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Targeting virulence factors represents a promising alternative approach to antimicrobial therapy, through the inhibition 
of pathogenic pathways that result in host tissue damage. Yet, virulence inhibition remains an understudied area in para-
sitology. Several medically important protozoan parasites such as Plasmodium, Entamoeba, Toxoplasma, and Leishmania 
secrete an inflammatory macrophage migration inhibitory factor (MIF) cytokine homolog, a virulence factor linked to 
severe disease. The aim of this study was to investigate the effectiveness of targeting parasite-produced MIF as combi-
nation therapy with standard antibiotics to reduce disease severity. Here, we used Entamoeba histolytica as the model 
MIF-secreting protozoan, and a mouse model that mirrors severe human infection. We found that intestinal inflammation 
and tissue damage were significantly reduced in mice treated with metronidazole when combined with anti–E. histolytica 
MIF antibodies, compared to metronidazole alone. Thus, this preclinical study provides proof-of-concept that combining 
antiparasite MIF-blocking antibodies with current standard-of-care antibiotics might improve outcomes in severe proto-
zoan infections.
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Protozoan parasites represent a major threat to global 
public health, causing >1 million deaths yearly [1]. No ef-
fective vaccines have been developed to prevent disease 
from any of the protozoan parasites to date. Therefore, 
the management of infected patients continues to rely on 
treatment with antibiotics and supportive care. New strat-
egies to fight such infections are urgently needed due to 
the emergence of multidrug-resistant pathogens that limit 
available treatment options. In addition, poor clinical out-
comes are associated with severe infections, even when 
appropriate therapy is administered [2]. For example, 

Entamoeba histolytica is a protozoan parasite that causes 
inflammatory diarrhea, termed amebic colitis, which is 
characterized by colonic inflammation and tissue damage. 
Entamoeba histolytica infects millions of people annually, 
making amebic colitis a leading cause of severe diarrhea 
worldwide, estimated to kill approximately 50 000–100 000 
people each year [3, 4]. Severe forms of amebic colitis carry 
high fatality exceeding 50%, even despite treatment with the 
nitroimidazole antibiotics, such as metronidazole, which 
are the treatment choice. New therapeutic strategies are 
needed as metronidazole alone is sometimes not enough, 
and even drastic measures such as the surgical resection of 
the inflamed portion of colon may not prevent death [4–7].

Virulence factors are molecules or proteins produced by 
pathogens that promote disease by damaging host tissue. 
Targeting virulence factors by inhibiting specific mechanisms 
that promote tissue damage and disease symptoms is a promising 
alternative strategy to new antimicrobial development. Also, re-
moving pathogens of their virulence properties without harming 
their survival hopefully will reduce the potential of antimicrobial 
selection pressure and development of drug-resistant mutations 
[2, 8, 9]. While substantial progress in antivirulence approaches 
have been made in the field of bacteriology, virulence factor in-
hibition in parasitology remains significantly understudied.
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Macrophage migration inhibitory factor (MIF) is an inflam-
matory cytokine that is a critical upstream mediator of inflam-
mation. Secreted MIF binds to its receptor, CD74, on immune 
and epithelial cells and stimulates expression of various cyto-
kines, for example, interleukin 8 (IL-8) and tumor necrosis 
factor alpha (TNF-α) [10, 11]. Pathogenic protozoan parasites, 
such as Plasmodium, Entamoeba, Toxoplasma, and Leishmania, 
secrete homologs of the cytokine MIF. Avoiding immune clear-
ance allows these protozoa to persist in their host, which ex-
acerbates the damage caused by the lingering inflammatory 
response to invading parasites [12], compounded by the fact 
that these parasites secrete MIF cytokine that can directly drive 
inflammation [13]. The inflammatory properties of protozoan-
produced MIF contribute to immunopathology, damaging the 
host, and are linked to more severe disease [14–22]. However, 
a critical unanswered question is whether antibodies to proto-
zoan MIF can reduce disease severity. The aim of this preclinical 
study was to investigate the benefit of neutralizing antiprotozoan 
MIF antibodies as an add-on therapy to antibiotics in severe 
disease using E.  histolytica as the model organism. We found 
that blocking the virulence factor E. histolytica MIF (Eh-MIF) 
with neutralizing antibodies combined with antibiotics resulted 
in improved inflammatory outcomes and less host damage in 
severe infection.

MATERIALS AND METHODS

Coculture of Human Cells With E. histolytica Parasites

Human intestinal epithelial cells (HCT-116) and human 
macrophages (differentiated THP-1 cells) were cultured with 
E. histolytica strain HM1:IMSS trophozoites at a ratio of 10:1 
human cells to parasite in M199 medium [17, 23]. IL-8 and 
TNF-α in cell culture supernatant were measured by enzyme-
linked immunosorbent assay (ELISA; eBioscience).

Mice and Amebic Colitis

Entamoeba histolytica strains capable of evading immune clear-
ance were generated by passing trophozoites through mice in-
testine. Entamoeba histolytica trophozoites that persisted in an 
inflamed intestine for at least 5 days were used for severe colitis 
experiments. Wild-type CBA/J mice were obtained from the 
Jackson Laboratory. Male mice were used at 10 weeks of age. 
Mice were treated with granulocyte colony-stimulating factor 
(G-CSF) 125  μg/kg subcutaneously twice per day for 3  days 
[24]. On day 4, animals were anesthetized, laparotomized, and 
intracecally infected with 106 E.  histolytica trophozoites [25]. 
Treatment began 24 hours after infection [6] and continued for 
a total of 3  days. One group received metronidazole (10  mg/
kg per day) [26] plus 1 mg mouse anti–Eh-MIF blocking anti-
bodies given by parenteral (intraperitoneal) injection. The con-
trol group received equivalent amounts of metronidazole plus 
control antibody. At the end of the treatment course mice were 

killed, and the cecal tissue and luminal contents were obtained 
for further analysis.

ELISA

Intestinal tissue was prepared for ELISA as described pre-
viously [27]. Intestinal tissue lysates and luminal contents 
were evaluated by ELISA for CXCL1 (R&D Systems), TNF-α 
(eBioscience), myeloperoxidase (MPO; R&D Systems) [28], 
and albumin (Bethyl Laboratories) according to the manufac-
turers’ instructions. Total protein concentration was measured 
using the Pierce BCA Protein Assays Kit (Thermo Scientific).

Histopathological Examination

Mouse tissue was fixed in Bouin solution (Sigma) and stored in 
70% ethanol. Tissue staining with hematoxylin and eosin was 
performed by the University of Virginia Research Histology 
Core [17]. Histological scoring was performed by 2 inde-
pendent blinded scorers as previously described [29].

Structure Analysis and Bioinformatics

The coordinates of the Eh-MIF protein structure have been 
deposited in the Protein Data Bank under the accession code 
6CUQ. Structural comparison between the Eh-MIF and human 
MIF proteins were done using the University of California, 
San Francisco Chimera software version 1.10.2. Amino acid 
sequences of MIF proteins from human and E. histolytica were 
aligned by Multiple Sequence Comparison by Log Expectation 
(MUSCLE) software [30].

Protein Expression, Purification, and Biotinylation

The CD74 ectodomain cDNA was subcloned from pGEX-6P-
1-CD74 plasmid (previously described in [16]) into pET28-
MBP-TEV vector (Addgene plasmid number 69929)  within 
5′BamH1 and 3′XhoI sites followed by transformation into 
Escherichia coli BL21 (DE3) cells for expression and purifica-
tion of the recombinant MBP-CD74 protein. Both MBP and 
MBP-CD74 proteins were expressed by induction with 1 mM 
isopropyl β-d–thiogalactoside for 18 hours at 15°C. Purification 
of these proteins was done as previously described [31]. In 
brief, proteins were affinity purified with amylose resin (New 
England Biotechnologies) and eluted with 10  mM maltose. 
The expression and purification of Eh-MIF and human MIF 
recombinant proteins were done as previously described [16]. 
Purified proteins were concentrated and buffer exchanged into 
1× phosphate-buffered saline using Amicon Ultra-15 centrif-
ugal filter units (Millipore Sigma). Biotinylation of MBP and 
MBP-CD74 proteins were done by the EZ-Link Sulfo-NHS-LC-
Biotinylation kit (Thermo Scientific).

Binding Kinetics Using Biolayer Interferometry Assay

The binding affinity of MBP-CD74 for Eh-MIF and human 
MIF was determined using the Blitz System (Octet Red 
96 system, ForteBio). In brief, Streptavidin Dip and Read 
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Biosensors (ForteBio) were hydrated for 10 minutes followed 
by baseline stabilization for 5 minutes in the sample dilu-
tion buffer (1× Dulbecco’s PBS, 0.02% Tween 20), and 25 µg 
biotinylated MBP-CD74 or MBP was loaded onto the bio-
sensors for 5 minutes. After washing the loaded biosensors in 
sample dilution buffer for 5 minutes, they were exposed for 
10 minutes to five 2-fold dilution series of Eh-MIF or human 
MIF protein starting at 800 nM concentration. Postbinding 
dissociation was done for 10 minutes in the sample dilution 
buffer. Binding affinities (KD) were calculated using the Blitz 
system software (ForteBio).

Immunoblotting

Recombinant Eh-MIF and human MIF were resolved by so-
dium dodecyl sulfate polyacrylamide gel electrophoresis fol-
lowed by transfer onto polyvinylidene difluoride membranes 
(Millipore). The membranes were incubated overnight with 
affinity purified mouse anti–Eh-MIF antibody at 4°C followed 
by antimouse immunoglobulin G (IgG) horseradish peroxidase 
conjugate (Sigma) secondary antibody. Enhanced chemilumi-
nescence (Thermo Scientific)–based substrates were used to de-
tect antibody conjugated peroxidase activity.

MIF Homologs and IL-8 Secretion Assay

IL-8 secretion assays were carried out as previously described 
[17, 18]. In brief, 106 cells/mL human Caco2 colonic epithelial 
cells were treated with 0.5 µg/mL human or E. histolytica MIF 
in the presence of 5, 20, and 50 µg/mL anti–E. histolytica anti-
bodies for 8 hours. IL-8 in cell culture supernatant was meas-
ured by ELISA (eBioscience).

Antibody Purification

Antibodies used in cytokine secretion assays and passive im-
munization were purified using the Melon Gel IgG Purification 
Kit (Thermo Scientific) for purification of IgG from Eh-MIF 
immunized or control mice as previously described [32]. This 
allows both groups to have the same antibody profile except for 
neutralizing antibodies against the Eh-MIF protein.

Statistical Analysis

Statistical differences between 2 groups were determined using 
Student t test and Mann–Whitney U test. Pearson correlation 
was used for correlation analysis. A P value <.05 was considered 
statistically significant.

Study Approval

All animal procedures were approved by the University of 
Virginia Institutional Animal Care and Use Committee 
(IACUC). All animal studies were performed in compliance 
with the federal regulations set forth in the Animal Welfare 
Act, the recommendations in the Guide for the Care and Use 
of Laboratory Animals of the National Institutes of Health, and 
the guidelines of the University of Virginia IACUC.

RESULTS

E. histolytica MIF Protein is a Bona Fide Homolog of Human MIF

 Given that structural similarity between proteins is strong pre-
dictor of functional similarity [33], we determined the crystal 
structure of the Eh-MIF protein and investigated whether it is an 
authentic homolog of human MIF. The X-ray crystal structure of 
Eh-MIF was solved at a resolution of 2.45 Å (Protein Data Bank 
identifier: 6CUQ). Similar to the human protein, Eh-MIF 
formed a stable trimer (Figure 1A). Structural homology be-
tween Eh-MIF and human MIF was measured by the root mean 
square deviation (RMSD) [34, 35]. Superimposition of all the 
113 α-carbon atoms of the backbone resulted in a RMSD value 
of 1.678 Å, which falls well within the range of RMSD for ho-
mologous proteins, which is <3 Å [36]. Since RMSD calcula-
tion is inherently biased by further apart atoms [35], we also 
found that the RMSD value of 100 residues best aligned with the 
human protein was 1.076  Å. Therefore, our findings indicate 
that Eh-MIF protein is structurally homologous to human MIF.

Next, we compared the binding affinity of E. histolytica and 
human MIF proteins to the MIF receptor CD74. Biolayer in-
terferometry (BLI) is a useful technique for measuring inter-
action affinity between proteins in real time [37]. Biotinylated 
MBP-CD74 fusion protein was loaded onto the surface of 
streptavidin BLI sensors, followed by binding measurements in 
different concentrations of E. histolytica or human MIF proteins. 
Analysis revealed a dissociation constant (KD) of 1.12 × 10−8 M 
for Eh-MIF (Figure 1B), similar to that for the human MIF, 
which was 1.82 × 10−8 M (Figure 1B). Biotinylated MBP alone 
coupled to the streptavidin BLI sensors was used as control. BLI 
measurements demonstrated that E. histolytica and human MIF 
proteins did not bind to the MBP-only control, KD not appli-
cable (Figure 1B). Therefore, the MIF receptor CD74 has sim-
ilar high binding affinity for both E. histolytica and human MIF 
proteins.

Collectively, these structural and receptor binding data along 
with previously described proinflammatory properties of Eh-
MIF [16–18], supports Eh-MIF as a bona fide homolog of the 
human proinflammatory cytokine MIF.

Antibodies Against E. histolytica MIF Do Not Cross-React With Human MIF

While human and Eh-MIF homologs share structural and func-
tional similarities, their sequence homology is low; they share 
only 28% sequence identity (Figure 2A). Antibody cross-re-
activity depends on the extent of protein sequence similarity. 
Therefore, the low sequence homology facilitates generating 
antibodies against Eh-MIF that do not cross-react with human 
MIF. In support of this, we found that anti–Eh-MIF anti-
bodies were highly specific to the parasite protein and did 
not cross-react with the host protein by immunoblot analysis 
(Figure 2B). This is consistent with our earlier data that human 
and animal sera containing anti–Eh-MIF antibodies did not 
cross react with the recombinant host MIF [16, 17]. In addition 
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to immunoblot assay, we evaluated cross-reactivity with func-
tional analysis of neutralizing antibodies against Eh-MIF. Both 
human and Eh-MIF stimulate IL-8 production from Caco-2 
intestinal epithelial cells [17]. Using this assay, we found that 
these neutralizing antibodies inhibited Eh-MIF activity but had 
no effect on human MIF–induced IL-8 production (Figure 2C). 
These results, which include sequence identity, immunoblot, 
and functional analysis, support the lack of cross-reactivity of 
anti–Eh-MIF antibodies with human MIF.

We further tested if the antibody could neutralize the effects of 
the parasite-secreted MIF on human epithelial and immune cells 
using coculturing assays [17, 23]. We found that neutralizing 
antibodies blocked E.  histolytica–stimulated IL-8 and TNF-α 
production by human intestinal epithelial cells (HCT116) and 
macrophages (differentiated THP-1), respectively (Figure 2D). 
Together, these data further support the concept that Eh-MIF can 
be specifically targeted in E. histolytica–induced inflammation.

Combination Therapy With Neutralizing Anti–E. histolytica MIF Antibodies 

Is Superior to Metronidazole Alone

Since elevated parasite MIF levels positively correlate with inflam-
mation and disease severity [13, 14, 17, 38], we hypothesize that 

blocking Eh-MIF activity would be most beneficial in the setting of 
severe infections. To test this hypothesis, we used a mouse model 
that simulates severe human amebic colitis. That is, in patients 
with amebic colitis, excess intestinal tract neutrophil infiltration 
is associated with more tissue destruction and severe disease [39–
42]. First we serially infected mice, then obtained E.  histolytica 
strains that were capable of evading the immune clearance by per-
sisting in the inflamed intestine for at least 5 days. These strains 
were used for future studies. G-CSF is a potent stimulator of white 
blood cell production, and in particular, neutrophil production 
[24]. MPO, a major component of neutrophils, is a widely used 
marker of neutrophil influx and intestinal inflammation [43]. 
A healthy intestine with an intact epithelial and endothelial barrier 
prevents the spilling of albumin into the gut lumen [44]. Intestinal 
tissue damage caused by E. histolytica infection results in loss of 
the intestinal permeability barrier and can be quantified by meas-
uring the flux of albumin from the serum into the intestinal lumen 
[45]. Infected mice pretreated with G-CSF had increased neutro-
phil infiltration as measured by tissue MPO levels. As expected, 
increased neutrophil infiltration correlated with intestinal damage 
as evidenced by more severe histopathology and elevated luminal 
albumin, modeling severe human amebic colitis (Figure 3).
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Next, we use this model to evaluate the benefit of add-on 
therapy with neutralizing anti–Eh-MIF antibodies in severe 
infection. Both treatment groups received metronidazole 
and were able to clear the parasites within 72 hours. Adding 
anti–Eh-MIF antibodies to the treatment regimen as opposed 
to metronidazole only, significantly reduced parasite-induced 
gut inflammation, as measured by CXCL1 (IL-8 homolog), 
TNF-α, and MPO levels, and the E. histolytica–induced tissue 
damage, as analyzed by histological score and by mucosal 
barrier integrity (Figure 4). These data provide evidence that 
antibodies to the amebic virulence factor MIF can provide 

additional benefits over antibiotics alone in severe amebic 
colitis.

DISCUSSION

During an infection, host tissue destruction occurs by direct 
damage by the pathogen and inflammatory-mediated damage 
(immunopathology) [46]. Extensive tissue destruction correl-
ates with poor clinical outcomes, even when appropriate anti-
biotics are administered promptly for treatment [5, 39, 46]. This 
implies that antibiotics alone are not always sufficient to disrupt 
the effects arising from severe parasitic infection. Disarming the 
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parasite of important virulence factors offers an attractive tar-
geted approach that can be used as an adjunct to protozoacidal 
antibiotics. Neutralizing secreted virulence factors, as well as 
virulence factors released during parasite death and cell lysis, 
may help to limit ongoing damage and inflammation. We have 
used E. histolytica as a prototype to show a novel therapeutic 
strategy for reducing tissue damage by directing therapy against 
the parasitic MIF virulence factor.

The targeting of microbial virulence factors offers several 
putative therapeutic advantages. As the pathogen itself is typ-
ically not destroyed, antivirulence treatments should not cause 
selection pressure of drug-resistant mutants, which has been a 
major challenge with traditional antibiotics [2]. Another ben-
efit of antivirulence strategies may be lack of direct effects on 
beneficial host commensals, which are unlikely to harbor vir-
ulence factors [2]. Metronidazole, for example, in addition to 
having antiprotozoal activity, can cause undesired disturbance 
to a wide range of enteric anaerobes. Additionally, antivirulence 
may be able to more quickly inactivate targets than antibiotics, 
which act by inhibition of growth and replication [2]. Hence 
anti–Eh-MIF holds potential as a rapid-onset strategy for 
decreasing disease severity in amebic colitis without anticipated 
selection of resistance or disturbance of host microbiomes.

The concept of using antibodies to neutralize virulence fac-
tors is well described for several bacterial infections, and has 
been used for more than a century in the treatment of children 
with life-threatening diphtheria who are given both anti-
biotics and horse antiserum derived against diphtheria toxin, 
for example [2]. To our knowledge, this strategy for parasitic 
infections has been understudied [2], and we believe that 
anti–Eh-MIF offers a suitable and rationale prime candidate. 
Anti–Eh-MIF is a naturally occurring antibody in humans, pro-
duced as part of the adaptive immune response to E. histolytica 
infection. Eh-MIF is structurally identical to human MIF, but 
exhibits relatively low identity sequence homology. Hence, Eh-
MIF antibodies can be generated with high affinity and speci-
ficity, but without significant cross-reactivity with human MIF, 
as we have shown here and in prior human and animal studies 
[16, 17]. Taken together, these data further support the safety of 
anti–Eh-MIF as an antivirulence candidate that can effectively 
neutralize parasite MIF, without anticipated adverse off-target 
effects on human MIF.

Limitations of this approach include the following: Anti–Eh-
MIF does not impair amebic growth or have amebicidal ac-
tivity, meaning that as antibody levels wane with time, if the 
parasite has not been killed, there could be a risk of recurrence 
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of disease. To overcome this, we suggest that at this time anti–
Eh-MIF be developed as a strategy to minimize inflammation-
induced tissue damage in combination with antibiotic therapy, 
rather than as monotherapy. Second, an early microbiologic di-
agnosis is required to deploy antivirulence therapy in an effec-
tive manner, as these strategies are too specific for broad-range 
empiric use. The increasing availability of rapid molecular diag-
nostics such as multiplex enteric pathogen panels, however, will 
facilitate the ability to carry this out in a timely manner in the 
future [4].

We can further improve upon this work by pursuing 
pathways for polyclonal antibody development, such as 
standardization and supply of anti–Eh-MIF, in order to 
study clinical applications. Polyclonal antibodies offer the 
advantage of binding to multiple epitopes and hence offer 
higher affinity with less vulnerability to minor antigenic 
changes, but large-scale production can be challenging. One 
solution may be to engineer a monoclonal antibody candi-
date, through the use of recombinant DNA or other tech-
nology, which can be made more readily in larger quantities. 
Previously such technologies required large investments in 

time and technical skills, but the increasing demand for 
monoclonal antibodies in the treatment of cancer, autoim-
mune conditions, and other infections is paving the way for 
faster production capacity and improved manufacturing 
processes, making this a viable and perhaps even affordable 
option with time [47, 48].

In summary, we have demonstrated that anti–E. histolytica 
MIF offers a promising candidate for adjunctive treatment of 
severe amebic colitis, which otherwise carries a high fatality, 
even when treated with appropriate antibiotics. We also more 
broadly demonstrate the concept that antiparasite virulence 
factors can be blocked to treat disease, providing a preclin-
ical basis for the development of innovative strategies to save 
and protect lives from these devastating neglected tropical 
diseases.
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