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Abstract

Background: Genetic polymorphisms in the gene encoding the b-adrenergic receptors (b-AR) have a pivotal role in the
functions of the autonomic nervous system. Using heart rate variability (HRV) as an indicator of autonomic function, we
present a bottom-up genotype–phenotype analysis to investigate the association between b-AR gene polymorphisms and
heart rate dynamics.

Methods: A total of 221 healthy Han Chinese adults (59 males and 162 females, aged 33.6610.8 years, range 19 to 63 years)
were recruited and genotyped for three common b-AR polymorphisms: b1-AR Ser49Gly, b2-AR Arg16Gly and b2-AR
Gln27Glu. Each subject underwent two hours of electrocardiogram monitoring at rest. We applied an information-based
similarity (IBS) index to measure the pairwise dissimilarity of heart rate dynamics among study subjects.

Results: With the aid of agglomerative hierarchical cluster analysis, we categorized subjects into major clusters, which were
found to have significantly different distributions of b2-AR Arg16Gly genotype. Furthermore, the non-randomness index, a
nonlinear HRV measure derived from the IBS method, was significantly lower in Arg16 homozygotes than in Gly16 carriers.
The non-randomness index was negatively correlated with parasympathetic-related HRV variables and positively correlated
with those HRV indices reflecting a sympathovagal shift toward sympathetic activity.

Conclusions: We demonstrate a bottom-up categorization approach combining the IBS method and hierarchical cluster
analysis to detect subgroups of subjects with HRV phenotypes associated with b-AR polymorphisms. Our results provide
evidence that b2-AR polymorphisms are significantly associated with the acceleration/deceleration pattern of heart rate
oscillation, reflecting the underlying mode of autonomic nervous system control.
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Introduction

Instantaneous heart rate in response to physiological perturba-

tions often exhibits remarkable oscillations at multiple time scales.

These oscillations, known as heart rate variability (HRV), are

mainly mediated by the autonomic nervous system via parasym-

pathetic and sympathetic innervations. Analysis of HRV has been

suggested to reveal subtle patterns of heart rate dynamics that are

relevant to the underlying physiological state and autonomic

nervous system function [1]. Prior studies have shown that HRV

measures are highly heritable traits that can be used to support

genetic association and linkage studies [2,3,4,5]. Family and twin

studies have shown a significant genetic influence on a variety of

HRV measures [6,7]. Genetic polymorphisms related to cardio-

vascular functions have been associated with altered HRV

[8,9,10,11]. Recently, we have also made progress in identifying

variations in two genes related to neuropsychiatric function that

are associated with altered heart rate dynamics in samples of

healthy adult and elderly subjects: those encoding brain-derived

neurotrophic factor (BDNF) [12] and apolipoprotein E [13],

respectively.

Despite increasing focus on investigating the genetic influence

on autonomic functions, current approaches to genotype–HRV

associations have largely been characterized by a top-down

approach involving a direct comparison of continuous HRV

variables among pre-defined groups of subjects (i.e., healthy vs. ill
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or groups of known genotypes), yet it is unclear how a particular

genetic polymorphism may determine a similar pattern of

autonomic heart rate control from one subject to another.

Specifically, heart rate dynamics is a phenotypic ‘‘expression’’ of

the autonomic nervous system, so comparing similar heart rate

oscillation phenotypes among individuals may reveal a global

profile of autonomic function relevant to genetic variants. With

these considerations in mind, in the present study, we introduce a

bottom-up genotype–phenotype analysis to investigate the associ-

ation between genetic polymorphisms and autonomic control of

heart rate dynamics, using three common polymorphisms in genes

encoding b-adrenergic receptor (b-AR) as an example.

b-AR has a pivotal role in the functions of the cardiac autonomic

nervous system. Activation of b1-AR provides strong stimulus to

increase the frequency and contractility of the heart, whereas the

activation of b2-AR results in smooth muscle relaxation and

increased cardiac output with less extent compared to b1-AR.

Thus, the connection between b-AR and HRV is plausible and

warrants evaluations. Limited evidences suggest that variations in

genes coding subtypes of b-AR may be associated with heart rate

or HRV. For example, Ser49Gly polymorphism in b1-AR gene

has been found to be associated with resting heart rate [14,15],

and an association of b2-AR gene polymorphisms with spectral

components of HRV measures has been reported in a relatively

small healthy adult male sample [11].

We applied an information-based similarity index (IBS) [16,17]

to measure the pairwise dissimilarity of interbeat interval time

series among a sample of healthy adult volunteers. The IBS

method is based on rank-order frequency analysis of acceleration/

deceleration patterns of heart rate fluctuation. Because stimulus of

b-AR results in acceleration of heart rate, the functional changes in

genetic polymorphisms of b-AR may affect acceleration/deceler-

ation patterns of heart rate, which can be detected by the IBS

method. The analyses of the present study were two-fold: 1) a non-

randomness index [17] derived from the IBS method was applied

to quantify the nonlinear aspect of HRV according to b-AR

genotype and to test the correlation of this index with standard

HRV indices; and 2) using agglomerative hierarchical cluster

analysis, we unsupervisedly categorized these subjects into clusters

based on pairwise dissimilarity among heart rate dynamics, and

then we investigated the association of these clustering patterns

with b-AR gene polymorphisms. We show that this bottom-up,

categorization approach combining the IBS method and hierar-

chical cluster analysis can detect subgroups of subjects based on

phenotypes that are associated with b-AR gene polymorphisms.

Materials and Methods

Subjects
Two hundred forty-seven healthy Han Chinese adult volunteers

were recruited from two medical centers: Taipei Veterans General

Hospital and Kaohsiung E-DA Hospital, Taiwan. Subjects were

recruited by advertisement among medical employees, research

laboratory staff working at both hospitals, and their relatives. All

subjects gave informed consent before commencement of the

study. The protocol was approved by the institutional review

boards of the Taipei Veterans General Hospital (Taipei, Taiwan)

and E-DA Hospital (Kaohsiung, Taiwan). Each subject was given

an interview using a standard questionnaire to carefully review the

history of medical disease, psychiatric illness, and medication use.

Subjects included in the study did not have a personal history of

medical conditions (e.g., malignant tumors, heart failure, or

diabetes mellitus), pregnancy, psychiatric illnesses or substance

abuse/dependence. None of the subjects was taking any

medication. The collected demographic data included age, sex,

body mass index, and smoking. Of note, most volunteers were

hospital colleagues, and the rate of smoking was low (n = 2, 0.9%).

Of these subjects, 228 were successfully contacted for ambula-

tory electrocardiogram (ECG) monitoring. Holter recordings

(MyECG E3-80 Portable Recorder, Microstar Inc., Taipei,

Taiwan) were used to obtain two hours of ECG signals. The E3-

80 device continuously recorded three channels of ECG signals at

a sampling rate of 250 Hz. All ECG monitoring took place in the

daytime, and participants were asked to avoid smoking or drinking

alcoholic beverages and to stay in a resting state while being

monitored. Valid DNA samples were obtained in 221 subjects by

drawing blood or by buccal swabs. The final study sample

therefore consisted of 221 healthy adult subjects (59 males and 162

females, aged 33.6610.8 years, range 19–63 years). Among the

present study sample, 211 subjects have been included elsewhere

in a previous report on the altered sympathovagal balance

associated with Val66Met polymorphisms of the BDNF gene [12].

Genotyping
Each subject was genotyped for three polymorphisms

(rs1801252, rs1042713 and rs1042714), and genomic DNA was

isolated using the PUREGENE DNA purification system (Gentra

Systems, Minneapolis, MN, USA). The genotypes of rs1042713

were determined using polymerase chain reaction and restriction

fragment length polymorphism analysis. Briefly, primers and

probes were designed with SpectroDESIGNER software (Seque-

nom, San Diego, CA, USA). PCR was then performed, and

unincorporated double-stranded nucleotide triphosphate bases

(dNTPs) were dephosphorylated with shrimp alkaline phosphatase

(Hoffman-LaRoche, Basel, Switzerland) followed by primer

extension. The purified primer extension reaction product was

spotted on to a 384-element silicon chip (SpectroCHIP, Seque-

nom) and analyzed in a Bruker Biflex III MALDI-TOF Spectro-

READER mass spectrometer (Sequenom). The resulting spectra

were then processed with SpectroTYPER (Sequenom). All samples

were genotyped for eight unrelated SNPs for DNA quality

examination. The samples were diluted onto 96-well plates, and

only the plates on which each of the eight unrelated SNPs had a

successful genotyping rate greater than 95% were used for further

study. All experiments were performed by investigators who were

blind to phenotype. Failure in genotyping for rs1801252

polymorphism was noted in 6 cases.

Analysis of heart rate variability
The ECG signals were automatically processed and analyzed by

open-source HRV algorithms [18]. The standard HRV analysis

has been well reviewed [19]. Briefly, time domain measures of

HRV include the mean heart rate and standard deviation of the

normal interbeat intervals (SDNN), the root mean square

successive difference between adjacent normal interbeat intervals

(RMSSD), and the percentage of adjacent intervals that varied by

greater than 50 ms (pNN50) [20]. The SDNN assesses the overall

variability of interbeat intervals. The RMSSD and pNN50

measure the short-term variation of interbeat intervals, which is

mainly modulated by parasympathetic innervation [21]. Standard

spectral HRV measures [19] include high-frequency power (HF;

0.15–0.40 Hz), low-frequency power (LF; 0.04–0.15 Hz), and very

low-frequency power (VLF; 0.003–0.04 Hz). LF power is

suggested to be modulated by both sympathetic and parasympa-

thetic activities, whereas HF power is mainly modulated by

parasympathetic activity [22,23]. The LF/HF ratio is considered a

measure of the shift of sympathovagal balance toward sympathetic

activity [19,24]. The physiological mechanism underlying VLF
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power is disputed but has been suggested to be mediated partly by

the renin–angiotensin–aldosterone system or parasympathetic

modulation [19,25,26].

In addition, we incorporated two nonlinear HRV indices:

detrended fluctuation analysis (DFA) [27,28] and multiscale

entropy (MSE) [29]. DFA quantifies the presence of long-range

(fractal) correlations whereas MSE measures the entropy over

multiple time scales inherent in physiologic signals and is therefore

a complexity measure. Both methods are available at Physionet

(http://physionet.org), a research resource for complex physio-

logic signals [18].

In the DFA method, the root-mean-square fluctuation of

integrated and detrended time series is measured at different

observation windows and plotted against the size of the

observation window on a log-log scale. The scaling exponent a
is then derived from the slope of line fitting to the obtained log-log

plot. The short-term exponent a1 (4 to 11 heartbeats) and the long-

term scaling exponents a2 (.11 heartbeats) were also calculated

[27,30,31]. Low-exponent values represent reduced fractal proper-

tiy of heart rate dynamics and have been implicated in the risk of

fatal cardiac arrhythmia, increased mortality, or poor prognosis in

cardiovascular diseases [32,33,34,35].

MSE has been proposed as a biologically meaningful complex-

ity measure by quantifying the entropy over multiple time scales

inherent in physiologic signals. The procedure and calculation of

the MSE is summerized as following three steps: 1) construction of

coarse-grained time series, 2) quantification of the sample entropy

of each coarse-grained time series, and 3) summation of the sample

entropy values over a range of scales. In the present study, sample

entropy was calculated using a pattern length (m) of 2 and a

similarity factor (r) of 0.15. The sum of sample entropy over all

scale factors from 1 to 20 was computed to represent the overall

MSE measure. In addition, the sum of sample entropy over scale

factors from 1–5 and 6–20 was calculated to represent short-term

and long-term MSE measures, respectively [36].

Analysis of information-based similarity index
Several methods of symbolic dynamic analysis of HRV have

been proposed previously [37,38,39,40,41]. The IBS method was

developed to effectively categorize symbolic sequences according

to their information content. The method has been fully described

and validated [16], with applications to heart rate time series,

literary texts, and genetic sequences [17,42,43].

An interbeat interval time series (or heart rate time series) is

mapped to a symbolic sequence, according to a mapping rule that

accelerated heart rate in consecutive heartbeats is designated as 0

and a deceleration of heart rate is designated as 1 (Figure 1A). This

way of mapping captures the essential dynamics of the autonomic

nervous system’s control of heart rate and is less sensitive to noisy

fluctuations in interbeat interval time series commonly caused by

ectopic heartbeats [17]. A binary, symbolic ‘‘word’’ is then defined

as a n-tuple sequence derived from n+1 consecutive interbeat

intervals. We determined the frequencies of each pattern of n-tuple

sequences by applying a sliding window (moving one interbeat

interval/step) across the entire interbeat interval time series and

then ranked each n-tuple sequence according to its frequency in

descending order.

To compare the similarity between symbolic sequences, we

plotted the rank number of each n-tuple sequence in the first

sequence against that of the second sequence (Figure 1B). If two

sequences are similar in their rank order of n-tuples, the scattered

points will be located near the diagonal line (e.g., comparison

between healthy subjects) [17]. Therefore, the average deviation of

these scattered points away from the diagonal line is a measure of

the dissimilarity index between these two sequences.

We defined the distance (Dn) using n-tuples between two

sequences, S1 and S2, as

Dn(S1,S2)~
1

N{1

XN

k~1

R1(wk){R2(wk)j j H1(wk)zH2(wk)

PN

k~1

H1(wk)zH2(wk)½ �

Here R1(wk) and R2(wk) represent the rank of a specific n-tuple,

wk, in sequences S1 and S2, respectively. N = 2n is the number of

different n-tuple sequences (or patterns). The absolute difference of

Figure 1. Schematic illustration of the information-based
similarity index method. (A) The mapping procedure for a n-tuple
binary symbolic sequence (here n = 6 for illustrative purposes) from part
of an interbeat interval time series. (B) Rank-order comparison of two
interbeat interval time series from the two healthy subjects, using 6-
tuple binary symbolic mapping. In this case, frequencies of 26 = 64 6-
tuple symbolic patterns were determined and ranked accordingly. For
each 6-tuple symbolic sequence (black dot), its rank in subject A is
plotted against its rank in subject B. The dashed diagonal line indicates
the case where the rank order of 6-tuple symbolic sequence for both
subjects is identical.
doi:10.1371/journal.pone.0019232.g001
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ranks, R1(wk){R2(wk)j j, is weighted by summing Shannon’s

entropy H for wk in sequences S1 and S2 [44]. Shannon’s entropy

measures the information richness of each n-tuple in both

sequences. Thus, the more frequently used n-tuples contribute

more to measuring similarity among symbolic sequences. Of note,

the IBS is an empirical index which does not necessarily obey the

triangular inequality criterion of a distance measure. Therefore,

the triangular inequality test is required before generating a cluster

[16,17]. The IBS algorithm was available at Physionet (http://

www.physionet.org/physiotools/ibs/).

The applications of the IBS method in the present study were

two-fold: 1) The pairwise distance of heart rate dynamics among

individuals was calculated by an average of IBS distance using n-

tuple symbolic sequences (n = 2–10) and was used in subsequent

hierarchical cluster analysis. 2) To quantify the nonlinear aspect of

heart rate time series, a non-randomness index was defined to

measure the symbolic patterns of heart rate dynamics away from

complete randomness (i.e., absence of ordered control of the

autonomic nervous system) [17]. The non-randomness index is

independent of conventional entropic measures (i.e., sample

entropy or approximate entropy) and has been evaluated in other

studies [17,45,46,47]. The calculation of the non-randomness

index is based on estimating the average n-tuple distance between

raw interbeat interval time series and its randomly shuffled

surrogates using the IBS method, where the number of surrogates

was 100 in the present study. The averaged non-randomness index

derived from each n-tuple non-randomness index (n = 2–10) was

then used in this study for comparisons among b-AR genotypes.

Statistical analysis
We calculated allele and genotype frequencies and performed

Hardy–Weinberg equilibrium tests for each b-AR genotype. The

spectral HRV indices were log-transformed to produce normal-

ized distributions. To control for the effects of non-genetic factors,

differences in HRV variables were compared for individual

genotypes using a general linear model (GLM) followed by the

Bonferroni post hoc test for corrections of multiple between-group

comparisons., using age, gender, and body mass index as

covariates. Effect sizes were calculated with Cohen d, defined as

the difference between the means of two groups, divided by the

pooled standard deviation of these groups. Partial correlation

analysis was applied, controlling for age and BMI, to determine

the associations between standard HRV indices and non-

randomness index derived from the IBS method. A p value

of less than 0.05 (two-tailed) was required for all statistical

comparisons.

A complete-linkage, hierarchical clustering tree was estimated

using the generalized association plot (GAP) (http://gap.stat.

sinica.edu.tw/). GAP is implemented here as an unsupervised

clustering algorithm to visually categorize all subjects based on the

dissimilarity matrix, which is derived from calculating the pairwise

dissimilarity of heart rate dynamics among subjects using the IBS

method. Cluster-specific association was analyzed by the chi-

square test to assess the frequency of b-AR polymorphisms and by

the GLM model to test the differences in standard HRV indices

among resulting clusters. To validate cluster-specific associations,

we tested the differences in HRV and b-AR genotypes in estimated

clusters based on first- and second-half ECG data.

Results

Demographic data
Demographic and clinical data for subjects with each b-AR

genotype are presented in Table S1 and S2. The subgroups in

three genotypes did not differ in age, gender ratio, smoking status,

or body mass index. There was no detectable deviation from

Hardy–Weinberg equilibrium in b1-AR Ser49Gly genotype

(x2 = 0.169, P = 0.681), b2-AR Arg16Gly genotype (x2 = 0.824,

P = 0.364) or b2-AR Gln27Glu genotype (x2 = 2.188, P = 0.139).

Association of b-AR genotypes with standard heart rate
variability

Tables 1, 2, 3 summarize the association of b-AR genotypes with

HRV indices determined by a GLM model using age, gender, and

BMI as covariates. There was no significant effect of interaction on

HRV indices detected between b-AR genotypes and demographic

variables.

b1-AR Ser49Gly genotype was associated with mean heart rate

and SDNN with borderline significance (Table 1; p = 0.087 and

p = 0.064, respectively). No statistical association was found

between b2-AR Gln27Glu genotype and HRV indices (Table 2).

For the b2-AR Arg16Gly genotype (Table 3), a significant codo-

minant association was found with LF% (F = 3.636, p = 0.028)

and the non-randomness index derived from the IBS method

(F = 5.642, p = 0.004). Multiple comparisons showed that LF%

was significantly lower in homozygous Arg16 carriers compared to

subjects with the Arg16/Gly16 genotype (p = 0.016), but not to

homozygous Gly16 carriers (p = 0.985). Likewise, a significantly

lower non-randomness index was found in homozygous carriers of

the Arg16 allele (p = 0.016) compared to subjects heterozygous for

Arg16/Gly16 (p = 0.001), and a borderline significance was seen in

the comparison to homozygous Gly16 carriers (p = 0.057).

There was no significant difference in HRV indices between

heterozygotes Arg16/Gly16 and homozygous Gly16 carriers,

Table 1. Heart rate variability profile according to
b1-adrenergic receptor Ser49Gly genotype.

Ser/Ser
n = 155

Gly allele
n = 60 p

Time domain

Mean heart rate, beats/minute 82.9613.2 86.2612.0 0.087

SDNN, ms 77.3624.4 70.7620.2 0.064

RMSSD, ms 30.6613.5 28.0613.3 0.204

pNN50, % 10.4611.0 9.1610.5 0.448

Frequency domain

VLF power, ln(ms2/Hz) 8.5660.53 8.4660.61 0.527

LF power, ln(ms2/Hz) 7.3760.62 7.3260.76 0.580

LF percentage, % 22.066.4 23.067.0 0.345

HF power, ln(ms2/Hz) 6.4760.84 6.3360.96 0.293

HF percentage, % 10.066.1 9.365.1 0.488

LF/HF ratio, normalized units 3.1661.48 3.5061.94 0.170

Nonlinear domain

Detrended fluctuation analysis, a 0.9060.07 0.9060.07 0.911

Detrended fluctuation analysis, a1 1.2060.18 1.2460.19 0.199

Detrended fluctuation analysis, a2 1.0760.09 1.0660.08 0.493

Multiscale entropy, scale 1–20 28.865.75 29.5665.74 0.397

Multiscale entropy, scale 1–5 6.661.5 6.761.6 0.657

Multiscale entropy, scale 6–20 22.264.4 22.864.4 0.340

Non-randomness, symbolic word length 2–10 0.3260.11 0.3360.11 0.348

Failure in genotyping for b1-AR Ser49Gly polymorphism was noted in 6 cases.
doi:10.1371/journal.pone.0019232.t001
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indicating a dominant association of the Gly16 allele with HRV

indices. Thus, when the sample was stratified according to the

presence of the Gly16 allele, a significantly lower non-randomness

index was detected in Arg16 homozygotes compared to subjects

with one or two Gly16 alleles (p = 0.001). The effect size of the

non-randomness index among Gly16 and non-Gly16 groups was

0.22 (Cohen d = 0.46). The Gly16 and non-Gly16 carriers trended

toward a significant difference in LF% (p = 0.069).

Correlations between non-randomness index and
standard heart rate variability

To ascertain the relationship of non-randomness index with

autonomic function, we estimated the partial correlation between

non-randomness index and standard HRV variables, controlling

for age and BMI (Table S3). A weak but significant positive

correlation of the non-randomness index with the LF/HF ratio

was found (r = 0.234, p = 0.001), whereas negative correlations

were found with RMSSD (r = 20.274, p,0.001) and pNN50

(r = 20.279, p,0.001).

Association of heart rate dynamic clusters with b-AR
gene polymorphisms

Next, we investigated the b-AR genotype distributions in an

unsupervised cluster tree based on the dissimilarity (distance)

measure of heart rate dynamics. We first estimated the pairwise

distance between interbeat interval time series of all subjects using

the IBS method. No violation of the triangular inequality was

observed. We then applied a hierarchical clustering algorithm to

cluster these subjects based on the obtained distance matrix. Two

major clusters were identified in the resulting dendrogram

(Figure 2). There was no significant difference in age, gender, or

Table 2. Heart rate variability profile according to b2-
adrenergic receptor Gln27Glu genotype.

Gln/Gln
n = 181

Glu allele
n = 40 p

Time domain

Mean heart rate, beats/minute 83.8613.0 84.0612.8 0.290

SDNN, ms 76.9624.6 71.7618.1 0.207

RMSSD, ms 30.2613.7 29.3613.3 0.698

pNN50, % 10.2611.1 10.3610.9 0.987

Frequency domain

VLF power, ln(ms2/Hz) 8.5460.58 8.5060.45 0.674

LF power, ln(ms2/Hz) 7.3660.68 7.3460.63 0.845

LF percentage, % 22.266.6 22.566.5 0.763

HF power, ln(ms2/Hz) 6.4560.89 6.3960.90 0.728

HF percentage, % 9.866.0 9.865.5 0.763

LF/HF ratio, normalized units 3.2661.65 3.2361.62 0.973

Nonlinear domain

Detrended fluctuation analysis, a 0.9060.07 0.9060.07 0.940

Detrended fluctuation analysis, a1 1.2160.19 1.2260.18 0.749

Detrended fluctuation analysis, a2 1.0760.09 1.0760.09 0.868

Multiscale entropy, scale 1–20 28.765.9 29.865.2 0.283

Multiscale entropy, scale 1–5 6.661.5 6.961.6 0.288

Multiscale entropy, scale 6–20 22.164.5 22.963.9 0.302

Non-randomness, symbolic word length 2–10 0.3260.11 0.3160.11 0.793

doi:10.1371/journal.pone.0019232.t002

Table 3. Heart rate variability profile according to b2-adrenergic receptor Arg16Gly genotype.

Arg16/Arg16
n = 78

Arg16/Gly16
n = 101

Gly16/Gly16
n = 42

P
(codominant)

P
(Gly-dominant)

Time domain

Mean heart rate, beats/minute 83.7614.5 83.8612.0 84.1612.1 0.991 0.947

SDNN, ms 77.4624.9 75.4624.8 74.3617.9 0.756 0.484

RMSSD, ms 31.0614.5 30.1613.3 28.5612.7 0.633 0.470

pNN50, % 11.1612.4 9.9610.3 9.6610.3 0.711 0.416

Frequency domain

VLF power, ln(ms2/Hz) 8.5460.65 8.5460.51 8.5260.47 0.967 0.891

LF power, ln(ms2/Hz) 7.3160.74 7.4360.63 7.2760.62 0.284 0.423

LF percentage, % 21.265.9 23.566.9 21.266.4 0.028 0.069

HF power, ln(ms2/Hz) 6.4260.97 6.5060.82 6.3360.90 0.575 0.818

HF percentage, % 10.067.2 10.065.3 9.164.6 0.702 0.784

LF/HF ratio, normalized units 3.1761.73 3.2861.63 3.3561.52 0.830 0.375

Nonlinear domain

Detrended fluctuation analysis, a 0.9060.07 0.9060.06 0.9160.07 0.237 0.817

Detrended fluctuation analysis, a1 1.1960.19 1.2360.19 1.2060.16 0.237 0.189

Detrended fluctuation analysis, a2 1.0760.09 1.0660.09 1.0960.09 0.222 0.658

Multiscale entropy, scale 1–20 28.565.6 29.565.8 28.266.0 0.363 0.488

Multiscale entropy, scale 1–5 6.561.5 6.861.6 6.461.7 0.287 0.558

Multiscale entropy, scale 6–20 22.064.3 22.764.4 21.864.5 0.421 0.482

Non-randomness, symbolic word length 2–10 0.2960.11 0.3460.11 0.3360.09 0.004 0.001

doi:10.1371/journal.pone.0019232.t003
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other demographic variables between the two clusters (data not

shown). Table 4 shows b-AR genotypes and standard HRV

characteristics according to two major clusters. A significant

deviation in the distribution of homozygous b2-AR Arg16 carriers

was detected between the two clusters (p = 0.011), whereas the

other genotypes showed no deviation in genotype distribution.

In terms of standard HRV characteristics, cluster 1 (with a

higher rate of homozygous b2-AR Arg16 carriers) showed

significantly reduced LF power (p,0.001) and significantly

increased HF power (p = 0.001). The clusters did not differ in

other HRV indices. We verified the genotype distribution with

clusters based on first- and second-half ECG data, and the results

were consistent (Table S4).

Discussion

The data presented in this study demonstrate a significant

association of a common b2-AR polymorphism, Arg16Gly, with

the non-randomness index, a nonlinear HRV measure derived

from the IBS method. Moreover, we illustrate that a bottom-up

approach using the IBS method was able to measure the

dissimilarity of heart rate dynamics among individuals, and we

show that the resulting clusters were associated with b2-AR

Arg16Gly genotype, indicating an impact of this b2-AR polymor-

phism on acceleration/deceleration patterns of heart rate

oscillations.

Our study offers several advantages for studying genetic

associations with physiological parameters and might be general-

izable to other genotype–phenotype studies based on different

types of time series (e.g., brain electroactivity or time series derived

from functional magnetic resonance imaging). First, our method

enables us to cluster heart rate dynamics by an IBS method based

on their acceleration/deceleration patterns of heartbeat sequence.

The IBS method was not exclusively developed for the analysis of

heartbeat sequence but also for other generic datasets consisting of

repetitive elements [42,43]. With an appropriate mapping rule

that is meaningful to a target dataset, the IBS method can be

applied to other types of phenotypic data derived from the time

series [16]. Second, we employed a visually aided hierarchical

analysis by a software tool called a generalized association map,

which enables a bottom-up approach to unsupervisedly identify

heart rate clusters to study genotype–phenotype associations. This

bottom-up approach may help reduce the false-positivity com-

monly seen in conventional association studies.

b1-AR is the predominant b-AR subtype in the heart. Compared

to activation of b2-AR, stimulation in b1-AR can result in more

Figure 2. Unsupervised, hierarchical cluster tree of subjects according to the pairwise dissimilarity matrix among heart rate
dynamics using an information-based similarity index method. Dissimilarity matrix data were visualized and clustered by a generalized
association plot algorithm [58]. The bars on the left indicate the b-adrenergic receptor (b-AR) gene polymorphisms rs1801252 (green: homozygous
Ser49 carriers; blue: Gly16 allele carriers; red: unknown genotype), rs1042713 (green: homozygous Arg16 carriers; blue: Gly16 allele carriers) and
rs1042714 (green: homozygous Gln27 carriers; blue: Glu27 allele carriers).
doi:10.1371/journal.pone.0019232.g002
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significantly increased frequency and contractility of heart.

Although substantial efforts have been made to link b1-AR

polymorphisms with cardiovascular function, studies have been

mixed in this regard. For example, b1-AR Ser49Gly polymorphism

was found to be associated with increased blood pressure and heart

rate [14,15] but data are inconsistent in our findings and other

reports [48,49]. Because we studied only one polymorphism in b1-

AR, further research is needed to identify other possible b1-AR

polymorphisms associated with HRV.

This study found that b2-AR Arg16Gly genotype was associated

with clusters based on acceleration/deceleration patterns of heart

rate. Although b2-AR is expressed in the heart at lower

concentrations than is the b1-AR subtype, it also expresses on

the presynaptic sympathetic nerve terminals and expresses

abundantly in vascular and bronchial smooth muscle. Therefore,

changes in b2-AR function may not only alter sympathetic activity

[50], but also respiration and vascular responses [51,52]. It can be

reasonable to speculate that these factors have influences in HRV.

Of note, the association between b2-AR Arg16Gly polymorphism

and heart rate fluctuation patterns may simply reflect a functional

genetic component nearby due to linkage disequilibrium and

warrants future genetic research targeting on this region.

The non-randomness index was developed initially as a

nonlinear HRV index [17] and its connection with other

traditional HRV indices needs to be explored. Though the non-

randomness index was weakly associated with HRV indices (r-

square,0.1; Table S3), it did correlate negatively with HF power

and positively with the LF/HF ratio, suggesting that the non-

randomness index is a marker related to sympathovagal balance.

Our findings of lower non-randomness index and LF% seen in

homozygous b2-AR Arg16 carriers are in line with prior studies

showing that the b2-AR Arg16 polymorphism is associated with

lower sympathetic activity, manifested as lower blood pressure

[53,54], lower plasma norepinephrine [54,55], and enhanced

agonist-mediated desensitization in the vasculature [56].

Strength of this work include a larger sample size, matched

gender distribution, and long recording of ECG signals using a

Holter recorder, compared to prior genetic association study of

HRV. Several limitations influence the interpretation of the

findings presented in this study. First, we are unable to repeat

findings of spectral HRV indices seen in a smaller male sample

[11]. This may be due to different gender distributions [57] and

means of ECG recording. Twenty-four hour Holter recording

could validate and reinforce the association of b-AR genetic

polymorphism with HRV seen in this study. Second, we were

unable to evaluate the correlation of the non-randomness index

with other commonly used sympathetic indicators, such as blood

pressure or plasma catecholamine levels. Third, our findings are

based on a healthy population and may not be generalizable to

medically ill patients, such as those with cardiovascular diseases.

The cross-sectional nature of our study also limited us examining

the age modification of the effect of b-AR receptor polymorphism

on autonomic function.

In conclusion, this study shows that a bottom-up, categorization

approach combining the IBS method and hierarchical cluster

analysis can detect subgroups of subjects based on phenotypes that

are associated with b2-AR gene polymorphisms. Further research

should aim to identify the physiological mechanisms underlying

these findings.
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