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Simple Summary: Long non-coding RNAs (IncRNAs) are generally defined as transcripts longer
than 200 nucleotides and not coding for proteins. This review provides an overview of the main
functions of IncRNAs in the cells and their role in tumorigenesis. Additionally, key examples of
oncogenic and/or tumor suppressive IncRNAs with a well-established role in tumor development
and progression are discussed. Finally, the currently available technological approaches to target
IncRNAs (e.g., by modifying their expression, stability, processing and/or binding capacity), with a
specific focus on the pros and cons of their use as therapeutic targets are considered.

Abstract: Sequencing-based transcriptomics has significantly redefined the concept of genome
complexity, leading to the identification of thousands of IncRNA genes identification of thousands of
IncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions
that help to shape cell functionality and fate. Indeed, it is well-established now that IncRNAs play a
key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims.
The rapid increase of studies reporting IncRNAs alteration in cancers has also highlighted their
relevance for tumorigenesis. Herein we describe the most prominent examples of well-established
IncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances
have provided new therapeutic strategies based on their targeting, and also report the challenges
towards their use in the clinical settings.

Keywords: translational reprogramming; oncogenic IncRNAs; tumor suppressor IncRNAs;
therapeutic targeting; epigenetics

1. Introduction

In the human genome, the protein-coding genes represent less than 2%, whereas a large fraction is
constituted by regions—often transcribed on both DNA strands—whose products lack any significant
translational potential [1]. In the last two decades, some gaps in the knowledge of the genomic
complexity has been filled in by the identification of several families of long RNAs. In particular,
long non-coding RNAs (IncRNAs)—some of which already had attributed gene-specific regulatory
functions as early as the 1990s (e.g., H19 and XIST)—are arbitrarily defined as RNAs longer than
200 nucleotides lacking coding potential. They constitute a highly heterogeneous family of ncRNAs
transcribed by RNA polymerase II and arise from intergenic (gene deserts), as well as intronic or
gene-dense regions [2]. Generally, IncRNAs are 5" capped and 3’ polyadenylated and often undergo
splicing similarly to mRNAs [3,4]. Sequencing-based transcriptomics approaches—and especially
RNA sequencing—have completely redefined the picture of human genome transcription, enabling the
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identification of a very large number of IncRNA genes [5-7]. Indeed, more than 48,600 transcripts from
about 18,000 genes in the human transcriptome are annotated as bona fide IncRNAs (evidence-based
annotation of the human genome release GRCh38, GENCODE version 35).

Despite the rapid advancement in their identification and expression analysis, the functional
characterization of IncRNA is still lagging behind, possibly because, unlike other ncRNAs, they can
employ a wide array of functions. They can act as decoys, guides, and scaffolds, exerting transcriptional
and/or post-transcriptional regulatory activities both in the nucleus and in the cytoplasm by direct or
indirect interactions with chromatin, proteins, and other RNAs [8]. Therefore, IncRNAs participate
virtually in all relevant cellular processes (e.g., maintenance of stemness, proliferation, angiogenesis,
apoptosis etc.), both in physiological and pathological conditions and, not surprisingly, alterations in
IncRNA expression have been frequently associated with cancer onset and progression [9].

Among the large-scale sequencing projects aiming to characterize cancer genomes, the Cancer
Genome Atlas (TCGA) Consortium has provided a wide molecular characterization of about 11,000
primary cancers, uncovering a substantial fraction of new somatic alterations (i.e., point mutations
and/or small indels, gene rearrangements, and copy-number alterations). Khurana and colleagues
reported that ~99% of somatic SNVs in tumors occur in noncoding regions, which include transcription
factor binding sites (TFBS), ncRNAs, and pseudogenes [10]. A recent study based on TCGA and
IncRNA expression data from TANRIC [11] reveals that mutational frequencies in IncRNAs whose
expression is affected by somatic alterations (MutLncs) are low and that, to a certain extent, their
alteration tends to be cancer type-specific [12]. Moreover, a large proportion of mutations are located
within IncRNA TFBS, especially of ESR1, TRPS1, ERG, and RUNX1.

A growing number of studies reveals a previously unrecognized role for IncRNAs as conditional
and constitutive oncogenes and tumor suppressors by means of their ability to regulate each and
every cancer hallmark (e.g., uncontrolled proliferation, metastasis, immune escape, etc.) [13-17].
These findings, and especially the cancer-specific expression of most of them, established the rationale
for assessing IncRNAs as possible biomarkers and/or therapeutic targets, as their silencing would not
cause side-effects on other tissues.

This review provides an overview of the main regulatory functions of IncRNAs in tumorigenesis,
their alteration in different cancer types and the main strategies to target them. Furthermore, we discuss
future directions in cancer research based on the emerging IncRNA properties.

2. Epigenetic Regulation and Translational Reprogramming

Compartmentalization in time and space [18-20] offered the first indication that IncRNAs may
not be mere transcriptional noise, but they could be implicated in virtually all fundamental cellular
processes. Indeed, disproving the notion that sequence conservation is essential to postulate a function,
the number of IncRNAs with attributed regulatory roles is exponentially increasing [21,22]

With a few exceptions, IncRNAs are generally poorly expressed [18,20] and dispensable for
organismal viability in physiological conditions [23-25]; however, they have been implicated in all
known stress response pathways [26,27]. As such, they play crucial roles in the epigenetic and
post-transcriptional regulation of gene expression.

Nuclear IncRNAs have broadened our knowledge of transcriptional regulation from a transcription
factor-centric to a more complex view that integrates protein- and RNA-based regulation. The latter
controls histone and DNA modifications and the transcriptional machinery by recruiting specific
factors to the DNA or sponging them away from it. In this way they contribute both to the regulation
of a large number of genes or of specific loci [28].

Cytoplasmic IncRNAs, which are proportionally more abundant than nuclear ones [29],
have emerged in the past decade as modulators of RNA stability, localization, and translation.
Apart from interaction with the translational machinery, which was revealed by ribosome profiling
and translating ribosome affinity purification (TRAP) approaches [30,31], cytoplasmic IncRNAs can
also sponge proteins or other RNA molecules, serving as competing-endogenous RNAs (ceRNAs).
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The discovery of IncRNAs has therefore added a layer of complexity to cytoplasmic post-transcriptional
and translational control, dominated before by proteins and miRNAs [32].

2.1. LncRNAs in Epigenetic and Transcriptional Regulation (DNA Methylation, Nucleosome Positioning, and
Histone Modifications)

Historically, IncRNA implication in nuclear activities such as epigenetics and transcriptional
regulation was the first to be recognized and it is probably the best characterized. LncRNAs can
regulate the expression of protein-coding genes in close proximity (cis-acting) or even influence distant
transcriptional activators and repressors (trans-acting) (Figure 1) [33]. Their mechanisms of action
extend from chromatin remodeling, to binding and regulating transcription factors and epigenetic
regulators and in some instances, the sole act of their transcription is sufficient to exert a regulatory
function [34,35].

Transcription

Histone modifications
(in trans)

ol - -~ _—», Target %—/
A ) ¥ < gene

Nucleosome remodeling

Chromatin
looping

il b " _}f Enhancer

Figure 1. LncRNAs in epigenetic regulation of gene expression. Schematic models of (1) trans-acting
IncRNAs recruiting histone deacetylases (HDACsS, upper left), histone methyltransferases (HMTs,
upper right) associated to gene repression, or histone acetylases (HATs, lower left) and histone
demethylases (HDMs, lower right) associated to transcription-permissive chromatin; (2) enancher
RNA (eRNA) recruiting the Mediator complex—with cohesin-based stabilizing contacts—responsible
for DNA looping and distal transcriptional activation of target genes; (3) IncRNAs interacting with
nucleosome destabilizing proteins, such as the SWI/SNF complex (left), causing nucleosome exclusion
and gene activation, or with remodeling proteins (NRPs, right) associated with chromatin condensation
and transcriptional repression; and (4) IncRNA acting as a scaffold for DNA methyltransferases
(DNMTs) and DNA-binding proteins (DBP), and driving gene promoters’ methylation and their
transcriptional repression.

2.1.1. DNA Methylation

DNA methylation is a fundamental epigenetic process regulating gene expression and is
orchestrated by several DNA methyltransferases. Changes in DNA methylation patterns are crucial for
normal development [36,37] but also for cancer. Aberrant DNA hyper- or hypomethylation regulates
the expression of key oncogenes and tumor suppressors and affects genome stability, thus directly
participating in cancer development and progression [38]. Since the discovery of IncRNAs, increasing
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evidence has been linking them to the regulation of DNA methylation. For instance, ecCEBP IncRNA
was shown to directly interact with DNA-methyltransferases (DNMTs) preventing DNA methylation
at the CENPA locus [39].

Later on, 148 other IncRNAs were identified as interactors of DNMTT1 in colon cancer cells by
RIP-seq [40]. One of them, DACOR1 (DNMT1-associated colon cancer repressed IncRNA 1) is highly
expressed in normal colon but is suppressed in various colon tumors and patient-derived cancer cell
lines. Expression of DACORI is sufficient to restore the DNA methylation status at thousands of CpG
sites hypomethylated in colorectal cancer [41]. Furthermore, DACORI induction reduces colon cancer
clonogenic ability, thus supporting a tumor-suppressor function for this IncRNA [40].

The emerging widespread indications that IncRNAs can influence DNA-methylation have recently
been gathered in the Lnc2Meth database. This web tool aims to close the gap on the regulatory
relationships between DNA-methylation and IncRNAs with experimentally verified information [42].

2.1.2. Histone Modifications

Apart from DNA methylation, chromatin structure -and thus transcription- can be influenced by
post-translational modifications of histone proteins. Histones are subject to numerous modifications
catalyzed by specific histone-modifying enzymes, including acetylation and methylation of
lysine, methylation of arginine, phosphorylation of serine and threonine, ubiquitylation of lysine
residues, glycosylation, sumoylation, adenosine diphosphate ribosylation, and carbonylation [43].
Demethylation and histone acetylation, for example, mediated by histone demethylases (HDMs)
and histone acetyltransferases (HATs), respectively, favors chromatin decondensation, whereas
trimethylation of lysine 27 on histone 3 by the polycomb system, as well as deacetylation by
histone deacetylases (HDACsS), are implicated in repressive chromatin (schematized in Figure 1).
Specific patterns of local and global histone modifications are required for the maintenance of the cells
identity and alterations have been linked to cancer formation [44—46]. Apart from the modifications
themselves, deregulation of the enzymes responsible for them have also been documented in many
cancers [47,48], highlighting the importance of this epigenetic mechanism.

Although IncRNAs have been only recently associated with histone modifying enzymes [49-51] a
paradigm of this category has long been known. X-inactive-specific transcript (XIST) RNA was one
of the first long non-coding RNAs to be discovered in the early 1990s [52-54]. As its name dictates,
XIST is a master regulator of the X chromosome inactivation (XCI) in the female mammal, a process
meant to balance X-chromosome gene expression between the two sexes [55,56]. The initiation of XCI
depends on XIST, which tethers polycomb-repressive complexes to the X chromosome i cis, in order to
trimethylate histone H3 on lysine 27 (H3K27me3) resulting in transcriptional silencing. The tremendous
effects of XIST on chromatin formation result in the conversion of an entire chromosome into a unique
heterochromatic entity known as the Barr body [57]. After the completion of XCI, XIST is no longer
needed but continues to be expressed, albeit at low levels, throughout female life [58]. X chromosomes’
aneuploidies have been associated with human cancers for a long time [59,60] and Lee’s lab proved the
role of XIST in this process. Deletion of Xist was shown to be sufficient to induce a female-specific,
aggressive and ultimately lethal blood cancer, possibly due to upregulation of X-linked genes [58].

Another example of IncRNAs exerting their regulatory functions through local chromatin
remodeling is ANRIL (antisense non-coding RNA in the INK4 locus). ANRIL is a 3834 bp long
transcript in the INK4A-ARF-INK4B gene cluster. Visel and colleagues provided the first genetic
evidence of a negative regulation of p16/Nk*4 and p15NK*E by non-coding RNAs residing in this
genomic region [61]. Later on, it was demonstrated that ANRIL recruits the Polycomb repressive
complex 2 (PRC2), well-known for its histone methyltransferase (HMT) activity on histone 3 lysine 27,
to the p15™VK4B Jocus [62]. ANRIL acts as a molecular scaffold which physically interacts with SUZ2,
a PRC2 component, forcing the complex to occupy and thus regulate the p15™NK*B Jocus. As one of the
most important tumor suppressor loci, the INK4A-ARF-INK4B gene cluster is frequently deleted or
silenced in many human cancers, making ANRIL one of the most altered IncRNAs [63-66].
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Epigenetic silencing mediated by the interaction of IncRNAs with PRC2 has been proposed as
a general mechanism for numerous nuclear IncRNAs [49,67,68]. However, several studies showing
PRC2 promiscuous interaction with more RNA species [69-71], challenge the specificity and functional
importance of IncRNA-PRC2 interactions. Indeed, Portoso and colleagues demonstrated that HOTAIR
(Hox transcript antisense intergenic RNA) IncRNA, previously shown to interact with PRC2 in order to
exert its transcriptional repressive functions on the HOXD locus [72], does not depend on PRC2 for the
deposition of H3K27 trimethylation marks. On the contrary, the expression and correct localization of
HOTAIR are necessary for silencing [73]. These results support the notion that even if a IncRNA-PRC2
complex forms, it might not, itself, be directly implicated in gene regulation and call for critical
evaluation of the functionality of such complexes.

Finally, although less studied, a few IncRNAs have been associated with regulation of other
histone marks. An example is IncPRESS1 which is a p53 target that disrupts SIRT6-mediated H3K56
deacethylation. Although the role of IncPRESS1 in cancer has not been investigated yet, it is very likely
considering that it is associated with the guardian of the genome [74].

2.1.3. Chromatin Looping

Transcriptional gene regulation can also be achieved at a higher level of DNA compaction through
the control of chromatin looping and nucleosome positioning. The effects of chromatin looping on
transcription regulation can be probably best described by active enhancers regulating distant genes.
Enhancers are tissue-specific DNA elements of low sequence and high functional conservation [75].
They bind transcription factors and mediator complex to recruit Polymerase II and enforce chromatin
loops to increase the rate of transcription at distal promoters [76]. Active enhancers are pervasively
transcribed giving rise to cell type- and state-specific transcripts called eRNAs [77,78]. eRNAs are
non-coding RNAs that can be categorized into short, bidirectional, non-polyadenylated, mono-exonic
transcripts or longer, unidirectional, polyadenylated, and spliced, both of which are of low abundance
and enriched in the nucleus [78]. Whether eRNAs themselves are needed for a functional enhancer is
still under debate; nevertheless, many studies show that eRNAs can modulate chromatin by stabilizing
enhancer-promoter looping (Figure 1) [77,79,80]. Under normal conditions active enhancers control
the maintenance of different cell types and it is of no surprise that they are deregulated in many human
cancers [81]. Along with them, eRNAs are differentially expressed in cancer tissues and were shown to
act as oncogenes, promoting the transcriptional activation of oncogenic networks and even inducing
chromosome rearrangements and genomic instability [82-84].

The eRNA-acting IncRNA Leukemia-induced Non-coding Activator RNA-1 (LUNARI) was
initially identified by RNA-Seq in T-cell leukemia [85]. LUNARTI is a T-ALL specific, Notch-dependent,
nuclear-enriched IncRNA, whose coding neighbor is the insulin-like growth factor receptor 1 (IGFIR)
implicated in T-ALL initiation and Notch signaling [86]. Depletion of LUNARI leads to downregulation
of IGFIR and significant reduction in Mediator Complex and RNA Pol II occupancy at both the
IGF1IR enhancer and promoter. Hi-C experiments and 3C-qPCR showed that LUNARI is physically
associated with the Notch-occupied IGF1R enhancer and with LUNARI promoter, proving that this
IncRNA exploits chromatin looping to reach to its target and then recruits Mediator to activate the
target-promoter [85].

2.1.4. Nucleosome Positioning

Nucleosome positioning is a major factor in controlling gene expression since tight interaction
of nucleosomes with histone cores can strongly affect DNA accessibility [87]. LncRNAs can regulate
nucleosome positioning in various ways ranging from the recruitment of ATP-dependent remodelers to
transcription mediated nucleosome stabilization (Figure 1) [88]. The human IncRNA SChLAP1 controls
nucleosome positioning via negative regulation of ATP-dependent chromatin remodelers. It physically
interacts with the SNF5-subunit of the SWI/SNF chromatin-remodeling complex, responsible for
nucleosome positioning, and prevents its binding to the chromatin, thus regulating gene expression.
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SChLAP1 has high prognostic value for prostate cancer and it is the first documented IncRNA acting
as an antagonist of a major epigenetic complex, making it a great example for IncRNAs regulating
nucleosome positioning [89].

Another IncRNA that exemplifies the complexity of IncRNAs functions in nucleosome positioning
is promoter and pre-rRNA antisense PAPAS [90]. PAPAS links histone modifications together with
nucleosome remodeling, ribosome biogenesis and by extension protein synthesis. PAPAS is an antisense
RNA to pre-rRNA genes which inhibits pre-rRNA synthesis under growth-factor deprivation [91].
This IncRNA is upregulated in starving cells and acts as a scaffold for the histone methyltransferase
Suv4-20h2, guiding it to rRNA genes and leading to trimethylation of histone H4 at lysine 20 (H4K20me3)
and chromatin compaction. In this way, rRNA promoters become inaccessible to RNA polymerase I,
resulting in ribosome biogenesis attenuation [91]. Interestingly enough, upon hypotonic stress PAPAS
still suppresses transcription of rRNA genes but through a different mechanism. In these conditions
Suv4-20h2 gets ubiquitinylated and degraded, therefore PAPAS interacts instead with CHD4, a subunit
of the nucleosome remodeling and deacetylation complex (NuRD). This interaction causes a shift of
the promoter-bound nucleosome into a position that blocks transcription initiation [92,93].

Whether this IncRNA is deregulated in cancer is not yet known to our knowledge, however,
PAPAS’ functions prove not only that transcriptional control by IncRNAs can be facilitated through
many mechanisms but also that a single IncRNA can have different modes of action depending on the
cell state.

2.2. LncRNA Acting as ceRNAs

LncRNAs can serve as master regulators at the post-transcriptional level, acting as competing
endogenous RNAs (ceRNAs). ceRNAs regulate other (m)RNA targets by competing for the binding of
shared miRNAs [94,95]. LncRNA-bound miRNAs can no longer be loaded to the AGO2/RISC and are,
thus, unable to repress the translation of their mRNA-targets. Through this miRNA-mediated mode of
action, ceRNAs emerge as pluripotent regulators capable of influencing an entire post-transcriptional
regulatory network mediated by multiple miRNAs. Their importance is further proved by studies
conducted in solid tumors and hematopoietic malignancies where ceRNAs alter the expression of
tumor suppressors and oncogenes, in favor of cancer progression [96].

The first example of a non-coding transcript acting as a miRNA-sponge was provided by a
processed pseudogene, highly homologous to the PTEN gene, called PTENP1 (phosphatase and tensin
homolog pseudogene 1) that harbored several binding sites for PTEN-targeting miRNAs. In prostate
cancer, the competition between PTENP1 and PTEN for binding with their shared miRNAs, positively
regulates PTEN protein levels, placing PTENP1 in the category of tumor-suppressor IncRNAs [97].
Following their discovery, PTENP1s tumor-suppressor functions were confirmed in many other cancer
types [98-100] proving beyond doubt that IncRNAs can exert ceRNA-related functions of great impact.

Another paradigm of this function is HULC, a very abundant IncRNA in hepatocellular carcinoma,
and many other cancer types, that resembles the mammalian LTR transposon 1A [101]. Acting as
an oncogene, it promotes tumor angiogenesis, cell proliferation, and abnormal lipid metabolism,
by multiple mechanisms, such as the regulation of sphingosine kinase 1 expression and PI3K/AKT
signaling [102-104]. The expression levels of HULC in cancer patients have been correlated with their
clinical outcome [105]. Furthermore, acting as a ceRNA, HULC ensures its own high expression levels
by sponging miR-372 from binding and suppressing translation of PRKACB. PRKACB, in turn induces
the phosphorylation of cAMP response element binding protein (CREB) leading to upregulation of
HULC transcription [106].

2.3. LncRNAs in Translational Reprogramming

Gene expression regulation is not limited to transcriptional and epigenetic regulatory networks.
Protein synthesis is the most energy-demanding process inside the cell and, therefore, it is very
tightly regulated [26]. Accordingly, this process is controlled by all the major tumor suppressors and
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oncogenes at all stages starting from rRNA biosynthesis in the nucleoli and ending with ribosome
recycling [107]. Regulation at the translational level offers the advantage to rapidly respond to
environmental changes [108].

LncRNAs have been associated with all the steps of protein synthesis, the simplest way being
repressing or promoting the translation of specific mRNA-targets. This mode of action can be
exemplified by the human IncRNA lincRNA-p21, a cytoplasmic-enriched molecule known to co-localize
with ribosomes. In human cervical carcinoma (HeLa) cells lincRNA-p21 was shown to be negatively
regulated by the RNA binding protein Hu antigen R (HuR) and, only when HuRs levels decrease,
the IncRNA is able to stabilize and interact with its mRNA-targets: mainly CTNNBI and JUNB.
The imperfect base-pairing between lincRNA-p21 at sites in the coding and untranslated regions
of its targets, triggers the association of these mRNAs with the translational repressors RCK and
FMRP leading to attenuation of their translation [109]. Both CTNNBI and JUNB are pro-survival
proteins [110,111]. Their silencing by lincRNA-p21 dictates its tumor-suppressive functions, which
have been elucidated in other cancer types as well [112,113].

Apart from selective translational regulation of mRNA-targets there is accumulating evidence
that IncRNAs can have broader effects on translation by regulating ribosome biogenesis in the nucleoli.
There, IncRNAs can affect nucleolar structure, rRNA and/or ribosomal protein-transcription and
maturation (Figure 2) [26]. Apart from the aforementioned IncRNA PAPAS, there are more IncRNAs
implicated in ribosome biogenesis regulation. SLERT (SnoRNA-ended IncRNA enhances pre-ribosomal
RNA transcription) is a box H/ACA small nucleolar RNA (snoRNA)-ended IncRNA, expressed in
embryonic stem cells but also in several human cancer cell lines. These box H/ACA snoRNAs are
present at both ends of the IncRNA and are required for its biogenesis and translocation to the nucleolus.
SLERT physically interacts with and sponges the DEAD-box RNA helicase DDX21, a protein that
coats polymerase I complexes blocking pre-rRNA transcription. This interaction allows Pol I to freely
transcribe pre-rRNAs, making SLERT a positive regulator of ribosome biogenesis [114]. In keeping
with this, SLERT inhibition reduces tumorigenic potential both in vitro and in vivo, thus acting as
an oncogene.

After ribosome biogenesis in the nucleoli, ribosomal subunits have to be exported to the cytoplasm
in order to actively engage in translation. Indications that IncRNAs could bind and modulate the activity
of ribosomes themselves are starting to emerge. One such IncRNA could be ZFAS], initially discovered
in murine tissues undergoing mammary gland development and later on shown to be highly expressed
in breast cancer, among others. Utilizing polysome profiling, Hansji and colleagues demonstrated that
ZFAS1 associates with the 40S small ribosomal subunit [115]. Even though mechanistic insights are
still missing, it is intriguing to speculate that IncRNAs could serve as general modulators of protein
synthesis initiation, either through modulation of ribosome assembly or via regulation of translation
initiation factors (elFs), elongation, and termination.

All these layers of regulation do not only take place at the steady-state but are actually exacerbated
under stress conditions where cells are forced to attenuate global translation in the effort to save
energy [116]. Under nutrient-rich conditions, global translation is dictated by the recognition of the
7-methylguanosine (m7Gppp) in the 5-cap structure of mRNAs by eukaryotic initiation factor 4E
(eIF4E) [117]. Translational reprogramming occurs upon environmental cues when the cells cannot meet
the energy demand and in effort to survive, they shut-down global translation while still maintaining
protein synthesis of essential factors for survival, through alternative mechanisms. The most common
ways to activate these alternative routes that are cap-independent, are by recognition of upstream open
reading frames (UORFs) and internal ribosome entry sites (IRES) [118]. Although more light still needs
to be shed on the contribution of IncRNAs on the regulation of translation rewiring, there are already
some indications that they could be implicated in this dynamic process. One IncRNA that could be
linked to it is Zeb2-NAT (Zeb2-natural antisense transcript). The protein Zeb2 is a transcriptional
repressor of E-cadherin and regulator of epithelial-to-mesenchymal transition (EMT), a process vital
during physiological development and cancer progression [119]. Zeb2 contains an IRES sequence
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in an intron upstream of its first exon and alternative splicing of this intron is actually regulated by
Zeb2-NAT. Upon induction of EMT the IncRNA Zeb2-NAT physically binds and masks the splicing
site of the IRES, leading to intron retention. Under these conditions, Zeb2 is translated through the
IRES, thus leading to downregulation of its target E-cadherin [120]. Zeb2-NAT’s ability to control a
fundamental process as EMT has been shown to favor the maintenance and metastasis of some human

cancers [121,122].
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Figure 2. LncRNAs in translation regulation. In the nucleus, IncRNAs PAPAS and SLERT regulate
ribosome biogenesis through regulation of rRNA transcription, while Zeb2-NAT by base-paring
to its sense coding gene Zeb2, causes inclusion of an IRES thus leading to its translation. In the
cytoplasm, IncRNAs ZFAS1 binds the small ribosomal subunit and may have a role in mRNA
translation. NBR2 attenuates global translation by interacting with AMPK and promoting its kinase
activity. LincRNA-p21 regulates specific mRNA-targets by promoting their interaction with the
translational repressors.

A last, indirect, method to regulate translation is the modulation of signaling pathways controlling
it. The IncRNA NBR?2 (neighbor of BRCA1 gene 2) is induced upon energy stress by the LKB1-AMPK
pathway, with AMPK being a major sensor of the cellular energy levels. Upon such a stress NBR2
physically interacts with AMPK promoting its kinase activity, signaling towards attenuation protein
synthesis and activation of pathways that will restore the energy levels [123]. Depletion of NBR2
leads to unchecked cell cycling, perturbed apoptotic/autophagic responses, and increased tumor
development in vivo [124].

3. LncRNAs in Tumorigenesis

Systematic analyses based on TCGA data ([125] among the others) and the Cancer LncRNA
Census (CLC; [126]) have largely contributed to reveal tumor-specific expression signatures of
IncRNAs in cancer. Afterwards, different independent studies based on strong functional, genetic,
and evolutionary evidence have reported, for a minority of them, a causative role in cancer. Hereafter,
we provide—with obvious limitations due to space constraints—a description of the most relevant
examples of well-established IncRNAs having oncogenic, tumor suppressive or dual properties,
also reporting examples of IncRNAs whose expression is driven by well-known oncogenes (Figure 3).
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Figure 3. LncRNAs involved in different cancer types. Main examples of IncRNAs with oncogenic
(red) or tumor-suppressive (green) properties reported in different tumors (i.e., clockwise from top
left: neuroblastoma, melanoma, lung c., breast c., ovarian c., colon c., pancreatic c., hepatocellular c.,
prostate c., osteosarcoma, leukemia, gastric c., papillary thyroid c.). AML = acute myeloid leukemia;
APL = acute promyelocytic leukemia; CML = chronic myeloid leukemia.

3.1. Oncogenic LncRNAs

Among several oncogenic IncRNAs, here we focused on MALAT1 and HOTAIR, whose oncogenic
potential is mainly related to tissue metastasis, as well as on SAMMSON and VELUCT, especially
associated with sustained proliferation and abnormal cell metabolism, respectively. Furthermore, some
examples of oncogenic IncRNAs induced downstream of the activation, e.g., by point mutations or
rearrangements, of known oncogenes (i.e., BRAF, RET, and MYC) and/or regulating the expression of
known oncogenes, such as COMETT, are also described below.

The IncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was first identified
as aberrantly expressed in metastatic lung cancer [127]. MALATI1, which is one of the most
abundant IncRNAs in the cell, localizes to nuclear speckles, where it interacts with serine-rich
(SR) proteins, regulating their abundance in the nucleoplasm and their phosphorylation levels, thus
affecting alternative splicing [128]. A relevant role in the epigenetic regulation of transcriptional
programs has been reported. Indeed, the relocation of growth control genes in the three-dimensional
space of the nucleus—from repressive polycomb-enriched bodies (PcGs) to transcription-permissive
interchromatin granules (ICGs)—is driven by the binding of MALAT1 and polycomb 2 protein [129].
Mouse xenograft-based studies revealed an oncogenic activity of this IncRNA, as the metastatic
properties of injected lung cancer cells were dramatically reduced by its deletion [130]. Despite being
initially identified for its oncogenic role in lung, MALATI expression was found deregulated in
several tumors, including neoplasms of the digestive system [131-133] and ovarian cancer [134].
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In keeping with this, MALAT1 knockdown has been proposed as a promising strategy to block the
metastatic capacity of breast cancer [135]. Stable or transient KD in breast tumor cells resulted in a
significant reduction of tumor growth as well as in dramatic impairment of metastasis formation,
associated in vivo with increased differentiation state and consequent formation of cystic tumors [135].
Furthermore, somatic mutations in MALAT1 have been so far identified in women with breast
cancer (luminal-type) [136] and its depletion in luminal cells from ER+ tumors has been reported to
dramatically restrain tumor cells” proliferation [137]. This evidence supports its KD as a valuable
resource, especially in breast cancer treatment.

The human HOX transcript antisense intergenic RNA, known as HOTAIR, is embedded in the
HOXC locus and was firstly described as interacting with EZH2 and SUZ12, members of the polycomb
repressive complex 2 (PRC2) exerting its function in trans [138]. Interestingly, the cognate mouse Hotair
gene (mHotair) is poorly conserved in the mouse genome and has a different exon number with highly
variable sequence similarity [139]. In addition, it lacks the binding sites for EZH2, responsible for its
methyltransferase activity and typical of the human HOTAIR IncRNA. Indeed, HOTAIR recruits the
lysine specific demethylase (LSD1), part of COREST/REST complex responsible for gene repression by
chromatin remodeling. Adopting a secondary structure, human HOTAIR acts as a scaffold between
these complexes inducing the formation of a transcription-repressive chromatin state around HOXD
locus, which causes its silencing [68,72,140,141]. Conversely, no detectable regulatory effect of mHotair
on Hoxd cluster genes was observed in mice, suggesting the presence of redundant mechanisms, cell
type-specific functions or a rapid evolution of this IncRNA [139]. An oncogenic role for HOTAIR has
been reported in several tumors and, consequently, this IncRNA is considered a potential therapeutic
target in different cancer types. Indeed, its activity has been associated with increased invasiveness
and metastatic capacity in primary breast and colon tumors, where high levels of HOTAIR positively
correlate with metastasis and poor outcome [130,142]. Moreover, it is considered an independent
prognostic marker in hepatocarcinoma for recurrence and impaired survival [14,129].

The survival associated mitochondrial melanoma specific oncogenic non-coding RNA
(SAMMSON) maps to human chr3p13, a region amplified in 10-15% of human melanomas that also
hosts the transcription factor MITF, the master regulator of melanocyte and melanoma biology [143].
Melanoma-specific expression of SAMMSON is thought to increase cancer cell fitness by concertedly
enhancing mitochondrial and cytosolic translation via the sequestration of the nuclear RNA-binding
protein CARF in the cytoplasm, where it makes aberrant contact with the mitochondrial protein
p32 [144]. Of note, the primate-specific IncRNA SAMMSON is detectable in more than 90% of
melanoma patients, but not in normal adult tissues, and its silencing with antisense oligonucleotides
(ASO) results in the potent induction of cell death and increased sensitivity to MAPK inhibition both
in vitro and in patient-derived xenograft models (PDX). Therefore, targeting SAMMSON represents a
new promising cancer-specific therapeutic option in melanoma [143].

Then, viability enhancing lung cancer transcript (VELUCT) is a relevant example of extremely
low-abundance IncRNAs. Despite this, silencing VELUCT IncRNA in lung cancer cell lines causes
a dramatic drop of viability, indicating a potential oncogenic role for this low-copy IncRNA [145].
Novel opportunities for therapeutic strategies are also arising from the identification of IncRNAs whose
expression is induced by oncogenes and are able to modulate their activity. For instance, PVT1, CCAT1,
CCAT2, PCAT1, and MINCR IncRNAs have been identified among the most promising IncRNAs
regulating Myc activity in tumor cells [146-150]. These IncRNAs map in 8q24— in a so-called “gene
desert” (due to the lack of protein-coding genes), close to the proto-oncogene MYC. The identification
of enhancers physically interacting with MYC and the amplification of this genomic region in different
cancer types highlighted the potential role of IncRNAs mapping to 8q24 [151,152]. Among them, the
IncRNA plasmacytoma variant translocation 1 (PVT1), discovered as an activator of Myc [153,154],
is encoded by the PVT1 gene in humans. This IncRNA is located 51 kb downstream of the MYC
locus (RefSeq on hg38 genome release) [146,155] and is co-amplified in a variety of human and
animal tumors, which results in Myc stabilization. Furthermore, PVT1 is often involved in DNA
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rearrangements (e.g., translocations in Burkitt lymphoma, fusion genes with NBEA and WWOX in
multiple myeloma, APIP, ATE1, and PPAPDCI1A in the human gastric cell line), which could activate
Myc by disrupting the gene structure or protein production [146,155-160]. Moreover, PVT1 has
been demonstrated to be a MYC target and to be part of the same ribonucleo-protein complex [160].
However, although the role of PVT1 in tumorigenesis has been defined as dependent on increases in
the MYC copy-number, an independent contribution to tumorigenesis has also been proposed [161].
Indeed, PVT1 inhibition can induce cell apoptosis, even in PVT1-overexpressing cells, whereas MYC
silencing does not produce the same effect [162,163], suggesting different mechanisms of PVT1 and
MYC cooperation in different cancers. Of note, the over-expression of PVT1 was reported in a wide
range of cancers, including breast, gastric, non-small cell lung cancers (NSCLC), pancreatic and
hepatocellular carcinomas, and acute promyelocytic leukemia (APL), and serves as a predictor of
tumor progression and prognosis [161,163-167].

Likewise, prostate cancer associated transcript 1 (PCAT1) is another IncRNA mapping
approximately 710 kb upstream of the MYC gene (RefSeq on hg38 genome release) and responsible for
its post-transcriptional regulation. Identified in prostate cancer as a posttranscriptional repressor of
BRCAZ2 [149], PCAT1 also acts as competitive endogenous RNA (ceRNA) by sponging miR34-1 and
abrogating its binding to MYC 3'UTR, thus increasing Myc protein levels [168].

Furthermore, the colon cancer-associated transcripts 1 and 2 (CCAT1 and CCAT2, respectively),
mapping upstream of the MYC locus at ~515 kb and 333 kb, respectively (RefSeq on hg38 genome
release) have been also reported to regulate Myc [147,169]. Interestingly, their expression correlates
with a cancer-associated single nucleotide polymorphism (SNP), the rs6983267, which is located in a
super-enhancer around the transcription start site of the MYC gene at 8q24. The silencing of CCAT1 in
colon cancer cells reduces proliferation through CDKN1A/p21-mediated cell-cycle arrest in G1 phase
and the injection of CCAT1 KD tumor cells delays tumorigenesis in xenograft models [148]. Moreover,
CCAT1 is aberrantly upregulated in patients with acute myeloid leukemia (AML) and promotes cell
proliferation by regulating miRNA-mediated pathways [170]. Conversely, over-expression of CCAT2
IncRNA, a target of Wnt-signalling, increases the expression of MYC and some of the members of the
miR-17-92 cluster through TCF7L2 transcriptional regulation. This event promotes invasive tumor
growth in xenograft models, conferring tumor cells with higher metastatic capacity in the liver [147].

Finally, the Myc-induced IncRNA MINCR was identified in Burkitt lymphoma cells as contributing
to Myc-mediated regulation of cell cycle genes and having a relevant role in cell cycle progression [150].
Indeed, MINCR silencing causes the downregulation of AURKA and AURKB genes, encoding the
Aurora kinase A and B, respectively, and of the chromatin licensing and DNA replication factor 1
(CDT1), determining a dramatic reduction in cell proliferation. Furthermore, MINCR overexpression
was assessed in NSCLC patients and cell lines where its silencing induces cell cycle arrest and apoptosis
by reducing Myc expression and its downstream effectors (e.g., cyclin A, cyclin D, CDK2, Bcl-2) [171].

However, IncRNAs induced by other oncogenes have also been reported, as the oncogenic
RAS-induced IncRNA 1 (Orilncl)—identified in breast and melanoma cells as being induced by mutated
BRAF [172]—and the cytosolic oncogenic antisense to MET transcript (COMETT), over-expressed in
BRAF-mutated and RET-rearranged papillary thyroid carcinomas [173]. Zhang and colleagues reported
that Orilnc silencing by shRNAs causes a down-regulation of Cyclin E1 inducing G1/S arrest and
blocking tumor cell proliferation and growth, both in vitro and in vivo [172]. Similarly, the repression
of COMETT markedly reduces the viability and proliferation of tumor cells harboring BRAF mutation
or RET oncogene rearrangement, as well as the motility and invasiveness of tumor cells in vitro.
Of note, COMETT depletion significantly impairs the expression levels of different MAPK pathway
effectors, including—but not limited to—the MET oncogene, also increasing tumor cells’ sensitivity to
vemurafenib, a common inhibitor of mutated B-raf [173].
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3.2. Tumor Suppressive IncRNAs

An increasing number of studies are reporting IncRNAs acting as tumor suppressors, whereby
their inactivation/deletion in tumors has a role in the onset and/or progression toward metastatic
advanced cancer stages. Here, we discuss five IncRNAs whose tumor-suppressing activities have been
reported in different tumor types.

Among highly expressed IncRNAs, the growth arrest-specific transcript 5 (GAS5) has been
reported to be ubiquitously expressed according to serial analysis of gene expression (SAGE) in cancer
as well as normal tissue [174]. Well-known for its role in embryogenesis [175], it also plays a key role in
other relevant processes, such as p53 signaling [176], growth arrest [177], and apoptosis [178]. One of
the reported roles for GAS5 IncRNA is to act as a decoy for the glucocorticoid receptor [179] even
though it can also bind to the receptors of androgen and progesterone, having a role in tumors with
hormone-dependent induction [175]. GAS5 expression levels are inversely correlated with tumor size,
staging, and also metastasis in different tumor types, including breast, bladder, colon, pancreas, and
prostate cancer [180,181]. For instance, its overexpression in xenograft mice models of breast cancer
significantly reduces tumor growth in vivo through cell-cycle arrest and induction of apoptosis [178].

Discovered as the human ortholog of gene trap locus 2 (Gt/2) in mice, the IncRNA maternally
expressed gene 3 (MEG3) is a member of the imprinted genes mapping at 14q32.3[182,183]. This IncRNA
activates p53 and its target genes, showing a tumor suppressor activity related to its ability to inhibit
tumor cell proliferation, as shown in various cancer cell lines following in vitro re-expression [184-188].
However, in AML and chronic myeloid leukemia (CML), it has been reported that MEG3 inhibits
cell growth also in a p53-indipendent manner [189,190]. According to its tumor-suppressive activity
its expression is lost in primary tumors, i.e., neuroblastomas, gliomas, and cell lines, e.g., those
derived from brain, bladder, bone marrow, breast, colon, liver and prostate, owing to different
mechanisms [184-192]. Deletion is the most frequent mechanism for MEGS3 silencing in tumor cells.
However, its negative epigenetic regulation is very frequent in cancers. MEG3 IncRNA maps in a
genomic locus enriched in CpGs, highly sensitive to methylation. In tumors, the hypermethylation of
MEGS3 promoter and hypomethylation of the surrounding intergenic region have a pronounced effect
on its expression levels [185]. The loss of MEG3 expression has also been associated with tumor grade
in meningiomas [186]. Independent studies assessed MEG3 ability to inhibit tumor cell proliferation
and induce cell apoptosis in different cell lines [184] [187,188]. Furthermore, MEG3 inactivation leads to
an increased expression of genes promoting angiogenesis and microvessel formation in the brain [192].

The IncRNA AB074169 (IncAB) is a single-exon IncRNA first identified in a comparative microarray
analysis as down-regulated, due to promoter hypermethylation, in papillary thyroid carcinoma samples
when compared to adjacent non-tumor counterparts [193]. Accordingly, its knockdown promoted
tumor cell proliferation in vitro. Conversely, its forced over-expression resulted in cell-cycle arrest
and tumor growth inhibition in vitro and in vivo. Mechanistically, IncAB binds to, and reduces the
expression of, KHSRP, increasing p21 levels and simultaneously decreasing CDK2 expression, in turn
repressing cell proliferation [193].

The IncRNA Non-coding RNA Activated by DNA damage (NORAD), previously annotated
as LINC00657, is conserved and ubiquitously expressed, although RNA-Seq data from normal
post-mortem brains collected in GTEx database (https://www.gtexportal.org/home/gene/NORAD)
indicate NORAD as highly expressed in frontal cortex. NORAD expression is triggered in a
p53-mediated manner by DNA damage [194]. It has been also reported that NORAD acts as decoy
in colon cancer for the members 1 and 2 of the RNA-binding proteins belonging to the PUMILIO
family [195]. Proteins of this family stimulate deadenylation and decapping of messenger RN As leading
to post-transcriptional repression. In the absence of NORAD, the chromosomal instability is induced
by the repression of their targets which, among other things, include many genes encoding proteins
crucial for DNA replication and repair processes, affecting in turn the cell cycle and mitosis [194].

Tumor protein P53 pathway corepressor 1 (TP53COR1), commonly known as lincRNA-p21, was
identified as highly transcribed upon DNA damage in a p53-mediated manner [196]. LincRNA-p21 is
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an antisense transcript of CDKN1A, the tumor-suppressor gene known as p21. It is a transcriptional
repressor which is induced in p53-dependent transcriptional responses [176,196]. CDKNIA expression
is affected by lincRNA-p21 silencing which causes the activation of the protein-coding gene in cis.
As reported by Dimitrova and colleagues it causes the disruption of G1/S cell-cycle checkpoint [176].
In addition, lincRNA-p21 expression correlates with tumor staging and invasive phenotype in colon
cancer [197]; it interacts with HuR in breast cancer cells causing the transcriptional repression of
CTNNBI1 and JUNB genes [109]. Finally, lincRNA-p21 is one of the few IncRNAs regulating tumor
metabolic rewiring. Indeed, it has been reported that it is transcriptionally induced in hypoxic
conditions and its increase is associated with the induction of hypoxia-induced glycolysis in tumor
cells [198].

3.3. LncRNAs with Dual Activity

A few cancer-associated IncRNAs have been reported to play divergent roles in different cancer
types. These contrasting functions could be explained, at least in part, by the wide genetic and
phenotypic heterogeneity of tumors. Thus, tumor- or microenvironment-specific factors could
determine oncogenic or tumor suppressor activities of a given IncRNA. However, the use of distinct
experimental systems/approaches (e.g., in vivo models vs. in vitro studies) could also contribute to the
generation of confounding results. Some clear and well-known examples of IncRNAs with apparently
divergent roles in tumors are provided here.

The IncRNA H19 has been discovered for its high expression along mouse embryogenesis. It is
a paternally imprinted gene mapping at chr11p15.5. As such, it is repressed at birth in most tissues.
H19 expression is induced in cancer cells due to a loss of imprinting at its locus [199,200], especially
in breast, colon, and hepatic carcinomas [201,202]. Its transcriptional regulation is exerted by the
oncogenes p53, Myc, and hypoxia-induced factor 1a (HIF-1a) which are frequently deleted (p53) or
over-expressed/amplified (Myc and HIF-1a) [203-205]. RNA-Seq data collected in the Cancer Genome
Atlas portal report H19 IncRNA to be over-expressed in colon and gastric cancers [206]. However,
a tumor-suppressive role has been reported in colon cancer mouse models as well as in human rhabdoid
tumors [207-209]. The genetic heterogeneity of tumors and the intrinsic inter-species differences may
account for discrepant results. H19 exerts its activity on tumor progression by different mechanisms.
It can act as ceRNA for a large subset of microRNAs and it can simultaneously be a precursor of
miRNAs. Its activity as a miRNA "sponge", in line with its main localization in the cytosol, has been
reported for let-7 and miR-200 family members [210]. However, H19 is also a miR-675 precursor [208].
In colon cancers, the over-expression of H19 is paralleled by miR-675 increase. This miRNA directly
binds and inhibits the tumor-suppressor retinoblastoma (RB) protein, promoting cell proliferation [211].

The MENepsilon/beta on chromosome 11 is a direct target of p53 [17] and gives rise to two
transcriptional variants of the nuclear enriched abundant transcript 1 (NEAT1) non-coding RNA,
a short polyadenylated (3.7 kb) and a long non-polyadenylated (27 kb). The last one is essential
for the formation of paraspeckles, i.e., nuclear membraneless bodies [212]. The switch between the
two isoforms was recently ascribed to the integrator complex that favors the production of the short
form over the long [27]. Furthermore, NEAT1 long form—and, thus, the paraspeckles—promote skin
tumorigenesis by increasing survival of tumor cells expressing mutated KRAS in genetically engineered
mouse models [17]. In addition, its knockdown synergizes with several genotoxic chemotherapeutics,
suggesting NEAT1 levels as good a predictor of responses to chemotherapy [17]. In keeping with
its oncogenic role, mutations in CpG islands within NEAT1 promoter have been reported in breast
cancer [213], where increased levels of NEAT1—and paraspeckles—correlate with staging in HER*
patients [214]. Nevertheless, the Attardi’s lab reported instead a tumor suppressor role for NEATT in
Pp53-/- mutant KRAS mouse model of pancreatic ductal adenocarcinoma [215]. Accordingly, reduced
NEATT1 expression was reported in AML and APL [216,217]. However, whether the tumor suppressive
function of NEAT1 stems from the long or the short transcript needs to be further investigated. Due to
the nature of paraspeckles, which are able to sequester other biomolecules in the nucleus, and to the
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difference in the germ layer originating from the affected tissue (ectoderm for skin and endoderm for
pancreas), a context-specific function for this IncRNA it is very likely.

The BRAF-activated IncRNA (BANCR) has been reported either for its oncogenic or tumor
suppressive activity. First identified as an oncogene in melanoma for its ability to activate MAPK
pathway and induce tumor cell migration and proliferation [218,219], BANCR has also been reported
as tumor suppressor in NSCLC for its role in epithelial-mesenchymal transition (EMT) [220]. In line
with this finding, down-regulation of BANCR is associated with increased metastatic potential of tumor
cells and poor prognosis [220]. Likewise, its down-regulation has been positively associated with
tumor progression in papillary thyroid and clear cell renal cell carcinomas [221], indicating—at least in
these cancer types—a tumor suppressive role.

4. Strategies to Target IncRNAs

Technical advances in molecular therapies provide new opportunities for exploring the clinical
relevance of IncRNAs. The identification of IncRNAs involved in tumorigenesis provided useful
insights in cancer biology, also paving the way to the adoption of new therapeutic strategies based
on their targeting—e.g., CRISPR/dCas9-based approaches [222]—and to their evaluation as novel
diagnostic/prognostic markers. Especially for IncRNAs with direct or indirect oncogenic activity,
different targeting strategies have been adopted by modulation at the (i) genome-level (i.e., affecting
their transcription levels), (ii) post-transcriptional RNA-level (i.e., regulating IncRNAs stability and/or
processing) and (iii) interaction-level (i.e., modulating their binding capacity to obtain steric inhibition
of specific IncRNA-protein interactions).

4.1. Genomic Modulation of LncRNAs by CRISPR-Based Systems

Targeting strategies aimed to modulate IncRNAs activity by genomic regulation benefitted from
recent advances in genome editing approaches based on CRISPR-based systems. Particularly, among
the systems of the so-called class 2-which use single effectors—the type II CRISPR-system, in its
simplest form, consists of a nuclease (Cas9) and a single guide RNA (sgRNA), which leads Cas9 to
target precise sites of the DNA [223]. Its main applications consist of the knockout of target genes by
the generation of double-stranded breaks (DSB) in the open reading frame and the following induction
of the non-homologous end joining (NHE]) repair system (systems termed CRISPRn mutagenesis), as
well as gene corrections or overexpression by inducing homology-directed repair (HDR; CRISPRn HR)
or genomic deletions following multiple DSB (CRISPRn excision) [223-225]. However, the intricate
genomic architecture of IncRNAs, the incomplete knowledge of their promoters and/or interaction
motifs, as well as the complex mechanisms of their multiple activities (in cis and in trans) limit the
use of standard CRISPR-based approaches. Of note, Goyal and colleagues [224] characterized about
62% of the total IncRNAs as “non-CRISPRable”- due to the presence of internal (35%) or bidirectional
(20%) promoters—and only 38% of IncRNAs as specifically targetable.. Indeed, classical systems based
on induction of frameshift mutations (e.g., the CRISPRn method) could be applied for modulating
IncRNAs activity only if the sequence of the recognized motif is completely characterized and additional
mechanisms of action are excluded. Additionally, targeting IncRNA promoters (e.g., by CRISPRn
or HDR-based CRISPR approaches) needs a complete knowledge of the nucleotide sequences and
could however affect the expression of other genes due to potential overlap and interactions between
the promoters, or due to their proximity [226-228]. Furthermore, promoter targeting may also be
insufficient if other, unknown, internal promoters contribute to the regulation of their expression.
Similarly, the total or partial excision (e.g., by CRISPRn system) could be unfeasible if the IncRNA
sequence overlaps with other functional regions or could lead to the generation of DNA artifacts as
newly combined elements [225,227,228].

Interestingly, innovative CRISPR approaches have provided powerful tools to overcome classical
editing allowing to specifically and reliably modulate IncRNAs expression (reviewed in [225,229]).
Among the most prominent methods are the double excision CRISPR knockout (DECKO) system and
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the combination of CRISPR interference (CRISPRi) and "dead"-Cas9 (dCas9) [225,228,230-232]. More
in detail, dCas9 lacks the nuclease activity but still preserves its RNA-dependent DNA-binding activity.
Its fusion with specific effector domains has allowed the development of additional systems for gene
expression modulation [224,230]. For instance, dCas9 fusion to the KRAB (Kriippel-associated box)
domain of ZNF10 allows a more robust transcription inhibition (CRISPRi), whereas targeted gene
expression in cis is induced by its combination with activation domains, such as VP64, p65, or Rta
(CRISPR activation, CRISPRa) [224,230]. Of note, the CRISPRi system was employed for targeting
promoters of more than 16000 IncRNAs and revealed that about 500 of them have causal roles in
cancer cell growth [232,233]. Furthermore, the silencing of different IncRNAs (e.g., MALAT1) was
achieved by the CRISPR/Cas9 system and the insertion of an inhibitory signal [234,235]. Even the
combination of CRISPR-dCas9 to epigenetic effector proteins (such as DN A methyltransferase or histone
modifiers) [236] has been successfully used for epigenetic silencing of IncRNAs. For example, the
epigenetic silencing of MALAT1 was reached by excising active histone marks associated to its TSS [237].
Then, a good applicability for targeting IncRNAs has also been showed for CRISPR-based targeted
insertion utilizing the NHE] pathway—given the absence of a homologous donor sequence [238,239]—as
well as for the DECKO method, which applies a two-step cloning strategy to generate lentiviral vectors
expressing simultaneously two guide RNAs (gRNAs) [228].

The manipulation of IncRNAs expression has been reported also by the CRISPR-mediated tagging
and regulation of IncRNAs (CTRL) method, consisting of a modified gene trap vector and a plasmid with
Cas9 and 2 sgRNA sequences [240]. This approach—successfully applied for upregulating HOTAIR,
DICER1-AS1 and PTENP1, among others—could represent a valuable tool for future screening of
several IncRNAs [225,240].

Furthermore, novel Cas enzymes are starting to be utilized, such as the CRISPR/Cas13 system (class
2, type VI). It has showing remarkable potential for the development of basic and clinical approaches
in cancer, as well as fortargeting IncRNAs [241-243]. Particularly, type VI enzymes possess RNA
recognition and cleavage activities and, following the formation of guide-target RNA duplexes, it binds
and cleaves targeted complementary sequences producing efficient gene knockdown without genome
manipulation [241,244]. Thus, instead of the DNase activity of Cas9, Cas13 holds RNase activity and
the distinct subtypes (i.e., Cas13a, Cas13b, Cas13c, and Cas13d), although different in sequence and
size, share as common features the presence of higher eukaryotes and prokaryotes nucleotide-binding
(HEPN) domains, which account for the RNA-targeted nucleolytic activity [245]. CRISPR/Cas13
systems have been successfully employed for multiple applications (e.g., RNA knockdown, imaging,
tracking, and editing). Notably, its high sensitivity and specificity has been also assessed for IncRNA
knockdown in a high-throughput phenotypic assay based on survival challenge in anticancer drugs
response and the targeting of a subclass of nuclear IncRNAs—i.e., very long intergenic non-coding
(vlinc) RNAs—Dby Casl3a from Leptotrichia wadei (LwCas13a) [243]. Furthermore, the catalytically
“dead” Casl3 system (dCas13) has been recently used for labeling NEAT1 IncRNA and to explore the
dynamics of associated paraspeckles without inducing genome alterations [242].

However, despite the remarkable advance in the development of innovative CRISP-based systems,
the accurate analysis of IncRNA loci (for designing specific RNA guides), the evaluation of expression
of neighboring genes and the validation of results by other approaches (e.g., RNAi, ASOs) should
be implemented when targeting IncRNAs by CRISPR editing approaches. Future studies will be
instrumental for assessing the translational potential of CRISPR-based targeting strategies of IncRNAs
in cancer therapies.

4.2. Post-Transcriptional Targeting of LncRNAs

Oligonucleotide-based approaches which depend on RNA-RNA or RNA-DNA duplex formation
have been developed as a strategy for the successful post-transcriptional targeting of long non-coding
RNAs [246,247]. Double-stranded small-interfering RNAs, i.e., dssiRNAs, represent the most commonly
used approach for IncRNA silencing. It is based on Dicer and the RNA-induced silencing complex
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(RISC) degradation pathway and involves the Argonaute 2 (Ago2) protein [248]. This approach
has proven extremely successful in targeting IncRNAs for degradation in many cancer cell lines,
although in vivo experiments using siRNAs have been even more challenging. However, their limited
bioavailability and susceptibility to nucleases has largely restricted their use for in vivo purposes.
However, to prevent siRNAs from enzymatic degradation, some chemical modifications (e.g., 2’-O
methyl sugar residues and phosphorothioate bonds at the 3’-end) have been adopted to improve
their pharmacokinetic properties [249]. This is the case of patisiran (Alnylam Pharmaceuticals) - a
double-stranded siRNA comprised of a 3’-end DNA, RNA, and 2’-O-MOE RNA moieties, used for
inhibiting the hepatic synthesis of transthyretin and approved by FDA for the polyneuropathy of
hereditary transthyretin amyloidosis [250].

An alternative approach developed more than three decades ago is represented by the antisense
oligonucleotides (ASOs) [251]. These were designed for the first time as short (13-mer) single strand
DNA (ssDNA) oligos in order to target the Rous sarcoma virus RNA. Since their first use, ASOs
have been widely adopted in many studies to successfully modulate IncRNA levels. ASOs show
some differences compared to siRNAs. Indeed, the former are single-stranded DNA oligonucleotides
(13-15 bp) which bind, via standard Watson-Crick base-pairing, target nucleotides in the RNA of
interest. The formation of DNA-RNA duplex causes the degradation of the target RNA by RNAse
H, even though specific ASO can act by inhibiting or modifying the expression of their target via
steric hindrance and/or they can modulate splicing. However, the most useful feature of ASOs is the
capacity to specifically target nuclear RNAs and, due to RNase H enrichment in the nucleus, cause
its degradation. For this reason, ASOs are currently employed to achieve significant knockdown of
IncRNAs [252]. As described for siRNAs, new generations of ASOs, consisting of longer (15-20 nt) oligos
with phosphorothioate modifications, have been developed. These improvements have significantly
increased ASO stability, making these oligonucleotides even more resistant to endonuclease-mediated
degradation [253,254]. However, in the last two decades new chemical modifications, including
2’-O-methoxyethylation, have been used to maximize the RNAse H-mediated degradation of target
RNAs and the duplex stability as well as the resistance of free ASOs to endonuclease-mediated
degradation. These modifications have also largely reduced the so-called “off-target” effects, conferring
to ASOs with new drug-like features [255]. This new class of chimeric ASOs—commercialy known as
Gapmers—consists of RNA-DNA hybrids carrying a 2’-O-methoxyethyl-modified sugar backbone.
Other chemical modifications, such as the S-constrained ethyl (cEt) and the locked nucleic acids (LNAs),
have finally improved ASO potency revealing new pharmacokinetic properties, which make these
oligo-based approaches the most useful tools to target IncRNA both in vitro and in vivo.

4.3. Steric Inhibition of LncRNA-Protein Interactions

Different experimental evidence has demonstrated that IncRNAs can act as scaffolds for single or
for multi-protein complexes due to their peculiar folding. As these ncRNAs mediate the interaction
of regulatory DNA regions, RNAs, and binding proteins, interfering with their binding can provide
new therapeutic solutions. Targeting IncRNA unique structural regions by ASOs represents one
of the most reliable approaches. In particular, the adoption of modified ASOs, unable to trigger
RNAse H-dependent degradation of RNAs (e.g., morpholinos), as well as of small molecules able to
block contact interface/s between IncRNAs and proteins, can result in loss-of-function [256]. Indeed,
extending the aforementioned chemical modifications (e.g., cEt and LNAs) to the entire sequence of
the ASO would impede RNAse H-dependent degradation of the IncRNA, causing only the alteration
of the splicing, as described for splice-switching oligos (SSOs). Indeed, the oligos act by blocking the
binding of splicing regulatory elements, such as enhancers or silencers (by steric hindrance), and in
turn modulate pre-mRNA splicing [257]. To date, new therapies based on splice-switching oligos have
been approved by the FDA for the spinal [258] and Duchenne muscular atrophy [259].

Similarly to SSOs, morpholinos are non-ionic DNA analogs of about 25 oligonucleotides
initially developed to block mRNA translation or promote splicing switch, very similarly to LNAs.
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These molecules, first used to study zebrafish development [260,261], received their first approval in the
clinics as DMD splicing modulators in patients affected by Duchenne muscular dystrophy [262-264].
In morpholinos sugars are replaced with methylene morpholine rings whereas anionic phosphates
of DNA/RNAs are substituted by non-ionic phosphorodiamidate bonds [261,265,266]. Due to these
chemical modifications, the morpholinos abolish, or largely suppress, IncRNAprotein binding, also
impeding IncRNA binding to gene regulatory regions of the DNA.

LncRNA ability to form stable secondary and tertiary structures with DNA, RNA and proteins
has provided new opportunities to target them [267]. New assays, such as selective 2’-hydroxyl
acylation by primer extension (SHAPE; [268]) and the psoralen analysis of RNA interactions and
structures (PARIS; [269]), have been developed to specifically map IncRNA secondary/tertiary structures.
Bacterial/viral riboswitches, having structural elements similar to cancer-associated IncRNAs, have
been successfully targeted with small-molecule inhibitors [270]. Hence, it is likely that a similar
approach—coupling large scale experimental assays as SHAPE and PARIS to the screening of
small-molecule inhibitors—may be used to target cancer-associated IncRNAs.

The use of oligo-based approaches to target IncRNNAs in cancer has provided interesting results.
Nonetheless, new challenges need to be faced and technical caveats need to be addressed. Indeed,
despite the fact that chemical modifications have improved oligo stability and largely reduced, if not
abolished, their endonuclease-mediated degradation, one the most limiting factors is represented
by their capacity to activate the innate immune response. The intrinsic characteristic of innate
immunity protecting cells from exogenous RNAs by Toll-like receptors (TLRs) has largely limited
oligo bioavailability [271]. First-generation oligos, including short interfering RNAs, have “CpG”
motifs which are recognized by TLR9 and activate a TLR-dependent pro-inflammatory response [272].
Despite ASOs having specific chemical modifications and nucleotide sequences (CpG-poor), which
minimize the activiation of these intracellular responses, they can still trigger a TLR-independent
mechanism, such as the retinoic acid-inducible gene I-like (RIG-I) RNA helicases (RLHs), which elicit
a pro-inflammatory response in the cytosol [272,273]. Upon activation of these pro-inflammatory
pathways ASOs are entrapped into endosomes and their bioavailability—and in turn their capacity to
target IncRNAs—is dramatically impaired [274]. In this regard, new oligo coniugating strategies need
to be adopted and well-tolerated sequences need to be identified [275,276].

In addition, new strategies to avoid off-target effects need to be explored, but most importantly
rigorous studies about oligo safety in humans need to be conducted before applying these approaches
for cancer therapies.

Nine clinical trials (active, recruiting, or completed; https://clinicaltrials.gov) are currently testing
signatures of IncRNAs in breast, lung, thyroid, or stomach tumors or single IncRNAs (XIST, CCAT1 and
HOTAIR, in AML, colorectal, and thyroid carcinomas, respectively) as possible prognostic/diagnostic
biomarkers. One of them is further validating prognostic and predictive mRNA-IncRNA signatures for
triple-negative breast cancer which could be used to classify patients into high- or low-risk of recurrence.
This trial is also evaluating these signatures as predictors of chemotherapy efficacy (e.g., doxorubicin,
cyclophosphamide, gemcitabine, and cisplatin). However, to the best of our knowledge, no clinical
trials targeting IncRNAs in cancer are currently underway.

5. Conclusions

A growing body of evidence has largely established that IncRNAs play a crucial role in tumor
onset, progression, and drug responses. The rapid advancement of sequencing-based technologies,
paralleled by consolidated functional in vitro approaches, as well as animal and human-derived tumor
models, is offering an unprecedented opportunity in oncology, revolutionizing the way cancer is
diagnosed and treated. Due to the high specificity in their expression—often restricted to tumor
cells—many IncRNAs are currently under evaluation as biomarkers or direct therapeutic targets
in clinical trials, whereas others have been proposed as modulators of tumor response to therapy.
In this regard, despite RNA-based strategies specifically targeting IncRNAs in vitro and in vivo (e.g., in
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cancer mouse models) having provided encouraging results, IncRNA-based therapeutic approaches
have not yet reached the clinical stage and different challenges are still open. Among them, the
level of expression of IncRNAs is a key factor both for diagnostics and therapeutics. Identifying
IncRNA candidates whose expression can be easily quantified and monitored is a relevant point to
develop easy-to-use diagnostic tests. In addition, detecting IncRNAs through non-invasive approaches
(e.g., in blood, urine, or saliva) would significantly boost the use of IncRNAs in daily clinical practice.
It is reasonable to speculate that future decision trees in oncology will be revised by integrating
patient-specific omics data, such as whole-genome/targeted resequencing (for somatic and germline
mutations/rearrangements) and RNA-Seq (for profiling coding and ncRNAs). Hence, IncRNA detection
for diagnostic and prognostic purposes or their therapeutic targeting will become a daily practice for
clinicians, boosting the perspectives of personalized medicine, and especially of precision oncology.
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