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ABSTRACT: Although many nanocarriers have been
developed to encapsulate paclitaxel (PTX), the drug
loading and circulation time in vivo always are not ideal
because of its rigid “brickdust” molecular structure. People
usually concentrate their attention on the spherical
nanocarriers, here paclitaxel nanoparticles with different
geometries were established through the chemical
modification of PTX, nanoprecipitation, and core-matched
cargos. Previously we have developed rod-shape paclitaxel
nanocrystals using block copolymer, pluronic F127.
Unfortunately, the pharmacokinetic (PK) profile of PTX
nanocrystals is very poor. However, when PTX was
replaced by its prodrug, the geometry of the nanoparticles
changed from rod-shaped to worm-like. The worm-like
nanoparticles can be further changed to spherical nano-
particles using the nanoprecipitation method, and changed
to fingerprint-like nanoparticles upon the addition of the
core-matched PTX. The nanoparticles with nonspherical
morphologies, including worm-like nanoparticles and
fingerprint-like nanoparticles, offer significant advantages
in regards to key PK parameters in vivo. More important,
in this report the application of the core-matching
technology in creating a core-matched environment
capable of controlling the in vivo PK of paclitaxel was
demonstrated, and it revealed a novel technique platform
to construct nanoparticles and improve the poor PK
profiles of the drugs.
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Traditional drug delivery systems mainly focus on spherical
carriers that are between 10 and 200 nm in diameter, the

dependence of accumulation in the tumor on the “enhanced
permeability and retention” (EPR) effect results in the
emphasis on the size of the particles. The impact of the
geometry of the carriers on their in vivo behavior is intriguing
and warrants further study, in particular, the effect of geometry

on circulation time,1,2 the interaction of particles with target
cells,3,4 cellular uptake of the particles, and subcellular
trafficking of the cargo.5,6 In addition to spherical carriers,
developed geometries include, but are not limited to, flat disks,
rods or cylinders, and worm-like micelles (filomentous
micelles).7−10 Amphiphilic block copolymers have diversified
structures that are precisely designed and are typically used to
construct nonspherical carriers. It is well-known that the size
and shape of polymeric nanoparticles (NPs) can be designed
through the control of the balance of hydrophilic/hydrophobic
components of the polymer. However, here, for the first time,
we show that the morphology can be transformed through
changing the encapsulated cargo or offering a matching
environment to encapsulate the cargo. Subsequently, the
circulation time of the encapsulated drugs is significantly
prolonged.
Paclitaxel (PTX) is an anticancer agent used to clinically treat

a variety of solid tumors. However, two major defects make the
application of PTX in cancer therapy difficult. The first is the
extremely low water solubility of PTX, which is less than 1 μg/
mL. The other is the inferior pharmacokinetics (PK) of PTX in
vivo. At this time, only two PTX-based drugs have been
approved by the FDA for use in the treatment of cancer.
Unfortunately, both therapies have very poor PK, more than
95% of PTX is cleared from the blood within 10 min of
injection. So far, various approaches have been developed,
including liposomes, emulsions, polymer NPs, lipid NPs,
conjugates, etc.11−16 However, the improvement of PK of
PTX is always a challenge. In this study, we report the
formation of nonspherical structures from a mixture of
amphiphilic block copolymers, pluronic F127, and PTX
prodrug and/or PTX. These nonspherical structures exhibit
PK profiles that are significantly improved over traditionally
shaped particles in vivo.
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Figure 1. Chemical structures of PTX, VE-PTX, and F127.

Figure 2. Schematic illustration of preparation procedure for the worm-like NPs (A) and the VE-PTX spherical NPs (B). TEM images of worm-like
NPs (C), the net-shaped NPs (D), and spherical NPs (E). Scale bar for TEM images (C,D,E) is 200 nm.
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PTX molecules consist of a rigid taxane ring and a flexible
side chain (Figure 1), qualities that make them insoluble in
both water and oil.17 Encapsulation of PTX into nanocarriers
with high loading efficiency is difficult because of its
physicochemical properties. Our group has developed rod-
shaped PTX nanocrystals (Figure S1, Supporting Infomation)
with a diameter of ∼100 nm using block copolymer, pluronic
F127, which have a very high efficiency of drug loading, the
ability to overcome multiple drug resistance (MDR), and are
easily producible.18,19 Unfortunately, PTX nanocrystals had a
PK profile even worse than that of Taxol and Abraxane. In our
lab, in order to promote its oil solubility, vitamin E (VE) was
conjugated to PTX (VE-PTX, Figure 1), and a core-matched
VE-PTX nanoemulsion with long circulation in vivo was
developed, and significant in vivo antitumor efficacy was
achieved.20,21 With the desire to take advantage of PTX
nanocrystals, we replaced PTX with VE-PTX. Interestingly, the
morphology changed from rod-shape to worm-like.
Figure 2A illustrates the synthetic process for producing VE-

PTX worm-like NPs that is the same as the process for
producing PTX nanocrystals. Images obtained from trans-
mission electron microscopy (TEM) show that the F127/VE-
PTX mixture forms particles with a worm-like assembled
structure (Figure 2C). In the process of preparing the worm-
like NPs, we can also observe the formation of net-shaped
intermediate nanostructures (Figure 2D). The morphology of
formulated nanostructures can be manipulated through making
changes to either the structural characteristics of the
copolymers or the methods used to prepare the nanostruc-
tures.22,23 Here we focus on the latter, successfully changing the
geometry of NPs from worm-like to spherical through the use
of a different method of preparation (nanoprecipitation
method). As illustrated in Figure 2B, VE-PTX acetone solution
was slowly injected into the rapidly stirring F127 aqueous; then
in order to remove the acetone, the solution was placed in
dialysis bag (MWCO = 3500), which was immersed in water.
The external medium was changed periodically over the next 48
h. TEM images confirmed that the nanoprecipitation method
created NPs with a spherical morphology (Figure 2E).
The similarities between the components of the spherical and

worm-like NPs may provide unique insight into the role of the
shape of nanocarriers in their in vivo PK. Worm-like NPs
appeared to circulate longer in the blood (Figure 3). The PK
parameters for VE-PTX data were calculated and presented in
Table 1. The difference between the AUC0‑∞ values of VE-PTX

in worm-like and spherical NPs was 6.5-fold. The worm-like
NPs increased the t1/2 of VE-PTX to 12.11 h relative to
spherical NPs (4.74hours). In order to enhance the circulation
of nanocarriers in the blood, a surfactant, DSPE-PEG2000, is
typically used to coat the carrier such as liposomes, polymer
NPs, lipid NPs, and emulsions. In our previous study, a VE-
PTX nanoemulsion coated with DSPE-PEG2000 also exhibited
a significantly improved PK profile.20 However, as shown in
Figure 3 and Table 1, the nanoemulsion that prolonged the PK
profile of VE-PTX may compare to that of the drugs carried by
spherical NPs, but still did not compare to that of the worm-
like NPs. The reason for these results is thought to be the
flexibility and elongation of the worm-like NPs, which enables
them to align with the blood flow and avoid vascular collisions
and filtration, and are internalized less readily by macrophages.2

On the basis of the compatibility of the nanocarriers’ cores,
their cargo, and the PEGylated molecules, we developed the
core-matched technology (CMT).20,21 We have developed
these core-matched nanocarriers of therapeutic and imaging
modalities through the conjugation of all of the components
(functional molecules and PEG) to a molecule representative of
the core of the nanocarriers. This technique has been
successfully applied to various types of nanocarriers to improve
drug loading and circulation in the blood compared to
traditional PEGylated nanocarriers. In the application of the
CMT, we assume that, if a PTX matching environment is
provided, PTX will be retained in the carrier and the prolonged
circulation of PTX in vivo will be achieved.
Theoretically, the PTX portion of VE-PTX in worm-like NPs

could provide a matching environment for free PTX. As PTX
was added into the worm-like NPs (synthetic process was
shown in Figure S2, Supporting Information), their morphol-
ogy changed into fingerprint-like structures (F127/VE-PTX/
PTX = 1:3:1, molar ratio) (Figure 4A). The TEM images and
our conceptual drawing (Figure 4B) illustrate that the
fingerprint-like NPs are multilamellar vesicles. It is interesting
that the worm-like NPs change into fingerprint-like NPs, which
include multiple water phases. We presume that the increased
rigidity or hydrophobicity in response to adding PTX to the
worm-like NPs imparts enough curvature to the NPs, which
leads to the formation of the fingerprint-like morphology.24,25

In order to demonstrate that there are water phases in the
fingerprint-like NPs, we prepared two solutions. The first was a
mixture of the fingerprint-like NPs solution with a water-
soluble sulforhodamine B (SRB) solution (solution I). The
second was created during the preparation of the fingerprint-
like NPs, the precipitate was hydrated using a SRB solution
(solution II). Both solutions were respectively passed through a
5 cm Sephadex G-50 column. Approximately 10 mL of PBS
buffer was added in a dropwise fashion to the top of the
column, and the eluate solution was collected (eluates I and II
correspond to solutions I and II, respectively). SRB that was
not encapsulated in the particles was separated from the
fingerprint-like NPs through size-exclusion chromatography.
The fluorescence intensity of collected fractions was

determined using a fluorescence spectrophotometer (Figure
4C). The first peak, at 1 mL, corresponds to the eluted
fingerprint-like NPs, and the second peak, at 5 mL, corresponds
to the SRB that was not encapsulated. However, the small peak
of eluate II (green line) disappears after determining its
fluorescence. The fluorescence of SRB in the fingerprint NPs
(eluate II) was not detected; the reason was that fluorescence
would self-quenched at high concentrations due to dye−dye

Figure 3. Blood concentration−time curves of VE-PTX in mice after
IV administration of various VE-PTX formulaitons at a dose of 11.7
μM/kg (n = 3).
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interactions.26,27 After eluate II was diluted with methanol (red
line, the NPs was dissolved), the fluorescence was recovered.
The results demonstrate that small amounts of the SRB
solution were encapsulated in the water phase of the
fingerprint-like NPs.
Powder X-ray diffraction (XRD) was performed to further

study the physical state of PTX in the fingerprint-like NPs. As
shown in Figure 4D, the Bragg peaks of PTX and VE-PTX
within the fingerprint-like NPs disappear from the diffraction

patterns, indicating the crystalline structure, which is evidence
of the absence of crystalline PTX. The results indicated that
PTX could be encapsulated in the fingerprint-like NPs that
have an amorphous state.
The release profiles of PTX from fingerprint-like NPs in vitro

were also assessed and compared to those of Taxol and PTX
nanocrystals (Figure 5A). The release of PTX from fingerprint-
like NPs and Taxol is more rapid than that of PTX
nanocrystals, with pH 6.8 PBS buffer containing 0.05%

Table 1. PK Parameters of PTX or VE-PTX in Mice at Various Drug Formulationsa

formulation/drug AUC0‑∞ AUMC0‑∞ MRT t1/2 Tmax Cl VD Cmax

worm-like/VE-PTX 2175.84 ± 316.67 34563.93 ± 8647.34 15.76 ± 1.68 12.11 ± 1.58 0.17 0.01 ± 0.00 0.09 ± 0.01 122.33 ± 7.60
spherical/VE-PTX 333.42 ± 42.57 1762.68 ± 357.91 5.26 ± 0.40 4.74 ± 0.83 0.17 0.04 ± 0.01 0.24 ± 0.01 81.82 ± 1.89
nanoemulsion
/VE-PTX

499.72 ± 45.36 2419.04 ± 658.23 4.80 ± 0.88 3.44 ± 1.29 0.17 0.02 ± 0.01 0.11 ± 0.03 91.56 ± 8.62

fingerprint/PTX 213.05 ± 3.79 1513.71 ± 128.44 7.11 ± 0.73 6.08 ± 0.49 0.17 0.05 ± 0.01 0.48 ± 0.05 40.29 ± 1.61
Taxol/PTX 8.06 ± 2.37 10.55 ± 3.70 1.30 ± 0.08 0.94 ± 0.09 0.17 1.52 ± 0.45 2.02 ± 0.40 5.05 ± 1.07
nanocrystal/PTX 4.10 ± 0.41 6.30 ± 0.87 1.53 ± 0.06 1.16 ± 0.01 0.17 2.87 ± 0.28 4.81 ± 0.51 2.74 ± 0.16
aParameters and units: area under the curve (AUC0‑∞, μM/L h); area under the moment curve (AUMC0‑∞, μM/L h2); mean residence time
(MRT0‑∞, h); half-life (t1/2, h); time of maximal concentration (Tmax, h); total body clearance (Cl, L/h/kg); volume of distribution (VD, L/kg) ;
maximal concentration (Cmax, μM/L)

Figure 4. TEM images of the fingerprint-like NPs (A), and its speculated structural schematic representation (B). (C) Elution profiles on Sephadex
G50 of solution I and solution II detected by fluorescence. PBS buffer was used as the eluent. The eluate was collected and separated into 0.2 mL
samples per tube, followed by fluorescence measurement using a RF-551 spectrofluorometric detector (Shimadzu, Kyoto, Japan). (D) Powder XRD
patterns of pure PTX, VE-PTX, F127, and fingerprint-like NPs.
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Tween 80 as dissolution media. The cumulative release of PTX
from PTX nanocrystals after 8 h was only 11.9%, while the
cumulative release from fingerprint-like NPs and Taxol was
67.3% and 60.2%, respectively. In Taxol, PTX was encapsulated
in NPs of cremophor EL (the weight ratio of PTX to
cremophor EL is 1:90), resulting in a rapid release. In
fingerprint-like NPs, the amorphous state of PTX was assumed
to improve the in vitro release.
Despite the rapid release of PTX in vivo, the fingerprint-like

NPs circulate longer within the bloodstream than NPs of other
structures (Figure 5B). For PTX nanocrystals, F127 absorbed
to the surface of PTX nanocrystals may dissociate from the
surface when the nanocrystals enter the bloodstream, resulting
in rapid recognition of opsonin proteins and rapid elimination
via phagocytic cells. Improved PK of PTX from the fingerprint-
like NPs was attributed to the unique nanostructure. Rijcken
and Letchford et al. demonstrated that PTX would be rapidly
cleared from the blood within minutes, despite the
encapsulation of PTX in NPs with increased hydrophobic
block length of the copolymer or one type of micelle with a
cross-linked core.28 Although the carriers themselves were able
to achieve prolonged circulation, PTX was rapidly partitioned
out of the cores of the copolymer NPs or micelles with cross-
linked cores. In contrast, the worm-like NPs provide a core-
matched environment for PTX and enable the prolonged
cirulation of PTX after the particles enter into circulation. The
PK parameters were also shown in Table 1. Collectively, the
fingerprint-like NPs increase the AUC, MRT, and t1/2 and
decrease the Cl and VD of PTX. The fingerprint-like NPs
significantly increased the AUC values of PTX, which were 26-
and 52-fold of those AUC of Taxol and PTX nanocrystals,
respectively. Long circulation would facilitate accumulation of
the particles in the tumor and improve their therapeutic effect.
However, as the ratio of F127 to VE-PTX was fixed, and

increasing the amount of PTX included, the PK of PTX
gradually became poor (Figure S3, Supporting Information).
Clearly, the increase of the amount of PTX affects the
hydrophobic core of the fingerprint-like NPs and destabilizes its
structure, decreasing the PK with the growth of the PTX
nanocrystals (Figure S4, Supporting Information). The VE
portion of VE-PTX in worm-like NPs also provides a matching
environment for free VE, but as VE was added into the worm-
like NPs, their morphology changed into heterogeneous,

spherical particles instead of the fingerprint like NPs (Figure
S5, Supporting Information).
In this study, we demonstrated that changes in morphology

depend on the structure of the encapsulated compounds. More
importantly, particles with nonspherical morphologies, includ-
ing worm-like NPs and fingerprint-like NPs, offer significant
advantages in regards to key PK parameters (AUC, MRT, and
t1/2). In fact, the AUC value of worm-like NPs achieved a 270-
and 540-fold increase compared to Taxol and PTX nanocrystals
(Table 1). Furthermore, on the basis of our CMT, the worm-
like NPs provide a matching environment that encapsulates
PTX molecules into the NPs. The application of the CMT in
creating a core-matched environment capable of controlling the
in vivo PK of parent drugs revealed a novel technique platform
to improve the poor PK profiles of the drugs.
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