU Urban
Expansion Program, UN-Habitat and the Lincoln Institute of Land Policy, and these datasets were
freely available online (Table 1).

Table 1. Data sources and descriptions.

Data Spatial
Resolution

Temporal
Coverage Data Type Data Source

Urban form
data

Prefecture-level
city

2000,
2013 Vector data (http://datatoolkits.lincolninst.edu/

subcenters/atlas-urban-expansion/)

Near-surface
PM2.5

0.01◦ × 0.01◦ 1998–2016 Raster data
Atmospheric Composition Analysis

Group (http://fizz.phys.dal.ca/~{}atmos/
martin/?page_id=140)

Near-surface
NO2

0.01◦ × 0.01◦ 1996–2012 Raster data
Atmospheric Composition Analysis

Group (http://fizz.phys.dal.ca/~{}atmos/
martin/?page_id=140)

Prefecture-level
city 2013 Ground data

China Air Quality Real-time Monitoring
platform (http://113.108.142.147:

20035/emcpublish/)
Socio-economic
and Traffic data

Prefecture-level
city

2000,
2013 Panel data Statistics Yearbook of China (http://tongji.

cnki.net/kns55/Navi/NaviDefault.aspx)

The detailed description of these urban form metrics and their calculation formula were shown
in Table A1. Size in this study referred to the total urban extent area (UEA), an important indicator
for measuring urban sprawl, which was calculated from the Landsat 7 (2000) and Landsat 8 (2013)
remote sensing images with a pixel resolution of 30 m × 30 m. The density of a given urban extent
(UED) was identified as the ratio of its population to the area, in which the population of a given urban
extent (UEP) was derived from the census data (2000 and 2013) of China National Census Bureaus.
Moreover, fragmentation and compactness represented the shape of a given urban extent, quantified
by the openness index (OI) and the proximity index (PI), respectively. Both OI and PI were in the range
of 0–1. The OI value close to 1 indicated higher fragmentation [25]. Conversely, higher value of the PI
indicated a circular shape of a given urban extent, which was the most compact urban form [25].

http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/
http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://113.108.142.147:20035/emcpublish/
http://113.108.142.147:20035/emcpublish/
http://tongji.cnki.net/kns55/Navi/NaviDefault.aspx
http://tongji.cnki.net/kns55/Navi/NaviDefault.aspx
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Figure 1. Urban extents of the ten prefecture-level cities over the Yangtze River Basin (YRB) in 
China from 2000 to 2013. Shanghai (SH), Changzhou (CZ), and Anqing (AQ) are located in the 
Yangtze River Delta (YRD); Wuhan (WH), Pingxiang (PX) and Yiyang (YY) are located in 
Central China (CC); the rest of the cities including Chengdu (CD), Zunyi (ZY), Leshan (LS) and 
Suining (SN) are located all over the Sichuan Basin (SB). 

2.1.2. Air Pollutant Data 

Satellite-retrieved air pollutants provided by the Atmospheric Composition Analysis 
Group of the National Aeronautics and Space Administration (NASA) were used to identify 
long-term trends in near-surface PM2.5 (1998–2016) and NO2 (1996–2012) concentrations over 
the YRB in this study (Table 1). The annual mean near-surface NO2 concentrations at a spatial 
resolution of 0.01° × 0.01° were derived from GOME, SCIAMACHY and GOME-2 column NO2 

Figure 1. Urban extents of the ten prefecture-level cities over the Yangtze River Basin (YRB) in China
from 2000 to 2013. Shanghai (SH), Changzhou (CZ), and Anqing (AQ) are located in the Yangtze River
Delta (YRD); Wuhan (WH), Pingxiang (PX) and Yiyang (YY) are located in Central China (CC); the rest
of the cities including Chengdu (CD), Zunyi (ZY), Leshan (LS) and Suining (SN) are located all over the
Sichuan Basin (SB).

2.1.2. Air Pollutant Data

Satellite-retrieved air pollutants provided by the Atmospheric Composition Analysis Group of
the National Aeronautics and Space Administration (NASA) were used to identify long-term trends
in near-surface PM2.5 (1998–2016) and NO2 (1996–2012) concentrations over the YRB in this study
(Table 1). The annual mean near-surface NO2 concentrations at a spatial resolution of 0.01◦ × 0.01◦

were derived from GOME, SCIAMACHY and GOME-2 column NO2 observations by using a chemical
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transport model (GEOS-Chem) [26]. Similarly, based on the GEOS-Chem model, the annual mean
near-surface PM2.5 concentrations (0.01◦ × 0.01◦) were retrieved from MODIS, MISR and SeaWiFS
AOD observations, and then they were calibrated to global ground-based PM2.5 observations. Previous
researches reported a high correlation coefficient (R2 = 0.81) between satellite-retrieved PM2.5 and global
ground-based observation [27]. Such high consistency provided us with enough confidence in using
satellite-retrieved air pollutants in this study. However, since there were no valid satellite-retrieved
NO2 data in 2013, they needed to be calculated from 60 national control sites in the 10 prefecture-level
cities of the YRB by using the Kriging interpolation method (Figure 1).

2.1.3. Socioeconomic and Traffic Panel Data

Urban near-surface PM2.5 and NO2 concentrations were also influenced by several socioeconomic
and transportation factors. According to previous research, per capita GDP (PGDP), the proportion of
the second industry (PSI), industrial added values (IAV), vehicle ownership (VO) and per capita road
area (PRA) were selected as control variables [16,18,19]. These panel data of the ten prefecture-level
cities in 2000 and 2013 were obtained from the Statistics Yearbook of China (Table 1).

2.2. Methods

As shown in Figure 2, the technical flow chart in this study was as follows.
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Firstly, it was necessary to estimate the long-term trend of PM2.5 (1998–2016) and NO2 (1996–2012)
concentrations at grid level (0.01◦ × 0.01◦) using a linear regression. The regression slope represented
the trend. Then, their corresponding statistical significance was further detected by the Mann-Kenddall
(MK) method. The statistics S, the variance Var(s) and the standardized statistics Z were calculated by
Equations (1)–(4):
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S =
n−1∑
i=1

n∑
j=n+1

sgn
(
X j −Xi

)
(1)

sgn
(
X j −Xi

)
=


+1, i f

(
X j −Xi

)
> 0

0, i f
(
X j −Xi

)
= 0

−1, i f
(
X j −Xi

)
< 0

(2)

Var(s) =
n(n− 1)(2n + 5) −

∑q
p=1 tp

(
tp − 1

)(
2tp + 5

)
18

(3)

Z =


S−1√
Var(S)

, i f S > 0

0, i f S = 0
S+1√
Var(S)

, i f S < 0
(4)

where X j and Xi were the near-surface PM2.5 and NO2 concentrations in the year j and i, n was the
length of the time series, tp was the tied value corresponding to the p th number. Only |Z| >

∣∣∣Z(1−α/2)

∣∣∣
represented statistical significance in the trend. When the significant level of α = 1%, 5%, and 10%,
then their corresponding

∣∣∣Z(1−α/2)

∣∣∣ were, respectively, 2.58, 1.96 and 1.65. The relevant results were
calculated in ArcGIS 10.1 software (Environmental Systems Research Institute, America).

Secondly, in order to investigate the spatial autocorrelation in near-surface PM2.5 and NO2

concentrations over the YRB, two conventional indexes, namely Global and Local Moran’s I, needed to
be calculated in Geoda software (Environmental Systems Research Institute, America). The Global
Moran’s I was defined as follows (Equation (5)):

I =
n∑

i=1

n∑
j=1

(xi − x)
(
x j − x

)
/

 n∑
i=1

(xi − x)2/n

2 n∑
i=1

n∑
j=1

ωi j (5)

where xi was the yearly near-surface PM2.5 and NO2 at the city i, n was the total number of county-level
cities over the YRB, ωi j was the spatial weight from city i to city j. The standardized statistics ZI used
for detecting the statistical significance of the Global Moran’s I was computed from Equation (6):

ZI = I − E(I)/
√

Var(I) (6)

where E(I) = −1/(n− 1), Var(I) = E
(
I2
)
− E(I)2. Generally, the Global Moran’s I ranged from –1 to 1.

On the premise of statistical significance, i.e., ZI > 1.65, if Global Moran’s I > 0, then it indicated spatial
agglomeration, otherwise, it was spatial dispersion [19]. In terms of the local spatial autocorrelation,
LISA (local indicators of spatial association) was selected to spatialize it. LISA is a spatial cluster
method based on neighborhood and attributes, dividing the group states into four significant cluster
types: high-high, high-low, low-high and low-low [27]. In this study, high-high and low-low patterns
represented spatial agglomeration for PM2.5 (NO2) over the YRB. Conversely, high-low and low-high
patterns indicated spatial dispersion. Furthermore, high-high was a hot spot with serious air pollution,
while low-low was the cold spot.

After the above two steps, this study undertook an overall analysis of PM2.5 and NO2 pollution
over the YRB in terms of its long-term trend and spatial autocorrelation. However, the reasons for
the changes in PM2.5 and NO2 concentrations required further study. Therefore, this study tried to
explore the quantitative impact of urban forms on PM2.5 and NO2 using a stochastic model (STIRPAT).
Moreover, the socioeconomic and transportation metrics were selected as control variables. Notably,
the New York City Urban Expansion Plan, UN-Habitat and the Lincoln Land Policy Institute provided
relevant urban form indicators only for 2000 and 2013. Therefore, in order to maintain data consistency,
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all air pollution data, urban form data, socio-economic data and traffic data were selected only for 2000
and 2013 when analyzing the quantitative impact of urban forms on air pollution.

The IPAT model was firstly proposed by Ehrlich and Holdren [28] for revealing the anthropogenic
impact on the environment. It was defined as:

I = PAT (7)

where I referred to the anthropogenic environmental impact, P was the population density, A
represented the average affluence, generally characterized by GDP, and T was the technology level.
According to previous researches [18], the proportion of the second industry (PSI) and the industrial
added value (IAV) were selected to represent the technology level. However, the model was inadequate
because only a limited number of independent variables were considered. To overcome this weakness,
Dietz and Rosa [29] further developed the IPAT into a stochastic model (STIRPAT). It can be expressed
as:

Ii = α Pb
i Ac

i T
d
i εi (8)

After taking logarithms, Equation (8) became as Equation (9):

ln Ii = α+ b ln Pi + c ln Ai + d ln Ti + εi (9)

where α was a constant; i was the city; b, c, and d were the coefficients of Pi, Ai, and Ti; εi was the error
term. Additionally, York et al. [30] refined the STIRPAT model by adding quadratic terms of Pi, Ai, and
Ti. In this study, according to previous research, the STRIPAT model is improved by adding urban
form, socioeconomic and traffic variables. Besides, time dynamic effect (t) was also considered in the
improved formula:

ln Iit = α+ b1 ln PGDPit + b2 ln (PGDPit)
2 + b3 ln SIPit + b4 ln IAVit + b5 ln VOit

+b6 ln PRAit + b7 ln UEPit + b8 ln UEAit + b9 ln UEDit
+b10 ln OIit + b11 ln PIit + εi

(10)

Actually, the STIRPAT model is composed of a range of multivariate regressions, i.e., Model
I, Model II, and Model III. Their corresponding coefficients (b1, b2 . . . b11) were computed by the
2SLS method. The coefficients (b1, b2 . . . b11) represented the quantitative impact of the selected
socioeconomic, transportation and urban form metrics on PM2.5 and NO2 concentrations. However,
during stepwise regression in SPASS software, these independent variables should have no collinearity
with each other, otherwise they would be eliminated. Following the premise, the UEP and UEA
independent variables were eliminated from the stepwise regression.

Finally, according to Equation (10), we could also judge whether there was an EKC hypothesis, an
inverted U-shaped relationship between per capita income and air pollutants. This was first proposed
by Selden and Song [31] and then empirically examined by a number of researchers [32,33]. The EKC
hypothesis states that air pollution increases with income, but then decreases as income increases
to a turning point. If b2 < 0 and b1 > 0 then there was EKC hypothesis, and the turning point was
computed by the equation (−0.5 b2/b1).

3. Results and Discussions

3.1. Near-Surface Air Pollution Concentrations Estimation

3.1.1. Spatiotemporal Trends of Near-Surface PM2.5 and NO2 Concentrations

Figure 3 shows the annual mean trends in near-surface PM2.5 (1998–2016) and NO2 (1996–2012)
concentrations over the whole YRB. Obviously, significant upward trends were observed for both PM2.5

(9.69 × 10−4 µg·m−3
·year−1) and NO2 (1.73 × 10−4 ppb·year−1) during the entire study period. However,
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a notable turning point of PM2.5 from increasing to decreasing appeared around 2007. The decrease of
PM2.5 was mainly attributed by the implementation of a series of energy saving and emission reduction
policies in China after 2006 [7–10]. To verify the hypothesis, the main anthropogenic emissions of the
YRB including organic carbon (OC), black carbon (BC), SO2 and SO4 were calculated from the MERRA-2
aerosol reanalysis datasets (Figure A1) from 2000–2017. A good performance of the MERRA-2 product
was reported in previous studies [34,35]. As shown in Figure A1, the over-increasing trends of OC,
BC, SO2 and SO4 anthropogenic emissions were curbed efficiently after 2006, and thus decreased
near-surface air pollution concentrations.
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Figure 4 depicted the spatial patterns of near-surface PM2.5 and NO2 trends over the YRB at
0.01◦ × 0.01◦ spatial resolution. Also, their corresponding significant levels were detected based on
the MK method. The pixels at 95% significant level (p-value < 0.05) were marked as no grey line
coverage. As illustrated in Figure 4c, significant increasing trends of annual mean near-surface PM2.5

(>0.7 µg·m−3
·year-1) appeared over the middle and lower reaches of the YRB. Over these regions,

frequent industrialization and urbanization activities always took place, resulting in high annual mean
near-surface PM2.5 concentrations (>42 µg·m−3) from 1998 to 2016 (Figure 4a,b). Notably, another
significant increasing PM2.5 trend was observed over the source of the YRB, probably caused by the
combination of the anthropogenic activities and dust events from Taklimakan Desert [36]. If the
increasing trend of PM2.5 continues, it will be an alarming condition for the air quality for these regions.
In terms of the spatial distribution of NO2, high annual mean NO2 concentrations (>3.5 ppb·year−1)
appeared only in the YRD in 1996 (Figure 4c), but expanded to the Central China (CC) and the Sichuan
Basin (SB) in 2012 (Figure 4d). Overall, significant increasing trends in annual mean near-surface NO2

concentration from 1996 to 2012 were observed over the YRD, CC and SB, of which the largest increase
(>0.35 ppb·year−1) occurred in the YRD (Figure 4e).
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In order to identify the linkage between urban sprawl and urban air pollution, 10 prefecture-level
cities were selected from the YRD, CC, and SB regions influenced by serious air pollution. Figure 5
shows the changes in PM2.5 (top) and NO2 (bottom) concentrations over the 10 urban extents from 2000
to 2013. Overall, the annual mean PM2.5 and NO2 concentrations in all 10 urban extents in 2013 were
higher than those in 2000. The largest increase of PM2.5 occurred in SH, with an annual mean growth
rate of approximately 4.71%. However, WH experienced the largest increase of the near-surface NO2,
reaching an annual mean growth rate of approximately 16.82%. According to the ambient air quality
standard established by the World Health Organization (WHO), the annual mean near-surface PM2.5

concentration should not be exceeded by 10 µg·m−3. All of the 10 prefecture-level cities in 2013 were
above this threshold. Regarding the near-surface NO2 concentration, the WHO recommends not to be
exceeded by 20 ppb as the annual mean; 20% of the sample in 2013 was beyond this threshold. These
results highlighted that it was necessary to explore which factors derived the degradation of air quality
over the YRB.
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3.1.2. Spatial Autocorrelation of Near-Surface PM2.5 and NO2 Concentrations

Figure 6 showed the Global Moran’s I changes of PM2.5 and NO2 concentrations over the YRB for
the period of 1998–2016 and 1996–2012, respectivley. At 95% significant level, all the Global Moran’s I
values were greater than 0, indicating a spatial agglomeration of both PM2.5 and NO2. In addition,
the Global Moran’s I for PM2.5 increased from 0.706 in 1998 to 0.728 in 2016, while the Global Global
Moran’s I for NO2 increased from 0.727 in 1996 to 0.731 in 2012. Result revealed a rapid spatial
agglomeration trend in both PM2.5 and NO2, i.e., the near-surface PM2.5 and NO2 concentrations over
the YRB became more and more clustered during 1998–2016 and 1996–2012, respectively.
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over the 930 county-level cities of the YRB by using the Local Moran’s I. Generally, there were four



Int. J. Environ. Res. Public Health 2019, 16, 3459 11 of 21

LISA cluster patterns: high-high, low-low, high-low and low-high. As shown in Figure 7, for both
PM2.5 and NO2, the high-high and low-low clusters dominated for the whole study period. These
results indicated a spatial agglomeration, which was consistent with the Global Moran’s I (Figure 5).
Moreover, in terms of PM2.5 (Figure 7a,b), no significant changes were observed in the low-low clusters
and most of them were located in the upper reaches of the YRB. However, the high-high clusters of
PM2.5 were mainly located over the YRD and CC in 1998 and then extended to the SB in 2016. Similarly,
the high-high clusters of NO2 increased from 74 in 1996 to 96 in 2012 (Figure 7c,d). The rapid spatial
agglomeration trends of both PM2.5 and NO2 might be attributed to China’s coordinated regional
development policies. A number of heavily polluted enterprises transferred from the east to the west,
resulting in the increase of the local air pollutants, and thereby decreased regional inequality [19].
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3.2. Changes in the Socioeconomic, Transportation and Urban Form Metrics

Figure 8 shows variations of the socioeconomic factors and transportation metrics. The blue
numbers referred to their corresponding annual mean growth rates. Results discovered that the
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per capita GDP (PGDP) increased significantly at all 10 prefecture-level cities. The largest increase
appeared in LS, with an annual mean growth rate of 18%. In terms of the technology level, all 10
prefecture-level cities experienced a significant increasing trend in the industrial added value (IAV).
However, only the industrial structures of SH and CZ were optimized, characterized by a decline in the
proportion of the second industry (PSI) from 2000 to 2013. Additionally, significant upward trends of
vehicle ownership (VO) were also observed in all cities, and thereby increased exhaust gases emission.
The per capita road area (PRA) represented a city’s transportation capacity, where higher value of the
PRA indicated higher transportation efficiency and less traffic congestion. As illustrated in Figure 8,
except for SH, all of the cities experienced a significant increase of the PRA.
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Figure 8. Changes in the socioeconomic factors and transportation metrics at the 10 prefecture-level
cities of the YRB during 2000–2013.

Figure 9 depicted dynamic patterns in five urban form metrics. Significant increasing trends
were observed in both the urban extent population (UEP) and the urban extent area (UEA). In 2000,
the largest UEP appeared in SH (1446 × 104 persons), and increased to 2438 × 104 persons in 2013.
By comparison, CD experienced the fastest increase in population between 2000 and 2013, with an
annual mean growth rate of 6.8%. Similarly, the fastest expansion of the UEA was also observed in CD,
with an annual mean growth rate of 13.0% between 2000 and 2013, followed by WH (9.8%), with urban
area increased from 44,273 hectares to 183,723 hectares. However, the smallest growth rate occurred in
SH, probably due to the largest urban area in the baseline year (2000) in SH. Overall, results revealed
an accelerating process of both population and land urbanizations.
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However, the urban extent density (UED) of these cities displayed a significant decreasing trend
for the whole study period, except for SH. These results indicated that urban land expansion was
faster than urban population growth. According to the 2017 China Statistical Yearbook, China has
experienced rapid urbanization between 2000 and 2016, in which the land urbanization rate increased
by 142.2% but only 72.74% growth was observed in the population urbanization rate. The reason for
the phenomenon might be that expansion and leapfrog patterns dominate the land urbanization [14].
In order to verify this statement, the urban sprawl patterns were estimated at the 10 cities across
the study period, which were also derived from the NYU Urban Expansion Program (Figure A2).
In Figure A2, the expansion type dominated the added areas of all other cities except SH and PX, and
thereby reduced the population density of these cities.

Furthermore, the openness index (OI) was an important indicator for measuring the fragmentation
of a given urban extent, ranging from 0 to 1 [25]. Larger OI indicated a more fragmented city, which
probably increased the vehicle travelling distance and thus increased the air pollution emissions.
Nevertheless, from Figure 9, changes in the OI were different at the 10 cities from 2000 to 2013. CZ,
WH, and SN experienced an increasing trend of OI, while a decreasing trend was observed in the other
cities. Similarly, uneven changes were observed in the proximity index (PI), a metric for measuring a
city’s compactness. It took values in the range of 0–1 [25]. A growing trend in the PI was observed
in SH, CZ, YY, LS, and CD, indicating that these cities became more and more compact across the
study period.

3.3. Drivers of Air Pollutants

Changes in the near-surface PM2.5 and NO2 concentrations were influenced by a series of
socioeconomic factors, transportation indexes as well as urban form metrics [14–17]. In order to
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estimate the quantitative impact of these factors on the air pollutants, the improved STIRPAT model
was used in this study.

The Model I was used to identify the quantitative impact of the socioeconomic factors on the
near-surface PM2.5 and NO2 concentrations. Overall, results revealed that the Model I explained 73.9%
(adjusted R2 = 0.739) and 81.0% (adjusted R2 = 0.810) for changes in PM2.5 and NO2, respectively.
The economic growth (PGDP) was positively associated with PM2.5 at 99% significant level. In particular,
an increase of 1% of PGDP resulted in a 0.554% rise on average in PM2.5 concentration. Generally,
wealthy cities tend to have denser populations and buildings as well as more vehicles, which may
increase air pollution emissions [20]. But on the other hand, it may have cleaner technologies and stricter
emission regulations, and thereby contribute to less air pollutant outputs [21]. For example, a negative
relationship was observed between PGDP and NO2 in this study. Additionally, the proportion of the
second industry (PSI) and the industrial added value (IAV) were positively associated with both PM2.5

and NO2 concentrations.
Model II extended the basic form of Model I by adding the transportation factors, which were

measured as two independent variables of the vehicle ownership (VO) and the per capita road area
(PRA). In general, Model II explained 71.4% and 78.5% for changes in the near-surface PM2.5 and NO2

concentrations, respectively. By comparison, the performance of Model II was lower than Model I.
In terms of the VO, it was positively associated with air pollutants at 95% significant level, i.e., a 1%
increase in the VO led to a 0.064% and 0.123% increase in PM2.5 and NO2 concentration, respectively.
By contrast, a significant negative relationship (p-value < 0.05) was observed between the PRA and air
pollutants. The PRA represented a city’s transportation capacity. High PRA values were conducive
to reducing traffic congestion, and thus effectively alleviating air pollution emissions, especially the
NO2 emissions [18]. As shown in Tables 2 and 3, a 1% increase of the PRA reduced PM2.5 and NO2

concentrations by 0.072% and 0.087%, respectively.

Table 2. Multivariate relationship of socioeconomic, transportation and urban form metrics with
the near-surface PM2.5 concentrations calculated by the improved stochastic impacts by regression
on population, affluence, and technology (STIRPAT) model. The standard deviation is shown in
parentheses. PGDP refers to per capita GDP; PSI refers to the proportion of the second industry; IAV
refers to industrial added values; VO refers to vehicle ownership; PRA refers to per capita road area;
UED refers to the density of a given urban extent; OI refers to openness index; PI refers to proximity
index. * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.

Explanatory Variables Model I Model II Model III

Socioeconomic factors
LNPGDP 0.554 (0.858) *** 1.023 (1.094) ** 0.286 (1.074) ***
LN(PGDP)2 −0.023 (0.041) *** −0.040 (0.051) ** −0.012 (0.050) **
LNPSI 0.316 (0.348) ** 0.625 (0.574) * 0.006 (0.576) *
LNIAV 0.048 (0.084) * 0.068 (0.109) * 0.029 (0.085) *
Transportation factors
LNVO 0.064 (0.122) ** 0.023 (0.114) *
LNPRA −0.072 (0.087) ** −0.029 (0.085) **
Urban form factors
LNUED 0.033 (0.098) **
LNPI −0.305 (0.453) **
LNOI 0.524 (0.216) **
Constant 0.947 (3.440) *** 0.239 (3.746) ** 0.884 (3.943) **
Adjusted R2 0.739 0.714 0.773
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Table 3. Similar to Table 2, but for the near-surface NO2 concentrations.

Explanatory Variables Model I Model II Model III

Socioeconomic factors
LNPGDP −1.058 (1.875) ** −0.330 (2.430) ** −0.943 (1.732) **
LN(PGDP)2 0.062 (0.089) ** 0.029 (0.114) ** 0.053 (0.081) **
LNPSI 0.209 (0.760) ** −0.297 (1.275) 0.435 (0.928) *
LNIAV 0.366 (0.183) ** 0.366 (0.242) ** 0.400 (0.196) **
Transportation factors
LNVO 0.123 (0.271) ** 0.016 (0.184) **
LNPRA −0.087 (0.192) ** −0.150 (0.137) **
Urban form factors
LNUED −0.203 (0.157) ***
LNPI −1.750 (0.731) **
LNOI 1.002 (0.348) **
Constant 2.280 (7.523) ** 1.103 (8.324) * 3.057 (6.359) **
Adjusted R2 0.810 0.785 0.953

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.

The Model III could estimate the quantitative impact of the urban form metrics on the near-surface
PM2.5 and NO2 concentrations. Since there was a collinearity between the urban extent population (UEP)
and the urban extent area (UEA), the two independent variables were eliminated during the stepwise
regression. The rest of the variables, including the urban extent density (UED), proximity index (PI),
openness index (OI), were still remained in Model III. In terms of the UED, it was positively associated
with PM2.5 concentrations but negatively correlated with NO2 concentrations at 99% significant level.
As discussed in Section 3.2, during 2000–2013, except the SH, all other cities experienced a significant
decrease in the UED. The reason was not caused by the decrease of the population, but because land
urbanization was faster than urban population growth. The reduction in the UED might lead to a
growth in the fragmentation of a given city, thereby increasing the vehicle kilometers of travel and
ultimately aggravating transportation-related air pollutant emission, such as NO2 emissions. A 1%
reduction of UED increased NO2 concentrations by 0.203% on average during the study period (Table 3).
On the other hand, the lower UED was usually related to a decentralized urban population and
construction. On this condition, air pollutants were easier to diffuse and dilute, and thus led to lower
pollution concentrations. As shown in Table 2, a 1% decrease of UED results in a 0.033% reduction in
PM2.5 concentration on average. Recently, Fan et al. [21] also suggested that a high population density
could significantly increase SO2 emissions but decrease NO2 emissions at the 344 prefecture-level cities
in China.

Furthermore, the PI, an important index for measuring the compactness of a given city,
was negatively associated with both PM2.5 and NO2 concentrations. In other words, a compact
urban form was conducive to reducing pollution emissions by greater urban connectivity and activity
concentration. As illustrated in Tables 2 and 3, a 1% increase in compactness reduced PM2.5 and NO2

concentrations by 0.305% and 1.750% on average, respectively. By contrast, a significant positive
relationship of the OI against PM2.5 and NO2 concentrations was observed. These results suggested
that the more fragmented urban form tended to increase air pollution emissions by extending vehicle
kilometers of travel. Quantitatively, a 1% increase in the fragmentation led to a 0.524% and 1.002%
growth, respectively in the PM2.5 and NO2 concentrations. Similar results were also discussed in cities
over the YRD [17], Chinese mainland [18,21], East Asia [16], Europe [15] and United States [14]. All of
them suggested that a less-fragmented and more compact urban form was conducive to efficiently
mitigating air-pollution emissions.

Based on Equation (10), Model I, Model II, and Model III could also be used to detect the presence
of the EKC between economic growth (PGDP) and air pollution (PM2.5 and NO2 concentrations).
The EKC hypothesis indicated that air pollution concentrations first increase with the growth of the
PGDP, but then decrease when the PGDP reaches a turning point. From Tables 2 and 3, the EKC
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hypothesis between economic growth and PM2.5 concentration was confirmed in all three models but
failed in NO2 concentration. In addition, Figure 10 showed that only considering the socioeconomic
factors (Model I), the turning point of the EKC hypothesis appeared at LNPGDP = 12.0434, i.e., PGDP
= 169,987 RMB. Then, by adding the transportation factors (Model II), the turning point was observed
in LNPGDP = 12.7875 (PGDP = 357,717 RMB). Finally, through Model III, the turning point happened
in LNPGDP = 11.9166 (PGDP = 149,741 RMB). However, the PGDP of all 10 prefecture-level cities
of the YRB did not reach the turning point by 2013, in which SH had the highest PGDP of 103,796
RMB. Results suggest that PM2.5 concentration of these cities over the YRB may continue to increase
with the PGDP until the turning point is reached. However, the premise is to eliminate the influence
of policies and regulations, otherwise it will interfere with the turning point of the EKC hypothesis.
For example, as shown in Figure 2, the regional averaged PM2.5 concentrations of the YRB initially
increased with GDP growth, but then depicted a downward trend after 2007. The turning point was
ahead of schedule. The reason might be that the strict pollution control measures were implemented in
China after 2007. Besides, the EKC hypothesis might exhibit an N-shaped curve in a long turn [32,33],
which needed to be discussed in future studies.
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4. Conclusions

Based on the improved STIRPAT model, this study tried to investigate the quantitative impact
of urban form on the near-surface PM2.5 and NO2 concentrations in 10 prefecture-level cities of the
YRB from 2000 to 2013. Trend analyses revealed that a notable turning point of PM2.5 concentrations
from increasing to decreasing occurred around 2007. It was probably caused by the implementation
of a series of energy-saving and emission-reduction policies in China since 2006. Besides, significant
increasing trends in the PM2.5 (0.7 µg·m−3

·year−1) and NO2 (3.5 ppb·year−1) concentrations were
observed over the middle and lower reaches of the YRB. Based on the Global Moran’s I, spatial
agglomeration was further confirmed in both PM2.5 and NO2. During the study period, the high-high
and low-low clusters dominated the local spatial agglomeration patterns of both air pollutants.

The STIRPAT model further discovered that the socioeconomic and transportation factors were
associated with changes in the PM2.5 and NO2 concentrations. In particular, the growth of the
PGDP at the ten prefecture-level cities significantly increased PM2.5 concentration but decreased NO2

concentration from 2000 to 2013. EKC hypothesis between economic growth and PM2.5 concentration
was confirmed but failed in NO2. The EKC turning point of PM2.5 occurred in PGDP = 169,987, 357,717,
149,741 RMB, respectively for Model I, Model II, and Model III.
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Results also highlighted the fact that urban form played an important role in the changes of
near-surface PM2.5 and NO2 concentrations. Since land urbanization was faster than population growth,
all cities experienced a decrease in the urban extent density (UED), except for SH. As a result, these
cities became more and more fragmented, leading to a significant increase in the transportation-related
emissions. For example, a 1% reduction in UED increased NO2 concentration by 0.203% on average.
Nevertheless, it led to a 0.033% decrease in PM2.5 concentration. Additionally, proximity index (PI),
an important index measured as a city’s compactness, was significantly negatively associated with
PM2.5 and NO2 concentrations. A 1% increase in PI led to a significant decrease of 0.305% (1.705%) in
PM2.5 (NO2) concentration. On the contrary, there was a significant positive relationship of PM2.5 and
NO2 concentrations against openness index (OI), an indicator used for measuring a city’s fragmentation.
Between 2000 and 2013, a 1% increase in OI would result in a growth of 0.524% (1.002%) in PM2.5

(NO2) concentration.
Overall, this study might provide a better understanding of the relationship between urban form

and air quality from an empirical analysis. It suggested that a more compact and a less-fragmented
urban form was conducive to alleviating air pollution emissions at prefecture level by enhancing urban
connectivity and reducing vehicle dependence. However, several limitations need to be addressed in
future research. For example, high-resolution (e.g., 250 m) PM2.5 estimations were still unable to be
related with the urban landscape or small geographical units, which is crucial for analyzing the urban
pollution structure. The new AOD data with a 160 m spatial resolution retrieved by the Gaofen-1 (GF)
may be an ideal technology for addressing this problem [37].
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Appendix A

Table A1. Descriptions of urban form metrics used in this study.

Index Equation Description Significance

Urban extent population (UEP) UEP =
n∑

j=1
ai

aj = total population of urban patch j.
n = number of urban patches. Measures the size of a given urban extent.

Urban extent Area (UEA) UEA =
n∑

j=1
b j bj = total area (hectare) of urban patch j.

Urban extent density (UED) UED = UEP/UEA The ratio of UEP to UEA. Measure of urban sprawl. Increase in the UED
results in growth of compactness.

Openness index (OI) \

The average share of open space pixels within
the Walking Distance Circle (a circle with an area

of 1 km2 and a radius of 564 meters) of each
build-up pixel.

Measure of the fragmentation of a given urban
extent. The value ranges from 0 to 1. Increase in

OI results in a higher fragmentation.

Proximity index (PI) PI = L/L’

L = the average beeline distance of all points in
the equal area circle to city hall.

L’ = the average beeline distance of all points in
the urban extent to city hall.

Measure of the compactness of a given urban
extent. The value ranges from 0 to 1. The closer
the PI is to 1, the more compact the city will be.



Int. J. Environ. Res. Public Health 2019, 16, 3459 19 of 21

  

Int. J. Environ. Res. Public Health 2019, 16, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijerph 

 

Figure A1. Anthropogenic emissions of organic carbon (OC), black carbon (BC), SO2 and SO4 derived 
from the MERRA-2 aerosol reanalysis datasets (https://disc.gsfc.nasa.gov/daac-
bin/FTPSubset2.pl?LOOKUPID_List=M2I3NXGAS) over the YRB since 2000. 

 

Figure A2. Patterns of the added urban areas at the ten prefecture-level cities of the YRB from 2000 to 
2013. Similar to the urban form data, the datasets are also provided by the NYU Urban Expansion 
Program (http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/). 

Reference 

1. Tao, M.; Chen, L.; Li, R.; Wang, L.; Wang, J.; Wang, Z.; Tang, G.; Tao, J. Spatial oscillation of the particle 
pollution in eastern China during winter: Implications for regional air quality and climate. Atmos. Environ. 
2016, 144, 100–120. 

2. Zhang, M.; Ma, Y.; Wang, L.; Gong, W.; Hu, B.; Shi, Y. Spatial-temporal characteristics of aerosol loading 
over the Yangtze river Basin during 2001–2015. Int. J. Climatol. 2018, 38, 2138–2152. 

3. National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017. 
4. Wang, L.; Gong, W.; Xia, X.; Zhu, J.; Li, J.; Zhu, Z. Long–term observations of aerosol optical properties at 

Wuhan, an urban site in Central China. Atmos. Environ. 2015, 101, 94–102. 

Figure A1. Anthropogenic emissions of organic carbon (OC), black carbon (BC), SO2 and SO4 derived
from the MERRA-2 aerosol reanalysis datasets (https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl?
LOOKUPID_List=M2I3NXGAS) over the YRB since 2000.

  

Int. J. Environ. Res. Public Health 2019, 16, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijerph 

 

Figure A1. Anthropogenic emissions of organic carbon (OC), black carbon (BC), SO2 and SO4 derived 
from the MERRA-2 aerosol reanalysis datasets (https://disc.gsfc.nasa.gov/daac-
bin/FTPSubset2.pl?LOOKUPID_List=M2I3NXGAS) over the YRB since 2000. 

 

Figure A2. Patterns of the added urban areas at the ten prefecture-level cities of the YRB from 2000 to 
2013. Similar to the urban form data, the datasets are also provided by the NYU Urban Expansion 
Program (http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/). 

Reference 

1. Tao, M.; Chen, L.; Li, R.; Wang, L.; Wang, J.; Wang, Z.; Tang, G.; Tao, J. Spatial oscillation of the particle 
pollution in eastern China during winter: Implications for regional air quality and climate. Atmos. Environ. 
2016, 144, 100–120. 

2. Zhang, M.; Ma, Y.; Wang, L.; Gong, W.; Hu, B.; Shi, Y. Spatial-temporal characteristics of aerosol loading 
over the Yangtze river Basin during 2001–2015. Int. J. Climatol. 2018, 38, 2138–2152. 

3. National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017. 
4. Wang, L.; Gong, W.; Xia, X.; Zhu, J.; Li, J.; Zhu, Z. Long–term observations of aerosol optical properties at 

Wuhan, an urban site in Central China. Atmos. Environ. 2015, 101, 94–102. 

Figure A2. Patterns of the added urban areas at the ten prefecture-level cities of the YRB from 2000 to
2013. Similar to the urban form data, the datasets are also provided by the NYU Urban Expansion
Program (http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/).

References

1. Tao, M.; Chen, L.; Li, R.; Wang, L.; Wang, J.; Wang, Z.; Tang, G.; Tao, J. Spatial oscillation of the particle
pollution in eastern China during winter: Implications for regional air quality and climate. Atmos. Environ.
2016, 144, 100–120. [CrossRef]

2. Zhang, M.; Ma, Y.; Wang, L.; Gong, W.; Hu, B.; Shi, Y. Spatial-temporal characteristics of aerosol loading over
the Yangtze river Basin during 2001–2015. Int. J. Climatol. 2018, 38, 2138–2152. [CrossRef]

3. National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017.
4. Wang, L.; Gong, W.; Xia, X.; Zhu, J.; Li, J.; Zhu, Z. Long–term observations of aerosol optical properties at

Wuhan, an urban site in Central China. Atmos. Environ. 2015, 101, 94–102. [CrossRef]
5. Guo, J.; Xia, F.; Zhang, Y.; Liu, H.; Li, J.; Lou, M.; He, J.; Yan, Y.; Wang, F.; Min, M.; et al. Impact of diurnal

variability and meteorological factors on the PM 2.5–AOD relationship: Implications for PM 2.5 remote
sensing. Environ. Pollut. 2017, 221, 94–104. [CrossRef] [PubMed]

https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl?LOOKUPID_List=M2I3NXGAS
https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl?LOOKUPID_List=M2I3NXGAS
http://datatoolkits.lincolninst.edu/subcenters/atlas-urban-expansion/
http://dx.doi.org/10.1016/j.atmosenv.2016.08.049
http://dx.doi.org/10.1002/joc.5324
http://dx.doi.org/10.1016/j.atmosenv.2014.11.021
http://dx.doi.org/10.1016/j.envpol.2016.11.043
http://www.ncbi.nlm.nih.gov/pubmed/27889085


Int. J. Environ. Res. Public Health 2019, 16, 3459 20 of 21

6. Zhou, H.; Luo, Z.; Zhou, Z.; Li, Q.; Zhong, B.; Lu, B.; Hsu, H. Impact of different kinematic empirical
parameters processing strategies on temporal gravity field model determination. J. Geophys. Res. Sol. Earth
2018, 123, 10–252. [CrossRef]

7. He, L.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M.; Tao, M. Aerosol optical properties and associated direct
radiative forcing over the Yangtze river Basin during 2001–2015. Remote Sens. 2017, 9, 746. [CrossRef]

8. He, L.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M.; Wei, J. Performance of the NPP–VIIRS and aqua–MODIS
aerosol optical depth products over the Yangtze river Basin. Remote Sens. 2018, 10, 117. [CrossRef]

9. He, L.; Wang, L.; Lin, A.; Zhang, M.; Xia, X.; Tao, M.; Zhou, H. What drives changes in aerosol properties
over the Yangtze river Basin in past four decades? Atmos. Environ. 2018, 190, 269–283. [CrossRef]

10. He, L.; Lin, A.; Chen, X.; Zhou, H.; Zhou, Z.; He, P. Assessment of MERRA-2 surface PM2. 5 over the
Yangtze river Basin: Ground-based verification, spatiotemporal distribution and meteorological dependence.
Remote Sens. 2019, 11, 460. [CrossRef]

11. Bechle, M.J.; Millet, D.B.; Marshall, J.D. Effects of income and urban form on urban NO2: Global evidence
from satellites. Environ. Sci. Technol. 2011, 45, 4914–4919. [CrossRef]

12. Clark, L.P.; Millet, D.B.; Marshall, J.D. Air quality and urban form in US urban areas: Evidence from
regulatory monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [CrossRef] [PubMed]

13. Gaigné, C.; Riou, S.; Thisse, J.F. Are compact cities environmentally friendly? J. Urban. Econ. 2012, 72,
123–136. [CrossRef]

14. McCarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179.
[CrossRef]

15. Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence
from European cities. Renew. Sustain. Energy. Rev. 2016, 53, 1–9. [CrossRef]

16. Larkin, A.; van Donkelaar, A.; Geddes, J.A.; Martin, R.V.; Hystad, P. Relationships between changes in urban
characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 50, 9142–9149.
[CrossRef] [PubMed]

17. She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Xiang, W. Air quality and its response to satellite-derived
urban form in the Yangtze river Delta, China. Ecol. Indic. 2017, 75, 297–306. [CrossRef]

18. Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and
transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [CrossRef]

19. Wang, S.; Liu, X. China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving
forces. Appl. Energy 2017, 200, 204–214. [CrossRef]

20. Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2016, 53, 2607–2623. [CrossRef]
21. Fan, C.; Tian, L.; Zhou, L.; Hou, D.; Song, Y.; Qiao, X.; Li, J. Examining the impacts of urban form on air

pollutant emissions: Evidence from China. J. Environ. Manag. 2018, 212, 405–414. [CrossRef]
22. Cho, H.-S.; Choi, M.J. Effects of compact urban development on air pollution: Empirical evidence from

Korea. Sustainability 2014, 6, 5968–5982. [CrossRef]
23. Liu, Y.; Zhou, Y.; Wu, W. Assessing the impact of population, income and technology on energy consumption

and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [CrossRef]
24. Che, H.; Zhang, X.Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.C.; Wang, H.; Blarel, L.;

et al. Ground–based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote
Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [CrossRef]

25. Angel, S.; Blei, A.M.; Civco, D.L.; Parent, J. Atlas of Urban Expansion; Lincoln Institute of Land Policy:
Cambridge, MA, USA, 2012; p. 397.

26. Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2
concentrations inferred from satellite observations. Environ. Health Perspect. 2016, 124, 281. [CrossRef]

27. Anselin, L. Local indicators of spatial association–LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
28. Ehrlish, P.; Holdren, J. Impact of population growth. Science 1971, 171, 1212–1217. [CrossRef]
29. Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology.

Hum. Ecol. Rev. 1994, 1, 277–300.
30. York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of

environmental impacts. Ecol. Econ. 2003, 46, 351–365. [CrossRef]
31. Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets Curve for air pollution

emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [CrossRef]

http://dx.doi.org/10.1029/2018JB015556
http://dx.doi.org/10.3390/rs9070746
http://dx.doi.org/10.3390/rs10010117
http://dx.doi.org/10.1016/j.atmosenv.2018.07.034
http://dx.doi.org/10.3390/rs11040460
http://dx.doi.org/10.1021/es103866b
http://dx.doi.org/10.1021/es2006786
http://www.ncbi.nlm.nih.gov/pubmed/21766846
http://dx.doi.org/10.1016/j.jue.2012.04.001
http://dx.doi.org/10.1016/j.landurbplan.2015.03.008
http://dx.doi.org/10.1016/j.rser.2015.07.190
http://dx.doi.org/10.1021/acs.est.6b02549
http://www.ncbi.nlm.nih.gov/pubmed/27442110
http://dx.doi.org/10.1016/j.ecolind.2016.12.045
http://dx.doi.org/10.1016/j.apenergy.2016.10.052
http://dx.doi.org/10.1016/j.apenergy.2017.05.085
http://dx.doi.org/10.1177/0042098015594080
http://dx.doi.org/10.1016/j.jenvman.2018.02.001
http://dx.doi.org/10.3390/su6095968
http://dx.doi.org/10.1016/j.apenergy.2015.06.051
http://dx.doi.org/10.5194/acp-15-7619-2015
http://dx.doi.org/10.1289/ehp.1409567
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1126/science.171.3977.1212
http://dx.doi.org/10.1016/S0921-8009(03)00188-5
http://dx.doi.org/10.1006/jeem.1994.1031


Int. J. Environ. Res. Public Health 2019, 16, 3459 21 of 21

32. Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among carbon emissions, economic
growth, energy consumption and population growth: Testing environmental Kuznets Curve hypothesis for
Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [CrossRef]

33. Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel
data approach. Ecol. Indic. 2016, 63, 231–239. [CrossRef]

34. Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.;
Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA–2 aerosol reanalysis, 1980 onward. Part II: Evaluation and
case studies. J. Clim. 2017, 30, 6851–6872. [CrossRef]

35. Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.
Evaluation of the surface PM2.5 in version 1 of the NASA MERRA aerosol reanalysis over the United States.
Atmos. Environ. 2016, 125, 100–121. [CrossRef]

36. Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Winker, D. Summer dust aerosols detected from
CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 529–538. [CrossRef]

37. Zhang, T.; Zhu, Z.; Gong, W.; Zhu, Z.; Sun, K.; Wang, L.; Xu, K. Estimation of ultrahigh resolution PM2. 5
concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sens. Environ. 2018, 216, 91–104.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ecolind.2016.06.043
http://dx.doi.org/10.1016/j.ecolind.2015.12.011
http://dx.doi.org/10.1175/JCLI-D-16-0613.1
http://dx.doi.org/10.1016/j.atmosenv.2015.11.004
http://dx.doi.org/10.1029/2007GL029938
http://dx.doi.org/10.1016/j.rse.2018.06.030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Data 
	Urban Form Data 
	Air Pollutant Data 
	Socioeconomic and Traffic Panel Data 

	Methods 

	Results and Discussions 
	Near-Surface Air Pollution Concentrations Estimation 
	Spatiotemporal Trends of Near-Surface PM2.5 and NO2 Concentrations 
	Spatial Autocorrelation of Near-Surface PM2.5 and NO2 Concentrations 

	Changes in the Socioeconomic, Transportation and Urban Form Metrics 
	Drivers of Air Pollutants 

	Conclusions 
	
	References

