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Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor

IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B,

and several gene therapy products are currently being developed. Codon optimization is

a frequently used technique in the pharmaceutical industry to improve recombinant

protein expression by recoding a coding sequence using multiple synonymous codon

substitutions. The underlying assumption of this gene recoding is that synonymous

substitutions do not alter protein characteristics because the primary sequence of the

protein remains unchanged. However, a critical body of evidence shows that synonymous

variants can affect cotranslational folding and protein function. Gene recoding could

potentially alter the structure, function, and in vivo immunogenicity of recoded

therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to

further explore the effects of codon usage bias on protein properties. The detailed

evaluation of these constructs showed altered conformations, and assessment of

translation kinetics by ribosome profiling revealed differences in local translation kinetics.

Assessment of wild-type and recoded constructs using a major histocompatibility complex

(MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived

peptides bound to MHC class II molecules, suggesting that despite identical amino acid

sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational

modification analysis indicated that overexpression from gene recoding results

in suboptimal posttranslational processing. Overall, our results highlight potential

functional and immunogenicity concerns associated with gene-recoded F9 products.

These findings have general applicability and implications for other gene-recoded

recombinant proteins.
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Key Point

� Structural changes in
coagulation FIX may
be induced by
recoding of the gene
and could impact
immunogenicity.
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Introduction

Since the introduction of recombinant human insulin in 1982, the num-
ber of approved recombinant therapeutic proteins and their market
share has grown substantially.1,2 As of 2020, there are 148 unique
peptide and recombinant protein therapeutics approved by the Food
and Drug Administration (FDA).3 Approximately 15% of the recombi-
nant therapeutic proteins approved by the FDA between 2011 and
2020 are coagulation factors.2,3 An increasingly common bioengineer-
ing strategy is codon optimization. The technique takes advantage of
the genetic code degeneracy to introduce synonymous codon substi-
tutions in the therapeutic coding sequence, with the primary objective
of achieving increased expression of the protein of interest.4 Multiple
parameters including codon usage frequencies, messenger RNA
(mRNA) structure, guanine-cytosine nucleotide content, and repeat
sequences are typically taken into consideration during codon optimi-
zation.5 Recoding a gene sequence through codon optimization has
been shown to improve protein expression through multiple mecha-
nisms, including increase in the rate of transcription,6 mRNA stability,7

and/or translation rate.8 These diverse mechanisms often work in con-
cert as these different properties are highly interconnected.9

An underlying assumption of gene recoding is that because the pri-
mary sequence of the protein remains same, the introduced variants
are “silent” and do not affect protein properties. A large body of liter-
ature10-15 suggests that this assumption is incorrect. Synonymous
codon changes were shown to affect protein folding/structure,13,16-19

function,11 alter responses to medication,20 and cause human dis-
eases.9,10,21-25 Gene recoding, which involves a large number of syn-
onymous substitutions, was also shown to affect protein structure,26

function,27 and posttranslational modification profiles.28

A potential safety concern with therapeutic proteins is immunogenic-
ity. Immune responses to therapeutic proteins affect their safety and
efficacy and are an important concern during drug development and
licensure.29 The immune responses to protein therapeutics are initi-
ated when foreign peptides are presented to the immune system by
major histocompatibility complex class II (MHC-II) molecules on the
surface of antigen-presenting cells (APCs) or MHC-I molecules in
the case of endogenously expressed replacement proteins in gene
therapy.30 Previously, we showed that one type of recoding of coag-
ulation factor IX (FIX) gene, F9, resulted in increased expression but
led to altered conformation of FIX, potentially due to changes in
local translation kinetics.26 It is plausible that conformational
changes could affect proteolytic cleavage of the protein and MHC-II
presentation by APCs, consequently resulting in altered immunoge-
nicity. Overall, given that gene recoding has the potential to affect
the safety of therapeutic proteins, a comprehensive evaluation of the
consequences of gene recoding is needed.

In the current study, we compared multiple types of recoded F9 var-
iants with the matched control wild type. These recoded constructs
showed improved protein expression but showed altered protein
conformations. We assessed the immunogenicity implications of
altered conformations by employing MHC-associated peptide prote-
omics (MAPPs) assay in conjunction with T-cell proliferation assay.
The results indicated that despite having a similar amino acid
sequence, recoded F9 constructs potentially exhibit different immu-
nogenicity risk. Additionally, assessment of posttranslational proc-
essing and specific activity of FIX indicated that overexpression of
recombinant proteins could overwhelm posttranslational processing
machinery and result in suboptimal processing.

Materials and methods

Plasmids

F9 constructs were synthesized and subcloned into pd608 and
pd2109 plasmid vectors by ATUM (https://www.atum.bio/). Sub-
cloning of F9 open reading frame sequences into pcDN5/FRT/V5-
His Topo vector was performed by Genscript (https://www.
genscript.com/). All plasmid constructs included, at the C-terminus,
48 codons encoding the V5-His tag to allow for a simplified purifica-
tion scheme.

In silico analysis

The predicted secondary structure and minimum free energies of F9
constructs were obtained by using NUPACK software. The codon
adaptation index values were determined as previously described.26

Cell culture

HEK293 cell line was selected for performing experiments in the
study with the rationale that it is a human origin cell line that is fre-
quently employed in recombinant therapeutic production. A liver-
based cell line like the HEPG2 cell line could have better mimicked
in vivo production conditions and expressed high-quality FIX,31 but
our preliminary experiments showed that this cell line is difficult to
transfect, and recombinant protein yields were low for purifying suffi-
cient quantities for further characterization. Transient transfections
were performed in HEK293T cells using Lipofectamine 3000
reagent (ThermoFisher). Lentiviral-transduced stable expression cell
lines were generated by employing HEK293T cells, pD2109 F9
constructs, and puromycin selection. Quantitation of lentiviral vector
copy numbers in selected stable expression clones was performed
by using Lenti-X Provirus Quantitation Kit (Takara Bio Inc.) following
the manufacturer’s instructions. For analyzing propeptide cleavage
efficiency in these stable cell lines, cells were transfected with
pcDNA3.1 vector encoding furin protease. Flp-In-293 stable expres-
sion cell lines were generated by cotransfecting individual pcDNA5/
FRT/V5-His F9 constructs and pOG44 vector encoding recombi-
nase and selecting cells for hygromycin resistance.

For the measurement of antigen, activity, and mRNA expression and
protein purification, cells were plated in Dulbecco’s modified Eagle
medium with 10% fetal bovine serum and vitamin K3 (50 ng/mL).
The cell culture media was changed to OPTI-MEM (ThermoFisher)
with vitamin K3 at the time of transfection or 24 hours postplating
for stable expression cell lines. Supernatant media and cell lysates
were harvested 24 hours following transfection or change of media
to OPTI-MEM. Purification of FIX was performed by affinity tag puri-
fication using anti-V5 tag gel (MBL International) as described
previously.11

Antigen and mRNA measurement

FIX antigen was assessed by immunoblotting employing mouse
anti-V5 monoclonal antibody (ThermoFisher) and/or enzyme-linked
immunosorbent assay (ELISA) (Affinity Biologicals). F9 mRNA
expression analysis was performed by using TaqMan Gene Expres-
sion Assays (ThermoFisher) targeted against glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) (Hs02758991_g1) and V5-His tag
sequences of F9 constructs (custom made). Fold differences in
mRNA expression were calculated using DDCp method. All data
were calculated from at least 3 biological replicate samples.
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Specific activity measurement

To calculate specific activity of purified FIX samples (n 5 3), FIX
ELISA was calibrated against the current World Health Organiza-
tion international standard for FIX antigen plasma, and 1 unit of
antigen was assumed to be 5 mg/mL (ie, a normal plasma level of
FIX). Activated partial thromboplastin time (aPTT) test (SynthA-
Fax) was performed in congenital FIX-deficient plasma (HRF, Inc.)
with ACL TOP 550 analyzer (Instrumentation Laboratory).

Chromogenic assay (HYPHEN Biomed) was scaled down to 26
mL for 384-well microplate, otherwise following the manufac-
turer’s instructions. Absorbance was recorded with Biotek Syn-
ergy H4 (BioTek Instruments) at 450 nm. Maximal rate of
substrate conversion (0 to 2 minutes) was used as assay readout.
ELISA (Affinity Biologicals) was performed according to the man-
ufacturer’s instructions. In-house thrombin generation test (TGT)
was performed as follows: congenital FIX-deficient citrated
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compared with WT FIX (highlighted by red color squares). (D-E) Inhibitory antibody assay data from assays employing FIX-depleted plasma spiked with polyclonal anti-FIX
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plasma (50% vol/vol) was mixed with corn trypsin inhibitor (100
mg/mL, Haematologic Technologies), fluorogenic substrate Z-Gly-
Gly-Arg-7-Amino-4-methylcoumarin (AMC) (800 mM, Bachem),
phospholipid vesicles (4 mM, Rossix), and tissue factor (0.35 pM,
Innovin, Baxter). Plasma was activated by 10 mM CaCl2 and 10
mIU XIa (Reference Reagent, code 11/236) and immediately
mixed with samples (25% vol/vol). 7-Amino-4-methylcoumarin fluo-
rescence was recorded at 37�C and 460 nm. Thrombin peak
height was used as assay readout.

Potency calculation was performed in OriginLab software (ver.
2020b), as described previously,32 as an average for 3 to 6 dilu-
tions of each FIX sample against a calibration curve of 7 points. The
specific activity and its standard deviation were estimated using
bivariate first-order Taylor expansion.33,34

CD spectropolarimetry

Circular dichroism (CD) analysis of FIX was performed using
J-810 CD Spectrophotometer (Jasco). Circular dichroism read-
ings were measured from pooled purified protein from 3 preps
each of wild-type and recoded FIX samples placed in 1 mm
path-length absorption cuvettes (Hellma Analytics) at a cons-
tant temperature of 4�C and far-UV wavelength range of 190
to 260 nm. Protein samples were run at a concentration of 370
mg/mL in phosphate (4 mM)-buffered saline (155 mM) solution.
The low phosphate concentration introduced minimal noise in
the CD spectra. Significant noise was noted at 197 nm and
below.

FIX inhibitory antibody assay

FIX-depleted plasma supplemented with polyclonal anti-FIX anti-
bodies (Affinity Biologicals), hemophilia B patient plasma with
anti-FIX inhibitory antibodies, or normal human plasma (National
Institutes of Health Blood Bank) were heat inactivated at 56�C
for 30 minutes and centrifuged to remove precipitates. FIX sam-
ples (n 5 3) at 20 ng/mL concentration were incubated with
serial dilutions of the plasma at 30�C for 1 hour.26 FIX activity
was then measured in 3 independent experiments by chromo-
genic assay (Biophen Factor IX, Aniara). Half-max (ED50) values
were calculated using 4-parameter dosage response curves
stratified by treatment type.

Posttranslational modifications analysis

Posttranslational modifications of FIX constructs were evaluated by
Lys-C peptide mapping as described in detail by Peters et al.35 and
Simhadri et al.14

Limited proteolysis

Limited proteolysis with trypsin was performed as described previ-
ously.14 Briefly, pooled purified protein from 3 preps each of
wild-type and recoded FIX samples were digested with a range of

concentrations of trypsin (0-0.000125 mg/mL) for 3 minutes at
37�C. Digestion reaction was terminated by the addition of 4X LDS
buffer with dithiothreitol and boiling samples for 20 minutes at
100�C. Samples were analyzed by immunoblotting using mouse
anti-V5 monoclonal antibody.

Ribosome profiling

Ribosome profiling experiments and data analysis were performed
as described previously,26,36 with few modifications. Briefly,
library construction was conducted using the Illumina TruSeq
Ribo Profile (Mammalian) Kit per the manufacturer’s instructions,
with modifications in harvest (cells were flash frozen immediately
after removal of media), RNA isolation/purification (isopropanol
isolation was used to improve the yield), and ribosome-protected
fragment (RPF) size selection (�20-32 nucleotide). Ribosome
profiling and RNA sequencing libraries were sequenced using
Illumina HiSeq2500.

RPF fragments of 20 to 22 and 27 to 29 nucleotides in length
were used for analysis with an A-site offset of 15 nucleotides.
Normalized codon coverage for the coding sequences of F9 and
control genes GAPDH and ACTB was calculated as (#RPFs
with codon X in A site/average #RPFs from coding sequence).
Data were then averaged across the replicates (n 5 5) to gener-
ate final RPF coverage plots. Normalized RPF coverage for the
coding sequences of each gene was plotted using A-site frag-
ment density per codon.

MAPPs assay

The study was performed by PROIMMUNE (https://www.
proimmune.com/) as previously described.37 In brief, monocytes
were isolated from peripheral blood samples of 6 donors by positive
selection and differentiated in vitro into immature monocyte-derived
dendritic cells (MoDCs). The immature MoDCs were cultured and
matured in the presence of FIX at 50 mg/mL concentration. The
mature MoDCs were harvested and lysed, and HLA class II DR mol-
ecules were recovered using immune-affinity columns. The HLA
class II DR–bound peptides were then analyzed by high-resolution-
sequencing mass spectrometry, and the resulting data were ana-
lyzed using sequence analysis software referencing the Swiss-Prot
Human Proteome Database. HLA-DRB1 typing information of the
donors is provided in supplemental Table 1. Pooled purified FIX
samples from $11 preps were used in the assay.

T-cell proliferation assay

The assay was performed by PROIMMUNE. In brief, peptides were
synthesized and incubated with peripheral blood mononuclear cells
(40 donors) at 5 mM concentration in 6 replicates. Four control anti-
gens were included in the assays: tuberculin-purified protein deriva-
tive, keyhole limpet hemocyanin, hemagglutinin, and tetanus toxoid.
Untreated control wells were included in each plate. Cultures were

Figure 4 (continued) Immunogenicity of recoded FIX constructs. Immunogenicity assessment of recoded FIX constructs by MAPPs assay and T-cell proliferation

assay is shown. (A) Distinct presentation of FIX-derived peptides bound to MHC-II molecules by wild-type (WT) and recoded FIX constructs. The sequences of the FIX

peptides presented by MoDCs and their amino acid positions are included in the side table. The figure shows the number of times each of the peptides were presented by

MoDCs, colored differently for each donor source. (B) Potential immunogenicity of these peptides as suggested by CD41 T-cell proliferation in assay. Data are shown as

percentage of donors showing response to test antigens measured as stimulation above background ($0.5% and 2 standard errors greater than background). Four control

antigens, tuberculin-purified protein derivative (PPD), keyhole limpet hemocyanin (KLH), hemagglutinin (HA), and tetanus toxoid (TT), were included in the assay.
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incubated for 7 days before measuring proliferation, using a carbox-
yfluorescein diacetate succinimidyl ester staining assay. The per-
centage of stimulation above background was measured for each
peptide/donor combination. HLA-DRB1 typing information of the
donors was provided in supplemental Table 1.

Statistical analysis

The Kolmogorov-Smirnov test was used to compare curves of
cumulative sum data of ribosome profiling experiments. The
Kruskal-Wallis test was used to compare antigen expression
data among constructs. Pairwise comparison between groups
or individual constructs was performed with the Wilcoxon
signed-rank test, using Benjamini-Hochberg multiple hypothesis

correction. Specific activity differences between FIX constructs
were measured by using a 1-sample t test on log2-transformed
fold changes to test for a mean of 0. The R programming lan-
guage, Dose Response Curves package was used to fit FIX
activity inhibition against dilution. Then, models were compared
using the x2 test on the difference in their loglikelihoods.

Results

Gene recoding resulted in increased expression and

lower specific activity

We generated 6 recoded F9 constructs to systematically explore
Codon Adaptation Index (CAI),38 a coding sequence variable here
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and OPT-2A variants from single copy expression Flp-in system stable expression cell lines. Data are represented as mean 6 standard deviation (SD). (B) Propeptide

processing and g-carboxylation profiles of purified FIX. (C) Specific activity data for recoded FIX constructs presented as fold activity over WT. Data are represented as

mean 6 SD. Data in panels B and C demonstrated relatively higher propeptide FIX fraction, lower Gla, and lower specific activity for FIX expressed from the variant with the

highest antigen expression, OPT-1A. This data suggested suboptimal posttranslational processing of FIX when overexpressed.
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defined as “high” (OPT-1; 1A, 1B, and 1C) and “low” (OPT2; 2A,
2B, and 2C) (Figure 1A). Additionally, we also explored similarity to
wild-type sequence, here defined as “close” (86% for 1B, 90% for
2B), “medium” (79% for 1A, 80% for 2A), and “distant” (73% for
both 1C and 2C) (Figure 1A; supplemental Table 2). The 15
N-terminal codons were not recoded to reduce the risk that events
following initiation of translation would impact the effect of recoding
on the rest of the sequence.39

Principal component analysis of all 64 codons (blue triangles) and
recoded sequences (red triangles) (Figure 1B) revealed grouping of
OPT-1 and OPT-2 constructs together, confirming the inherent simi-
larity in the CAI design principles among each group of constructs.
In silico analysis of the predicted mRNA structures revealed altered
secondary structure (supplemental Figure 1) and lower minimum
free energy, an indicator of the increased structural stability of the
recoded constructs (Figure 1A). In transient transfections, all
recoded constructs showed increased FIX expression (Figure 1C).
Antigen expression analysis of constructs stratified by high (OPT-1)
or low (OPT-2) CAI values identified significant differences
(P 5 .0015) (supplemental Figure 2A). A pairwise comparison
revealed significant differences between all groups (P , .045). Anti-
gen expression of constructs stratified by distance to wild-type
sequence (close, “A”; medium, “B”; and distant, “C”) also identified
significant differences (P 5 .0157) (supplemental Figure 2B). Pair-
wise comparison showed significant differences between wild-type
and all other groups (P 5 .015 for all comparisons); however, differ-
ences between A, B, and C groups were not significant. This data
indicated CAI as the primary variable underlying significant differ-
ences in antigen expression from recoded F9 constructs. Contrary
to the differences in antigen expression, activity assessment by
chromogenic assay revealed relatively similar values for all con-
structs (Figure 1C). This data indicated lower specific activity of
recoded constructs, which is probably a combined result of overex-
pression from gene recoding and complex posttranslational modifi-
cations that FIX has to undergo. The mRNA levels of individual F9
constructs were in agreement with their respective antigen levels
(Figure 1C), suggesting a primary role of transcription and/or mRNA
stability in the increased FIX expression of the recoded constructs.

Gene recoding resulted in altered conformation

For the experimental feasibility, we evaluated the effects of recod-
ing using 2 recoded constructs, OPT-1A and OPT-2A, both car-
rying an intermediate level of CAI and nucleotide/codon similarity
to the wild-type and representing the highest(OPT-1A) and low-
est (OPT-2A) levels of FIX expression among recoded constructs
(Figure 1C). Quantitation of lentiviral copy numbers in the clones
selected for comparable expression revealed expression of FIX
from 4.17 6 0.24 copies for wild-type, 3.02 6 0.17 copies for
OPT-1A, and 1.49 6 0.2 copies for OPT-2A. The apparent dis-
crepancy in the observed and expected antigen levels based on
integrated copy numbers and expression levels in transient trans-
fection experiments could be due to chromosomal position effects
on expression from randomly integrated transgene copies in these
cell lines.40,41 The F9 mRNA expression levels within the selected
individual clones were comparable (Figure 2A). Recombinant FIX
purified from these selected clones was used for the analysis of
protein conformation, specific activity, and posttranslational
modifications.

To assess protein conformational differences, we employed CD
spectropolarimetry, limited proteolysis, and FIX inhibitory antibody
assays. The secondary structure analysis of 2 recoded constructs
(OPT-1A and OPT-2A) using CD spectropolarimetry showed nearly
overlapping CD profiles (similar within �1 mdeg) that were distinct
from that of wild-type (Figure 2B). Limited proteolysis by trypsin
revealed increased sensitivity of recoded constructs compared with
wild-type (Figure 2C). Inhibitory antibody assays were performed in
2 formats. In the first, FIX-depleted plasma was spiked with poly-
clonal anti-FIX antibodies, and inhibition of FIX activity was moni-
tored. In the second, hemophilia B plasma with FIX inhibitory
antibodies was used. The OPT-1A exhibited significantly different
(P 5 .0029) inhibition kinetics, represented as ED50 values, from
the wild-type when incubated with the spiked plasma (Figure 2D),
whereas the OPT-2A exhibited significantly different (P 5 .00062)
inhibition kinetics from the wild-type when incubated with patient
plasma having inhibitory anti-FIX antibodies (Figure 2E). In addition,
OPT-1A and OPT-2A showed significantly different (P 5 .012
and .0042, respectively) inhibition kinetics as compared with each
other. Together, these results indicated conformational differences
between the constructs under study.

We compared the specific activity of FIX variants using 3 activity
assays: chromogenic assay, aPTT and TGT test, and an ELISA-
based antigen assay (Figure 2F). In this analysis, OPT-2A
showed relatively higher specific activity ($22% higher than
wild-type), followed by OPT-1A ($12% higher than wild-type), in
all 3 assays. The observed differences are statistically significant
for wild-type vs OPT-1A measured by chromogenic and TGT
(P 5 .01) assays and wild-type vs OPT-2A measured by chro-
mogenic (P 5 .018) assay. These specific activity differences
seem to be partially explained by relatively lower propeptide lev-
els and higher g-carboxyglutamic acid (Gla) content observed in
OPT-1A and OPT-2A clones, respectively (Figure 2G). We also
observed assay-based differences in the measurement of spe-
cific activities, where TGT consistently showed lower absolute
specific activities (supplemental Figure 3). These absolute spe-
cific activities of our samples varied between 252 and 461 IU/
mg (based on aPTT clotting assay). This is comparable to the
specific activity of the recombinant FIX product BeneFIX, which
has the typical specific activity of “greater than or equal to 200
IU per milligram of protein” (see DailyMed - BENEFIX [Coagula-
tion Factor IX Recombinant Ki] [nih.gov]).

In the posttranslational modifications analysis, wild-type, OPT-1A,
and OPT-2A constructs showed propeptide levels of 4.8%,
2.8%, and 4.3% and Gla content of 10.5, 10.4, and 11 Gla per
mol, respectively (Figure 2G; supplemental Table 3). For compar-
ison, plasma-derived FIX exhibits nondetectable propeptide
sequence and 12 Gla per mol.42 The presence of propeptide
sequences and relatively lower Gla of FIX derived from stable
expression cell lines in our study suggested that the endogenous
g-glutamyl carboxylase and furin protease activity needed for g
carboxylation and propeptide cleavage was not sufficient to opti-
mally process the overexpressed FIX. In support of this postulate,
when furin was coexpressed in these stable expression cell lines,
FIX with propeptide sequences was not detected (supplemental
Figure 4). We did not examine the effects of vitamin K epoxide
reductase coexpression in the present work, though literature
predicts this may need to be titrated carefully in conjunction with
the g-glutamyl carboxylase.43 Other evaluated posttranslational
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modifications including S53 O-glycosylation, D64 and K91
hydroxylations, N199 deamidation, and M391 oxidation were
largely similar between the constructs (supplemental Table 3).

Ribosome profiling revealed differences in

translational kinetics

We used ribosome profiling to assess potential translation kinetics
differences due to recoding.44 Ribosome profiling allows monitoring
of translation at codon-level resolution through sequencing of the
actively translating transcriptome. This technique involves isolation
and deep sequencing of mRNA fragments that are protected from
ribonuclease digestion by translating ribosomes. Ribosomes are
associated with codons that are translated slowly for longer periods,
and these RPFs are overrepresented in the ribosome profiling data.
We assessed the translation of F9, as well as ACTB and GAPDH,
as controls. The RPF profiles of wild-type and recoded F9 were pre-
sented as cumulative sums of normalized and log-transformed RPF
data. In this analysis, the RPF profiles for both OPT-1A and
OPT-2A were significantly different from the RPF profile of wild-type
(P 5 4.87e-04 and P 5 2.211e-08 for OPT-1A and OPT-2A,
respectively) (Figure 3A). Additionally, all 3 constructs showed dis-
tinct profiles in the region of sequences encoding activation peptide
and peptidase domains. Importantly, the RPF profiles in the identical
C-terminal V5-His tag regions of F9 constructs (codons 463-509)
(Figure 3A) and control genes ACTB (Figure 3B) and GAPDH
(Figure 3C) were comparable. Together, this data demonstrated the
differences in local translational kinetics of the wild-type and
recoded F9 constructs.

Gene recoding alters peptide presentation by

MHC-II on APCs

Given that recoded FIX revealed altered conformations, we investi-
gated whether these variants may be processed and presented by
the immune system differently than the wild type. A MAPPs assay45

was performed using MoDCs from 6 donors. Overall, 7 FIX-specific
peptides were identified on MoDCs (Figure 4A). As expected,
MHC-II molecules from each donor presented a distinct set of pepti-
des, and no donor presented all of the identified peptides. Interest-
ingly, peptide 4 (amino acids 307-325) was presented from
MoDCs of donor D1890 when exposed to OPT-1A and of D1891
when exposed to OPT-1A and OPT-2A, but no donors presented
these peptides when incubated with wild type. Similarly, there were
peptides that were presented by MoDCs incubated with wild type
but not with some of the recoded proteins. Further, we explored the
potential capacity of the identified peptides to induce T-cell prolifera-
tion. In this analysis, several of the peptides tested were able to
induce CD41 cell proliferation (Figure 4B; supplemental Table 5),
with peptide 6 inducing proliferation in more peripheral blood mono-
nuclear cell samples than other peptides.

Limited expression improves FIX processing

To better understand the undue pressure exerted by FIX overexpres-
sion on the posttranslational processing machinery, we established
stable expression cell lines of wild-type, OPT-1A, and OPT-2A con-
structs using the Flp-In-293 cell line that expresses the protein of
interest from a single copy, integrated at a prespecified genomic
location.

In the Flp-In-293 system, the wild type and OPT-2A showed com-
parable FIX expression, whereas OPT-1A showed about 10-fold
higher expression (Figure 5A). The relative mRNA levels in cell
lines corresponded with the differences in FIX expression levels
(Figure 5A). The differences in expression levels identified in the
Flp-In-293 system could be true differences that are attributable
to the recoding because variables like copy number per cell and
site of integration are controlled. In posttranslational modifications
analysis, wild-type, OPT-1A, and OPT-2A constructs showed pro-
peptide levels of 0.5%, 3.2%, and 0.7% and total Gla content of
11.85, 11.23, and 11.83 Gla per mol, respectively (Figure 5B;
supplemental Table 4). These numbers, specifically Gla content,
indicated a relatively enhanced posttranslational processing of
FIX expressed from the Flp-in-293 cell lines compared with those
expressed from lentiviral-transduced stable expression cell lines
(Figure 2G). Moreover, posttranslational processing of FIX con-
structs seemed to be affected by respective expression levels,
where OPT-1A with the highest expression showed relatively
lower posttranslational processing. Subsequently, OPT-1A
showed relatively lower specific activity in all 3 activity assays
(Figure 5C). However, these differences are statistically signifi-
cant only for wild-type vs OPT-1A comparison measured by chro-
mogenic assay (P 5 .039). Other analyzed posttranslational
modifications were largely similar, with no discernible differences
(supplemental Table 4).

Discussion

When genetic sequences are recoded with the primary objective of
enhancing the protein expression of protein therapeutics,
manufacturing controls and/or downstream purification steps can
most often weed out egregious effects of recoding by selecting out
incorrectly folded or processed protein forms. This purification is not
possible in the case of constructs used in gene therapy, for which
there is no such quality control. Potential safety issues such as
increased immunogenicity or toxicity driven by protein aggregation
are not clear, and this risk becomes more germane as gene therapy
products are increasingly a part of drug development pipelines. In
this study, we focused on how gene recoding can affect properties
of a therapeutic protein, including immunogenicity.

Recombinant FIX, which is used clinically to treat hemophilia B, was
chosen as a model protein, mostly because the high volume of
therapeutics including gene therapy applications. From a panel of
F9-recoded constructs, we synthesized, purified, and extensively
characterized wild-type and selected recoded variants (OPT-1A and
OPT-2A). As recoding often results in greatly augmented levels of
protein synthesis, it is postulated that cellular machinery involved in
posttranslational processing and quality control can be over-
whelmed. We therefore established multiple clones and selected
those with equivalent FIX expression. In cells expressing equivalent
levels of FIX, we found largely comparable posttranslational modifi-
cations. However, all 3 recombinant clones showed a lower Gla
content compared with plasma-derived FIX, a critical posttransla-
tional modification for FIX activity. These clones moreover produced
FIX with conformational differences between the wild-type and
recoded constructs as well as between the 2 recoded variants.
These conformational differences were confirmed by 3 orthogonal
techniques. These results suggested that even when controlling for
the level of expression, synonymous codon changes may alter
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protein conformation. Further, using ribosome profiling, we could
demonstrate significant translation kinetics differences among wild-
type and recoded variants of FIX. These results are consistent with
other studies16,17,26,46 showing that altering codon usage changes
translation kinetics.

The consequences of altered conformation, potential aggregation,
etc of recoded constructs are potential pitfalls but to date have not
been associated with clinical risk. However, if the altered conforma-
tion due to recoding increases the immunogenicity risk of the protein
therapeutic, it reflects a potential safety issue. As both wild-type and
recoded proteins have the same primary sequence, it appears
unlikely that these variants would elicit different immune responses.
However, in the last decade, accumulating evidence37,47-51 suggests
otherwise. Recently, a prospective randomized clinical control trial
demonstrated that recombinant FVIII products, despite sharing the
same amino acid sequence, are more immunogenic than plasma-
derived FVIII products.51 Glycosylation differences, association with
plasma von Willebrand factor, and presence of cooccurring immuno-
modulatory proteins were cited as potential reasons behind these
observed differences.51 Further analysis by MAPPs assay revealed
that plasma-derived FVIII presents fewer peptides than recombinant
FVIII in the presence of plasma-derived von Willebrand factor, sug-
gesting that the 2 products are processed differently.37,52-54 We car-
ried out a similar analysis using the wild-type and 2 recoded variants.
In this study, it is clear that the wild-type and recombinant variants
present different sets of FIX-derived peptides on APCs from the
same donor. With this small dataset, it is impossible to determine
whether recoded proteins present a greater (or lesser) risk of immune
response. Our data nonetheless establishes differential processing of
wild-type and recoded variants by the immune machinery of APCs.

Overexpression from multiple copies and/or recoding in lentiviral trans-
duction expression system resulted in suboptimal posttranslation proc-
essing, specifically propeptide cleavage and g-carboxylation that are
critical for FIX activity. It is to be noted here that an extraneous source
of vitamin K, which plays an important role in the g-carboxylation, was
provided to cells in the current study. Additionally, coexpression of
furin improved propeptide processing. These findings agree with pre-
vious studies that indicated the requirement of furin coexpression for
optimal propeptide cleavage of overexpressed FIX.43,55,56 On the
other hand, controlled expression of FIX from a single copy resulted
in improved posttranslational processing of the wild-type as well as
the recoded constructs. Primary hepatocytes, the targeted cells of FIX
expression in gene therapy are expected to better process
in vivo–expressed FIX.31 However, gene recoding will result in non-
physiological expression of FIX on a per cell basis and could still over-
come the intrinsic quality control mechanisms. Further studies are
needed to better understand the impact of nonphysiological expres-
sion of FIX in in vivo physiological conditions. Overall, our results indi-
cate a limited capacity of posttranslational machinery to optimally
process overexpressed proteins, specifically for proteins that under-
goes complex posttranslational modifications.

Another interesting observation is assay-based differences in the
specific activity measurement, where TGT yielded lower measure-
ments compared with chromogenic and aPTT assays. A recent
study by Rosen et al.57 identified higher specific activity of recombi-
nant FVIII in human plasma following gene therapy when the activity
was measured by the aPTT-based assay vs the chromogenic assay.
The mechanisms behind factor activity assay discrepancies remain

unknown. Data on FIX activity assay consistency is not yet available
for gene therapies based on wild-type FIX, although this topic is
gaining more attention with the introduction of FIX Padua–based
therapies. Among the FVIII gene therapy trials, similar type of dis-
crepancies appeared across several trials that have all used codon
optimization of their cassettes. This may indicate that codon optimi-
zation per se may not be an important factor or the only factor to
account for these discrepancies. More data are needed to ascertain
the codon optimization–specific effects related to these discrepan-
cies. Differences in posttranslational modifications, probable protein-
folding differences from codon optimization, differences in affinity to
von Willebrand Factor, ectopic expression of FVIII from hepatocytes,
and molecular differences between nonnative analytes and native
calibrators and reagent disparities were among the suggested
potential contributing factors.57,58 Overall, our results reinforce the
FDA’s recommendation to validate factor activity assays for their
suitability to analyze the protein of interest.59

Taken together, our study highlighted the gene recoding–induced
changes in the conformation, posttranslational modifications, and
function of therapeutic proteins using coagulation factor IX as a
model. These changes have the potential to affect the efficacy
and safety of the recombinant proteins. Such concerns may be
particularly relevant to gene therapies that are typically based on
recoded expression constructs and rely on intrinsic quality control
mechanisms.
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