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Abstract

False discovery rate (FDR) estimation is a cornerstone of proteomics that has recently been

adapted to cross-linking/mass spectrometry. Here we demonstrate that heterobifunctional

cross-linkers, while theoretically different from homobifunctional cross-linkers, need not be

considered separately in practice. We develop and then evaluate the impact of applying a

correct FDR formula for use of heterobifunctional cross-linkers and conclude that there are

minimal practical advantages. Hence a single formula can be applied to data generated

from the many different non-cleavable cross-linkers.

Introduction

Cross-linking mass-spectrometry (CLMS) has become an increasingly popular tool for analyz-

ing protein structures, protein networks and protein dynamics[1–4]. Recently the question of

what is the correct error estimation to use with CLMS has been addressed with the help of a

target-decoy database approach[5], based on previous work for cross-linked[6,7] and linear

peptides[8–11]. This approach to estimating a false discovery rate (FDR) of cross-links is based

on the assumption that the cross-linker used is homobifunctional, i.e. have the same reactive

group on either end. However, heterobifunctional cross-linkers are also used in the field, for

example 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)[12–15] or

succinimidyl 4,4’-azipentanoate (SDA)[15–21]. It is unclear how far these cross-linker choices

affect FDR estimation as they do link different amino acids and consequently one has to con-

sider different search spaces for each site of the cross-linker. Here, we provide some theoretical

insights on extending the target-decoy approach to FDR estimation when using heterobifunc-

tional cross-linkers, and assess whether it is necessary to use a different formula for FDR

estimation. Note that these considerations are for non-cleavable cross-linkers. While MS-

cleavable cross-linkers with independent identification of both peptides could be treated the

same way, by taking the two identifications as one combined identification, they are currently

handled differently for FDR estimation[22,23].

Results and discussion

Currently, the most commonly used cross-linkers are non-directional, e.g. when looking at a

mass-spectrum of a cross-linked peptide, there is no means to distinguish a cross-link that was
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formed as peptide A linked to peptide B, than from a cross-link formed as peptide B linked to

peptide A. But the most commonly used formula[24–28]

FDR �
TD � DD

TT
ð1Þ

is actually for directional cross-links[5]. Here TT is the number of observed target-target

matches (both cross-linked peptides come from the target database), TD is the number of

observed target-decoy matches (one linked site comes from the target database and one from

the decoy database) and DD stands for the number of decoy-decoy matches (both peptide

matches are from the decoy database). A correct formula for the more commonly used non-

directional cross-linker (e.g. BS3 or DSS) would be[5]:

FDR �
TDþ DD 1 � 2

TDDB

TDDBþ
ffiffiffiffiffiffiffi
TDDB
p

� �

TT
ð2Þ

This formula requires knowledge of the number of possible target-decoy pairs in the initial

search database (TDDB). However, the error made by using formula 1 approaches zero rela-

tively fast with increasing database size. Therefore in practical terms the directional formula is

also applicable to data of non-directional cross-linkers such as BS3 or DSS.

Directionality (or the lack of it) is not the only property of a cross-linker. Cross-linkers

can also be homobifunctional or heterobifunctional. For homobifunctional cross-linkers, any

peptide in the database that can react with one side of the cross-linker, can also react with the

other side. For heterobifunctional cross-linker that is not the case, which has consequences for

constructing the target and decoy search space. It leads to distinct databases (set of peptides or

residue pairs) for each side of the cross-linker. The formulas used previously, assume a homo-

bifunctional cross-linker.

A set of considerations (see supporting information S1 File) leads us to an FDR estimation

formula for non-directional, heterobifunctional cross-linkers:

FDR �
TDþ DD 1 � 2

TaTbþTaTabþTab TbþTab
2

Ta TbþTa TabþTabTbþ
Tab

2þTab
2

� �

TT
ð3Þ

Besides the observed target-target (TT), target-decoy and decoy-target (TD), and decoy-

decoy matches, it needs a set of parameters describing the search database (Table 1). As for-

mula 2 can be simplified to formula 1 in all practical terms we wondered how big an error

would occur when also using the much simpler formula for directional, homobifunctional

cross-linkers (formula 1), in place of formula 3.

Table 1. Formula symbols.

Symbol Meaning

Ta Target entries in the database linkable by side A of the cross-linker

Tb Target entries in the database linkable by side B of the cross-linker

Tab Target entries in the database linkable by both sides the cross-linker

Da Decoy entries in the database linkable by side A of the cross-linker

Db Decoy entries in the database linkable by side B of the cross-linker

Dab Decoy entries in the database linkable by both sides the cross-linker

TT Observed target target matches with

TD Observed target decoy and decoy target matches

DD Observed decoy-decoy matches

https://doi.org/10.1371/journal.pone.0196672.t001
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The error appears once matches with two decoy peptides are encountered. Before then,

one arrives at the same FDR value with formula 3 and 1. Up to this point we have a linear

problem (Fig 1a), as we can use the decoys only to model the hits with one wrongly identified

partner, and overlook any match to two wrongly identified partners. Statistically, these will

Fig 1. Random search spaces for false positive matches. To model matches where one correct and one incorrect

partner are combined requires considering a linear random match space (A). In contrast, when modelling matches

with two incorrect partners it requires construction of a quadratic random match space depending on whether the

cross-linker is homodimeric, non-directional (B), homodimeric, directional (C), heterodimeric, non-directional (D),

or heterodimeric, directional (E).

https://doi.org/10.1371/journal.pone.0196672.g001
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be rare, however they are not modeled until a significant number of decoy-decoy matches

are encountered.

The situation changes once matches with two decoys are encountered. Here we start model-

ing how likely we have hits with two wrongly matched partners. The random space for a non-

directional heterobifunctional cross-linker is somewhere between the directional and nondi-

rectional spaces for the homobifunctional cross-linker (Fig 1b). In fact the larger the non-over-

lap is between the two sites of the cross-linker—and therefore the smaller Tab and Dab are—the

closer it behaves like a directional, homobifunctional cross-linker and the simplification of for-

mula 1 applies.

The error made when using formula 1 for heterobifunctional cross-linkers is smaller than

the error made when using formula 1 for non-directional homo-bifunctional cross-linkers

(Fig 2). Already, at 200 entries (i.e. peptide, linkable residues or proteins, depending of what

level the FDR should be estimated on[5]) in the database, even for a 100% overlap between

both sides of the cross-linker (effectively resulting in a directional homobifunctional cross-

linker) the error of FDR estimation incurred by using formula 1 instead of formula 3 should

not exceed 1%. For example when cross-linking human serum albumin (HSA Uniprot:

P02768), which has 585 residues in the active form, of which 129 are Lysine, Serine, Threonine

or Tyrosine and the protein amino terminus, with SDA, the maximal error resulting from

using formula 1 should be less than 0.2% from the estimated FDR—i.e. 5% would be<5.01%

(Table 2). This error is usually smaller than the actual resolution of the FDR estimation[5].

Considering EDC in a second example: there is a 100% non-overlap between both sides of the

cross-linker (Lysine, Serine, Threonine, Tyrosine, and the protein amino terminus on one side

and Glutamic acid, Aspartic acid, and the protein carboxy terminus on the other side). An

Fig 2. Maximal error from using formula 1. Maximal expected error when using formula 1, exemplified for the

extreme case of every possible combination of links being observed. X-axis is the size of the database and Y-axis is the

maximal error. The green and blue line give the border cases of 0% overlap for both sides of the cross-linker and 100%

overlap respectively. The gray area represents possible errors for all cross-linker with partial overlap. Residue-level for

HSA cross-linked SDA (dark red dot) and HSA cross-linked with EDC (light red dot) are given as reference.

https://doi.org/10.1371/journal.pone.0196672.g002
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FDR calculation using formula 1 would result in the same estimate as using formula 3. At the

level of peptides, the situation would look slightly different. Taking HSA cross-linked with

EDC and a tryptic digest with four missed cleavages would result in 23 peptides exclusively for

one side (Ta), 31 peptides for the other side (Tb) and 329 peptides (Tab) that could be linked to

either side of the cross-linker. This would lead to a maximal error of around 0.45% (i.e. 5%

would become 5.023%).

In conclusion, from a theoretical point of view formula 3 is to be used for FDR estimations

when working with heterobifunctional cross-linkers. However, for all practical purposes, the

simpler formula 1 gives an approximation with an error smaller than the resolution of FDR

estimation.
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