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ABSTRACT: Hydrogen gas is rapidly approaching a global
breakthrough as a carbon-free energy vector. In such a hydrogen
economy, safety sensors for hydrogen leak detection will be an
indispensable element along the entire value chain, from the site of
hydrogen production to the point of consumption, due to the high
flammability of hydrogen−air mixtures. To stimulate and guide the
development of such sensors, industrial and governmental stake-
holders have defined sets of strict performance targets, which are yet
to be entirely fulfilled. In this Perspective, we summarize recent
efforts and discuss research strategies for the development of
hydrogen sensors that aim at meeting the set performance goals. In
the first part, we describe the state-of-the-art for fast and selective
hydrogen sensors at the research level, and we identify nano-
structured Pd transducer materials as the common denominator in the best performing solutions. As a consequence, in the second
part, we introduce the fundamentals of the Pd−hydrogen interaction to lay the foundation for a detailed discussion of key strategies
and Pd-based material design rules necessary for the development of next generation high-performance nanostructured Pd-based
hydrogen sensors that are on par with even the most stringent and challenging performance targets.
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To achieve the necessary dramatic reduction of greenhouse
gas emissions, alternative energy vectors that replace fossil

fuels are imperative. In this respect, hydrogen gas, H2, has been
identified as particularly attractive since it can be used to
generate electricity with water as the only byproduct.1

Therefore, large investments in a hydrogen economy are
imminent all over the globe, as, for example, in Europe, as part
of the Green Deal.2,3 Until very recently, one specific
technological challenge related to a widespread use and large-
scale distribution of hydrogen gas had received little attention in
the public debate, but came to broad attention due to a recent
accident at a Norwegian H2 fuel station

4hydrogen safety. This
event was a dramatic reminder of the high flammability of H2−
air mixtures at H2 concentrations above 4%, and thus made the
importance of robust and fast hydrogen safety sensors for leak
detection highly apparent. However, to date, no hydrogen
sensor technology exists that can meet all the hydrogen safety
sensor performance targets set by, for example, the US
Department of Energy (DoE),5 despite at least a decade of
research (Scheme 1).6−15

In this Perspective, we therefore first critically assess the
current state-of-the-art of high-performance hydrogen sensors
across all signal transducer platforms. With high performance,
here we mean sensors that have been developed with the aim
and/or potential to meet the US DoE hydrogen sensor

performance targets. This approach thus sets apart our focus
of discussion from other more conventional review articles on
the topic.10−16 In the second part of this work, based on the
literature survey, we conclude and propose that nanostructured
materials based on palladium (Pd) and its alloys are the signal
transducer materials known today with the best potential to
eventually meet all of the US DoE performance targets for
hydrogen safety sensors. To reach this conclusion, we
thoroughly discuss the fundamentals of Pd−H interactions to
identify the fundamental material properties that intrinsically
limit sensor performance. Based on this understanding, we then
derive rational material design rules and summarize a selection
of existing research efforts that already utilize some of those
rules. Last, we propose and discuss future research directions,
mainly focusing on the likely most challenging US DoE targets:
(i) sensor lifetime, (ii) operation temperature, (iii) absolute
operation pressure, (iv) operation in poisoning/deactivating
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conditions, and (v) at high humidity, in order to hopefully
inspire rapid development efforts in these directions.

■ HYDROGEN SENSOR STATE-OF-THE-ART WITH
RESPECT TO THE US DOE TARGETS

Response Time. The sensor response time target probably
constitutes one of the most challenging targets to meet, but also
one of the most obvious ones to rationalize why it is important
from a safety perspective.17 Thus, response time has been a key
topic in many studies, and we have found 553 relevant reports
from 1999 to 2020 that claim “fast hydrogen sensors”.18 In terms
of operating conditions, they range from room temperature
(RT) up to 500 °C. The highest temperatures are predom-
inantly reported for oxide-based sensors, where they are needed
to enable efficient ionic transport. This wide range of operation
temperatures, however, makes direct comparison of different
types of sensors somewhat difficult since, at least for the same
type of active material, higher operating temperatures will lead
to faster response times, as a consequence of the Arrhenius law.
Therefore, to allow relevant comparison, and to keep our focus
on high-performance sensors that operate at the toughest
conditions, we have opted to only include sensors that operate at
(or close to) RT in our survey. In this way, we are also directly
addressing the power consumption target, which intrinsically is
harder to meet for a sensor that needs to be maintained at high
operating temperature. Furthermore, to enable direct compar-
ison between different sensors, we use t90, that is, the time to
reach 90% of the sensor response for the new steady state after a
stimulus, as descriptor for response time. Finally, wherever
possible, we have used the response corresponding to a
hydrogen exposure to 0.1 vol.% (∼1000 ppm ≈ 1 mbar), i.e.,
the lower hydrogen detection limit in the US DoE performance
target. This is important not only from the perspective of
identifying this number as the ultimate goal, but also since many
experiments19−23 suggest that the response time depends on
both the absolute hydrogen concentration and the amplitude of
pressure change to be detected. In other words, a hydrogen
sensor generally will respond faster when exposed to a larger
concentration change. Hence, this fact has to be taken into
consideration when comparing the speed of different sensors,
and thus we only list sensors measured at hydrogen
concentrations equal to or less than 0.1 vol.% and those
reporting maximum 5 s response time when exposed to a H2
concentration higher than 0.1 vol.%. As summarized in Table 1,
only around 10% of the surveyed works (i.e., 58 out of 553)
when using the search string introduced above fall into our
category, and we make the following observations.

The first key point to note is that in terms of readout principle,
electrical sensors (resistance-based), which comprise two
electrodes connected to a transducer element that changes
resistivity upon interaction with hydrogen, are most abundant
among the systems with fast response according to our
definition. The typical transducer materials for this resistive-
based electrical sensors are Pd, metal oxides (e.g., SnO2, TiO2,
In2O3, ZnO, MoO3, and WO3) or a hybrid of Pd and a metal
oxide. This is no surprise, since this type of sensor is most mature
and has a simple, yet effective, construction. Interestingly,
however, from a commercial hydrogen sensor market
perspective, they are not the most common ones available.81

The second key observation is that in terms of active material,
the majority of fast sensors employ Pd and its alloys in various
forms. The third and maybe most striking finding is that all fast
hydrogen sensors employ some sort of nanostructured trans-
ducer element(s). This development has been enabled by the
parallel advances in nanoparticle synthesis and nanofabrication,
and it was triggered by Favier et al.’s seminal work on ultrafast Pd
nanowire array electrical hydrogen sensors from 2001,40 the first
sensor to achieve millisecond response time to 5 vol % H2
(Figure 1a).
However, if we take the US DoE’s most stringent response

time target (<1 s at 0.1 vol % H2), even to date, still only a few
works may have or do have reached this target at RT. For
example, Lee et al.’s porous Pd@CPPy conducting polymer24

and Zhang et al.’s SnO2@graphene27 hydrogen sensors may
have reached the 1 s target (Figure 1b). Specifically, Lee et al.
and Zhang et al. recorded 4.5 and 2 s response times,
respectively, at extremely low H2 concentrations of 20 ppm
(∼0.002 vol %) and 100 ppm (∼0.01 vol %) in air. Thus, as
discussed above, if measured at a higher concentration of 0.1 vol
%, these sensors may, in principle, respond faster than the 4.5
and 2 s reported at those low ppm and thus meet the US DoE
target. However, no explicit measurement is presented by the
authors. Similarly, there are some works that report response
times close to the 1 s at the 0.1 vol % limit. For example, porous
PdPt thin film (5 s at 1000 ppm),44 Pd ultrathin films (0.07 s at 2
vol %),34 and Pd nanowire arrays (0.075 s at 5 vol %).40 Thus, to
the best of our knowledge, Nugroho et al.’s recent work using
PdAu alloy nanoparticle@polymer nanocomposite materials
and Chen et al. Pt@SnO2 nanowires are the only work that
explicitly demonstrates a response time of ∼1 s at 1 mbar and
1000 ppm H2, respectively (Figure 1c).

19,29 However, we also
note that in Nugroho et al.’s work the response was obtained in
an idealized pure H2/vacuum environment. As we discuss in the
next chapter, this is a significant limitation since interference and

Scheme 1. US DoE Performance Targets for Stationary and Automotive Hydrogen Safety Sensors5
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Table 1. Fast Hydrogen Sensors in the Literature18 Operated at Room Temperature

active materialsa
transducer
platform

response time, t90
(s)

recovery time, t10
(s)

measured at
pressure

background
environment

LoDb

(ppm) ref

Pd NP@CPPy Electrical 4.5 27 20 ppm Air 0.1 24
Pd/Au thin film on pSiC Electrical 2.3 1.5 40 ppm Air 10 25
Pd@Al2O3/TiO2 Electrical 30 - 5 ppm N2 - 26
SnO2 NP@graphene Electrical 2 4 100 ppm Air 1 27
MoO3 NR Electrical 3 16 100 ppm Air - 28
Pt@SnO2 NR Electrical 0.3 87 1000 ppm Air - 29
PdAu NP @PTFE/PMMA Optical 1 5 1 mbar Vacuum 1 19
Sericin protein@ZnO NR Electrical 11 7 100 ppm Air 10 30
Pd-coated rare earth thin film Electrical 0.44 - 0.25 vol % Air 156 31
Ru@CPPy Electrical 12 32 100 ppm N2 0.5 32
Pd/ZnO NW Electrical 13 17 100 ppm Air 0.02 33
Pd ultrathin film Electrical 0.068 - 2 vol % N2 25 34
Thin film metallic glass/diamond/
ZnO NR

Electrical 20 35 100 ppm Air - 35

Pd@CNT film Electrical 7 89 311 ppm Air 0.89 36
GO nanostructures Electrical 11 36 200 ppm - - 37
Pd thin film Electrical 60 - 40 ppm N2 20 38
ZnFe2O4−Pd@rGO Electrical 18 39 200 ppm N2 50 39
Pd mesowire Electrical 0.075 - 5 vol % N2 5000 40, 41
Pd NG Electrical 1 - 0.4 vol % N2 - 42
Pt@WO3 ultrathin film Electrical 5 20 1000 ppm Ar 10 43
Porous PdPt thin film Acoustic 5 - 1000 ppm N2 3.7 44
Pd NP/Al2O3 NW Electrical 11 - 0.05 vol % Ar 500 45
Pd NP@CNT Electrical 14 - 0.05 vol % Air 500 46
Pd NW/Al2O3 Electrical 0.7 20 1 vol % Air - 47
La3+@ZnO NR Electrical 15 9 500 ppm Air 5 48
MoO3 NR/graphene Electrical 10 30 1000 ppm Air 0.5 49
Graphite/Pt NP/ZnO Electrical 10 - 1000 ppm Air 10 50
Pd NT Electrical 10 - 0.1 vol % Ar - 51
MoO3 NR Electrical 11 30 1000 ppm Air 1 52
Pt@polySi NB Electrical 11 570 0.1 vol % N2 5 53
Pd NW networks Electrical 11 - 0.1 vol % N2 - 54
Pd NP@Si nanomesh Electrical 12 16 0.1 vol % Air - 55
Pd NP on SiO2 Capacitive 1.2 10 1 vol % N2 10000 56
Pd NP Electrical 5 - 2.5 mbar Vacuum 100 57
PdAuCu NP Optical 0.4 5 40 mbar Vacuum 5 58
Pd NP@ZnO NR Electrical 18 130 1000 ppm Air - 59
TiO2@PPy Electrical 20 25 1000 ppm Air - 60
PdNi thin film Acoustical 20 - 0.1 vol % N2 - 61
Pd@SnO2 Electrical 2 - 10000 ppm Air 40 62
Pd NP@CNT Electrical 50 400 400 ppm Air - 63
Pd thin film Electrical 3 - 8000 ppm Air - 64
Pt NP@WO3 thin film Electrical 4.8 3.8 0.5 vol % N2 - 65
SnO2 NP@CNT Electrical 3 - 1 vol % Air - 66
POSS/Pd NP composite Optical 1 2 3 vol % Ar - 67
Porous Pd/TiO2 film Electrical 4 10 0.8 vol % Air - 68
Pd NP Electrical 1.5 7.5 2.2 vol % N2 100 69
PdCu NW Acoustical 4 4 1 vol % Air 7 70
Pd NP on SiO2 film Capacitive 1 11 4 vol % N2 - 71
Pd NP Electrical 2 10 2.2 vol % N2 100 69
PdNi NP Electrical 4.5 - 10 mbar Vacuum 500 72
Pd NG Electrical 1 - 5 vol % N2 200 73
Pt NP on Au microchannels Electrical 2 184 4 vol % N2 1000 74
Pd NS Electrical 2 5 5 vol % Ar - 75
Pd NP@ Si NW Electrical 2.3 - 5 vol % N2 - 76
Pd ultrathin film Optical 3 10 4 vol % Ar - 77
PdCuSi thin film Capacitive 4.9 - 3 vol % Air - 78
Pd@PUA NR Optical 5.1 - 4 vol % Air 1000 79
PANI/Sm2O3 nanocomposite Electrical 4 7 8 vol % Air - 80
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deactivation by other molecular species is critical to consider
when developing hydrogen sensors.
Cross-Sensitivity and Deactivation by Poisoning

Gases and Humid Conditions. The presence of other
molecular species than H2 in the sensor environment may
interfere with or completely disable the response of a hydrogen
sensor via either cross-sensitivity or poisoning/deactivation.
Cross-sensitivity here refers to how sensitive a sensor is toward
unwanted stimulus by another species than the to-be-measured
one and is thus related to selectivity. A perfectly selective sensor
only responds to the species that is to be detected (H2 in this
case), while being completely inert toward other species.
Practically, a sensor selectivity test is carried out by measuring
sensor response upon exposure to pulses of different species. On
the other hand, poisoning is sensor deactivation by one or
multiple species that themselves do not induce a sensor signal
but prevent H2 detection due to, e.g., surface blockage. For
certain systems, both phenomena can also occur at the same
time. To this end, CO, NOx, and sulfuric compounds are known
to poison Pd-based hydrogen sensors.19,58,82,83 In the US DoE
targets (Scheme 1), cross-sensitivity is a main factor to
determine the sensor accuracy while poisoning/deactivation is
to sensor lifetime, accuracy, and response time.
In Table 2, we summarize studies from the same pool of fast

hydrogen sensors surveyed above,18 which have investigated the
effect of interfering/poisoning species. It is clear that many
studies performed selectivity tests, but only a few investigated
poisoning/deactivation. Again, we see Pd as the main transducer
material, due to its inherent excellent selectivity toward

aliphatic/alcohol hydrocarbon species, such as CO, CO2,
C2H5OH, and CH4. Furthermore, we note that testing sensor
selectivity is particularly important for oxide-based sensors,
because unlike Pd, they do not have inherent selectivity toward
hydrogen gas. Therefore, oxide sensors usually employ a Pd
coating/capping to improve the selectivity, as, for instance,
shown for Pd-capped SnO2 nanorods

84 and TiO2 nanotubes.
85

Therefore, understanding the limiting factors of Pd−hydrogen
interactions is equally important for this class of sensors.
With regard to sensor poisoning/deactivation, we found that

this aspect is much less addressed than selectivity, despite its
high relevance for real applications. For example, in the case of
Pd-based sensors, species like CO, NOx, sulfuric acid, and H2O
strongly interfere with hydrogen detection due to strong
adsorption on the Pd surface, where they prevent H2
dissociation and further absorption.164−167 CO adsorption, for
example, leads to (much) slower response times.19,40,41,58,82,168

This, in turn, can also cause incorrect sensor readings that
underestimate hydrogen concentration if sensor saturation is
not achieved within the period of exposure.
A specific shortcoming of the handful of studies that do

investigate the effects of sensor deactivation/poisoning is that,
except for the work byHayashi et al.,96 none of the tests executed
in the works presented in Table 2 follows the protocol suggested
by ISO 26142, since all studies applied premixed H2 and
poisoning gases. The ISO 26142 protocol, however, suggests
exposure to poisoning species prior to a H2 pulse to test the
poisoning effect, since this is closer to a scenario in a real
setting.169 Furthermore, although explicitly mentioned in the

Table 1. continued

aCNT = carbon nanotubes, CPPy = 3-carboxylate polypyrrole, GO = graphene oxide, MEMS = microelectromechanical systems, NB = nanobelts,
NG = nanogaps, NP = nanoparticles, NR = nanoribbons, NS = nanosheets, NT = nanotubes, NW = nanowires, PANI = polyaniline, PMMA =
poly(methyl methacrylate), POSS = polyhedral oligomeric silsesquioxanes, PPy = polypyrrole, PTFE = polytetrafluoroethylene, PUA =
polyurethane acrylate, rGO = reduced graphene oxide. bLoD = limit of detection.

Figure 1. Fastest reported hydrogen sensors in the literature. (a) Pdmesowire array for resistive electrical readoutthe first hydrogen sensor reported
to achieve millisecond response time at 5 vol % H2. Adapted with permission from ref 40. Copyright 2001 The American Association for the
Advancement of Science. (b) Porous Pd nanoparticle-coated CPPy polymer hydrogen sensor using resistive electrical readout and exhibiting fast
response even at ultralow 20 ppm of H2 exposure. The numbers (C6−16) signify the length of the functionalized alkyl chain in the polymer. Adapted
with permission from ref 24. Copyright 2015 Royal Society of Chemistry. (c) PMMA/PTFE-bilayer coated PdAu nanoparticle array hydrogen sensor
using plasmonic optical readoutthe first sensor to explicitly demonstrate <1 s response to 1 mbar H2. Adapted with permission from ref 19.
Copyright 2019 Nature Publishing Group.
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Table 2. Selectivity and Poisoning Resistance Properties of Fast Hydrogen Sensors18

active materialsa
background
environment tested gases

test
typeb outcomes ref

Pd@SnSe ultrathin film N2 C2H5OH, C3H6O, H2O, NH3, O2 S Excellent selectivity 86
SnO2 thin film Air C3H8, CO, CO2, NH3 S Excellent selectivity to C3H8, cross-sensitive to the rest 87
PdO@ZnO/PAN NF N2 CH4, C3H8, CO S Excellent selectivity 88
WO3 thin film Air CH4, NO2 S Excellent selectivity 89
Pd/GO film Air H2S, NH3, NO2 S Fairly cross-sensitive 90

30−70% RH H Decreased response amplitude
PdAu@ZnO NP Air CH3CHO, CH4, C2H5OH, CO S Excellent selectivity to CH4, fairly cross-sensitive to the

rest
91

TiO2@PPy Air CH4, C2H5OH, C3H3, CO2, NO2 S Cross-sensitive to CO2, fairly cross-sensitive to C3H3,
excellent selectivity to the rest

60

5−95% RH H Decreased response amplitude
MoS2−Pt NP Air CO, NH3, NO2 S Excellent selectivity 92
MoS2 NS@ZnO thin film 93
Pd-WO3 thin film Air CH4, CO S Excellent selectivity 94
Heated Pd/SnO2 NP S Excellent selectivity 95

P Excellent resistance
Pd@SnO2 NR Air CH4, C2H2, CO S Excellent selectivity 84

24−60% RH H Decreased response amplitude, decelerated response time
ZnFe2O4−Pd@rGO N2 CO2, NH3 S Excellent selectivity 39

20−85% RH H Decreased response amplitude
PdCuSi thin film Air C6H19NSi2, H2S, NO2, SO2 P Decelerated response time 96
IRMOF-20 Air CO2, NO2 S Excellent selectivity 97

40−90% RH H Maintained response amplitude
Pt@SnO2 NR Air CH4, CO S Cross-sensitive 29

22−84% RH H Decreased response amplitude, decelerated response time
beyond 40% RH

Heated Pd@Si NW Air CO P Excellent resistance 98
8.5−43.4% RH H Excellent resistance

WO3−Pd2Pd−Pt
nanocomposite

Air CH4, CO2, NH3 S Excellent selectivity 99

Pd NP@TiO2 NT 85
Bi2O3 NR Air CH3OH, C2H3OH, C3H8, CO, H−

CHO, H2S, NH3, NO2, SO2

S Excellent selectivity to CH3OH, C2H3OH and NH3,
fairly cross-sensitive to the rest

100

Pd hollow NSh N2 CH4, CO, CO2 S Excellent selectivity to CO2, fairly cross-sensitive to the
rest

101

PdAuCu NP Air P Excellent resistance 58
PdNi thin film N2 H2S, NH3, SO2 S Fairly cross-sensitive to NH3, excellent selectivity to the

rest
61

PdCu NW Air 70
Fe/TiO2/ITO
nanocomposite

Air 20−80% RH H Maintained response amplitude 102

PdAu NP @PTFE/
PMMA

Air CH4, CO, CO2, NO2 P Excellent resistance 19

Pd@MoO3 NW N2 CH3CH2OH, CH3OH, CO S Excellent selectivity 103
ZnO nanostructures Air C2H5OH, CO, CO2, NO2 S Excellent selectivity to NO2, cross sensitive to C2H5OH,

fairly cross-sensitive to the rest
104

Nb2O5 NRo Air CH4, NH3 S Excellent selectivity 105
La3+@SnO2 NF Air C2H5OH, C4H10, C7H8, CO S Fairly cross-sensitive to C2H5OH, excellent selectivity to

the rest
106

Pd-WS2/Si thin film Air C2H5OH, CO, H2O, N2, NH3, O2 S Excellent selectivity 107
Pd@SnO2 NRo Air C2H2, CO, CO2 S Excellent selectivity 108
MoO3 NRo Air CH3OH, C2H5OH, C3H6O, C3H8O,

C7H8, CO
S Excellent selectivity 52

MoO3 NR/graphene 49
Pd−Pt@SiC thin film Air CO, H2S, NH3 S Excellent selectivity 109
Pd NP@mesoporous
WO3

Air C2H5OH, CO, H−CHO, NO2 S Excellent selectivity 110

Pd NP@GO N2 NO2 S Excellent selectivity 111
PdAu NR array Air 20−60% RH H Maintained response amplitude 112
Pd thin film/AlN 113
rGO/ZnO/Pt
nanocomposite

Air CH4, C2H4, C4H10, CO2, NH3, NO2 S Fairly cross-sensitive to CH4 and C2H4, excellent
selectivity to the rest

114

Pt NW Air CO, H2O S Excellent selectivity 115
15−50% RH H Decreased response amplitude

Pt NP@WO3 Air 35−87% RH H Maintained response amplitude 116
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Table 2. continued

active materialsa
background
environment tested gases

test
typeb outcomes ref

Thin film metallic glass/
diamond/ZnO NR

Air C3H6O, NH3 S Cross-sensitive 35

Mesoporous In2O3 Air CH2O, CH2Cl2, C2H5OH, C4H8O2,
C8H8, CO, NH3, NO3

S Fairly cross-sensitive to C4H8O2, cross-sensitive to
CH2O, excellent selectivity to the rest

117

Pt NP@WO3/SiO2 Air 17.8−71.5% RH H Maintained response amplitude, decelerated response
time

118

Heated Pd NP@graphene Air 50% RH H Excellent resistance 119
PdCuSi thin film Air CH4, CO2, He S Excellent selectivity 78
Pd strip@Si NM Air CO, H2S, NH3, NO2 S Fairly cross-sensitive to NO2, excellent selectivity to the

rest
120

20−80% RH H Decreased response amplitude
SnO2 nanostructures Air CH4, C2H5OH, CO S Cross-sensitive 121
NiO-Nb2O5 NP Fairly cross-sensitive 122
MoO3 NW Fairly cross-sensitive to C2H5OH, excellent selectivity to

the rest
123

CuO nanostructures Cross-sensitive 124
Pd NP@Si nanomesh Air C2H5OH, C7H8, CO, H2S, NO2 S Excellent selectivity 55

30−80% RH H Decreased response amplitude, decelerated response time
ZnO nanostructures Air CH4 S Fairly cross-sensitive 125

33−84% RH H Maintained response amplitude
Nb2O5 NRo Air C2H5OH, CO, NH3 S Cross-sensitive to NH3, fairly cross-sensitive to the rest 126
Pd strip@3D structure N2 CH4, CO2, O2 S Excellent selectivity 127
Pd/ZnO NW Air CH4, C2H5OH, C3H6O, CO S Excellent selectivity 33
La3+@ZnO NR Air C3H6O, NH3 S Fairly cross-sensitive 48
C@ZnO NRo Cross-sensitive 128
Pd-capped Mg thin film Air CO, CO2, N2, NO2, O2 S Excellent selectivity 129−132
PdMg NW networks 40−80% RH H Decreased response amplitude
PdPt NP@ZnO NRo
PdPt ultrathin film
Au-SnO2 NP Air CO S Cross-sensitive 133
PPy NW P Decreased response amplitude 134
Nb2O5 NW S Fairly cross-sensitive 135
PtRu/Nafion S Cross-sensitive 136
Pd NP@graphene Air NH3, NO2 S Fairly cross-sensitive 137

40−80% RH H Maintained response amplitude, decelerated response
time

Sm-CoFe2O4 NP Air CH4, C2H5OH, CO, CO2, NO2 S Fairly cross-sensitive to C2H5OH and CO, excellent
selectivity to the rest

138

20−60% RH H Increased response amplitude
Pd/V2O5 thin film Air CO, H2S, NH3 S Excellent selectivity 139

10−60% RH H Excellent resistance
Si NW Air CH3OH, CH4, C2H5OH, C3H6O,

C3H8O
S Excellent selectivity to CH4 and C3H6O, fairly cross-

sensitive to the rest
140

Pd@Pt core@shell NP Air C2H2, C3H8, CO, CO2, NO2, O2 S Excellent selectivity 141
33−92% RH H Decreased response amplitude, decelerated response time

beyond 46% RH
Pd thin film Air CH3OH, C2H5OH, C3H6O, CO,

NH3

S Fairly cross-sensitive NH3, excellent selectivity to the rest 142

PdPt NP@Si NW Air 40−80% RH H Decreased response amplitude 143
Cr2O3 NP@Nb2O5
nanostructures

Air C2H5OH, H2S, NH3 S Cross-sensitive 144

ZnCuO thin film Air CH4, C2H5OH, CO S Excellent selectivity 145
Pd NP@TiO2/PPy Air CH3OH, CO2, H2S, NH3 S Excellent selectivity 146
Pd NP@PANI/rGO Air CH3OH, CO2, H2S S Excellent selectivity 147
Pd NP@SnO2 thin film Air C3H8, CO, NH3 S Excellent selectivity 148
Pd NP@TiO2 NT Air 5−20% RH H Decreased response amplitude 149
CNT Air CH4, CO2 S Cross-sensitive 150
Pd NR Air CO2 S Excellent selectivity 151
Porous Pd NP@graphene Air C2H2, COx, N2, NO2, O2 S Excellent selectivity 152
SnO2 NP@graphene Air CO, NO S Excellent selectivity 27
PdNi NP@graphene Air CO, CO2, H2O, NO2, O2 S Excellent selectivity 153
Pt NP@TiO2 NT Air CO, O2 S Excellent selectivity 154

20−65% RH H Decreased response amplitude
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USDoE targets, the effect of H2O vapor (humidity) is also rarely
addressed. From the few studies that have investigated the
impact of humidity (cf., Table 2), it is clear that it adversely
affects the sensors by severely increasing the response time and
decreasing response amplitude. However, some progress has
been shown, for example, for Pd@Si nanowire98 and PdAu alloy
nanoribbon112 sensors, which perform excellently at low
humidity of 43% and 60% RH, respectively. The former owes
its resistance to humid conditions to localized self-heating, while
the latter employs an alloying effect to reduce H2O adsorption
on the Pd surface. However, none of the fast sensors have ever
achieved acceptable humidity resistance in up to 95% RH, as
required by the US DoE. Hence, investigating the impact of
humidity and developing humidity-resistant solutions can be
identified as a key challenge for future development in the area of
hydrogen sensors.
Dynamic Range, Limit of Detection, and Power

Consumption. When it comes to the dynamic range, the US
DoE demands hydrogen sensors to be able to detect hydrogen
concentration changes from 4 vol % (the lowest H2 gas
flammability limit in air) down to 0.1 vol % (Scheme 1). Overall,
this requirement is essentially reached by all the surveyed
hydrogen sensors, unlike response time and gas selectivity/
poisoning discussed above. For instance, as shown in Table 1, all
sensors exhibit detection limits well below the target of 0.1 vol %.
As state-of-the-art, detection limits down to single-digit ppm, or
even ppb, have been demonstrated.19,24,27,32,33,170 These sensors
are also capable of detecting hydrogen concentrations up to 4 vol
%, although the response is usually not linear across this range of
concentrations and rarely measured for both increasing and
decreasing concentration. The former limits the concentration
range across which the sensors exhibit high sensitivity (i.e., a
significant change in sensor readout per H2 concentration
change), while the latter creates history-dependent sensor
readout (i.e., hysteresis) and thus reduces accuracy within a
certain pressure range. Both these aspects are very pronounced

for pure Pd transducers, but strategies to alleviate these issues
have been established, as we discuss in detail below.
Lastly, regarding sensor power consumption, the most

stringent DoE target is 1 W (Scheme 1). A number of the fast
Pd-based sensors listed in Table 1 exhibit power consumption as
low as 1−100 nW40,78,171 and none beyond 1W.We note that all
of them are electrical sensors. On the other hand, no works
related to optical sensors report power consumption. However,
examining available components (e.g., LEDs and photo-
diodes172,173) reveals that similar low power consumption as
for electrical sensors can be expected.174,175 Hence, reaching the
US DoE power consumption standard seems feasible,
irrespective of readout principle and transducer material.

Lifetime, Accuracy, Operation Temperature, and
Absolute Operation Pressure. Operational lifetime is by
definition the expected useful life of a sensor under operating
conditions, while accuracy is the relationship between the sensor
readout and the actual H2 concentration.

17 Assessments of both
aspects are normally first carried out at a prototype or product
level.176 In the surveyed fast sensors,18 these two aspects have
therefore not been addressed explicitly. Nevertheless, some
efforts have been reported related to improving sensor lifetime
and accuracy. For instance, to improve lifetime, deactivation-
resistant sensors have been researched intensively, e.g., by
alloying and polymer coatings.19,58

For the accuracy aspect, the main strategy has been the
development of stable and deactivation-resistant transducer
materials with low cross-sensitivity toward other analytes. To
this end, sensor stability is usually examined by exposing the
sensor to a large number of hydrogen cycles or by intermittent
testing over a long period of time.58,91,112 To the best of our
knowledge, no specific recommendation for the minimal
number of cycles exists, but we would recommend at least 50
cycles for such tests, ideally more.
In terms of operation temperature, for obvious reasons, fast

sensors operating at high temperature (up to +85 °C, according

Table 2. continued

active materialsa
background
environment tested gases

test
typeb outcomes ref

PdAu thin film Air CH4, CO, O2 P Decreased response amplitude and decelerated response
time to CO, excellent resistance to the rest

155

Pd NP@ZnO NR Air CO, CO2, N2, NO2, O2 S Fairly cross-sensitive to NO2, excellent selectivity to the
rest

59

Cu-doped ZnO NRo Air CH4, C2H5OH, C3H8, O2 S Excellent selectivity to CH4 and C3H8, fairly cross-
sensitive to the rest

156

CNT Air CH4, C2H2, CO2 S Excellent selectivity 157
PdCuSi thin film Air CH4, CO, CO2 P Decreased response amplitude and decelerated response

time
158

Pd thin film Air Air, CH4, CO, CO2, H2O, He, N2 S Excellent selectivity 159
Pt/YSZ/ITO thin film Air C3H6, CO, NH3, NO, NO2 S Fairly cross-sensitive to C3H6, excellent selectivity to the

rest
160

ZnO NRo Air CH4, C2H5OH, C3H8, CO, O2 S Excellent selectivity 161
Pt doped-WO3 thin film Air 50−90% RH H Maintained response amplitude 162
Pd/TiO2/polySi thin film Air C2H4, C2H5OH, NH3 S Excellent selectivity 163
Pd NP@Si NW N2 N2O, NH3 S Excellent selectivity 76
Pd-coated rare earth thin
film

Air C3H8O, CO, H2S S Excellent selectivity 31

Pd mesowire Air CO P Decelerated response time 40
N2 Ar, CH4, CO, H2O, O2 S Excellent selectivity 41

aCNT = carbon nanotubes, GO = graphene oxide, ITO = indium tin oxide, PAN = polyacrylonitrile, PANI = polyaniline, NF = nanofibers, NM =
nanomembranes, NP = nanoparticles, NR = nanoribbons, NRo = nanorods, NS = nanosheets, NT = nanotubes, NSh = nanoshells, NW =
nanowires, PANI = polyaniline, PPy = polypyrrole, rGO = reduced graphene oxide, YSZ = yttria-stabilized zirconia. bH = humidity test, P =
poisoning test, S = selectivity test.
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to the Scheme 1) are much easier to find. However, we could not
identify any works that explicitly examined the long-term
stability of a sensor that operates at high temperature for a long
period of time. This might not be an issue for metal-oxide based
sensors, but for sensors employing, for example, high-aspect
ratio Pd nanostructures, like nanowires,20 nanostrips127 and
nanogaps177 or polymer nanocomposites, such as PMMA/
PTFE-coated Pd nanodisks19 and Pd nanoparticles coated by
CPPy,24 high operation temperatures are likely to affect the
shapes of the employed nanostructures and thus sensor
performance. On the other end of the temperature scale, at
low operational temperatures below RT, a small number of
studies exist, reporting, for example, an amperometric proton-
conducting clathrate hydrate based sensor (down to −20
°C),178 a proton-conducting glass (−30 °C),179 an optical
sensor based on carbon nanotubes (−120 °C),180 a Pt-doped
WO3 film (−50 °C), and a tapered fiber optic solution using a Pd
thin-film as signal transducer (−196 °C).181 All these works
have in common very long response times on the order of
minutes, with the exception of Bev́enot et al., who utilized the
local heating generated by the high-power laser diode used as
light source in their Pd thin-film tapered fiber optic hydrogen
sensor, which successfully enhanced the response time to 5 s for
4 vol % H2 at −60 °C.181
Hydrogen sensor response variance at different absolute

(atmospheric) pressures is another aspect that has not been
scientifically addressed so far, since all studies we have surveyed
have carried out their experiments at 1 atm (∼101 kPa). This is
surprising since hydrogen sensors in, for example, automotive
applications are very likely to be operated at varied altitudes.7 To
date, altitude or similar tests are first carried out at the prototype
level and have a strong influence of the absolute atmospheric
pressure on sensor response, even when the hydrogen partial
pressure is kept constant.176,182We therefore advocate such tests
taking place already at an earlier stage, when the active
transducer materials are developed.
As an intermediate conclusion, it is clear that existing

hydrogen sensors fulfill several of the US DoE performance
targets, i.e., detection limit, selectivity, and power consumption.
At the same time, a number of highly challenging targets remain
unreached and relate to (i) response time, (ii) performance
under poisoning/deactivation conditions, and (iii) in high
humidity, operation at (iv) low/high temperature, and at (v)
different absolute atmospheric pressure, where the last target (v)

remains completely unaddressed. In other words, hydrogen
sensor performance at realistic application conditions, rather
than idealized laboratory environments, has rarely been
addressed. In terms of active material, (nanostructured) Pd is
most widely used due to its intrinsically high selectivity toward
hydrogen combined with the potential for fast response (cf.,
Tables 1 and 2). Hence, to develop hydrogen sensors that are
able to satisfy all of the stringent US DoE requirements and to
alleviate the shortcomings of Pd as active material, one has to
understand the fundamentals of the H−Pd interaction, as well as
the opportunities offered by nanostructuring. Therefore, in the
second part of this Perspective, we discuss these fundamentals
and identify design rules for ultrafast, highly sensitive, poisoning-
and humidity-resistant, and hysteresis-free hydrogen sensors.

■ HYDROGEN−PALLADIUM SYSTEM

Fundamentals of Pd−H Interactions and Their
Implications for Hydrogen Detection. Pd enables an
essentially barrierless hydrogen molecule (H2) dissociation
into chemisorbed hydrogen atoms (H) on its surface at ambient
conditions (Figure 2a). Once these atoms have been formed,
they rapidly saturate the surface and diffuse into interstitial
lattice sites in the subsurface region, and finally into the bulk of
the system at hand. Upon diffusing, the H atoms face an energy
landscape (Figure 2a), which is characterized by energetically
more favorable subsurface sites compared to bulk interstitials.
Consequently, subsurface sites can be assumed occupied,
regardless of the hydrogen concentration in the bulk. To this
end, the extension of this subsurface hydrogen layer has been
proposed to be between 0.3 and 1 nm.183−186 Furthermore, it
has been shown that the presence of hydrogen in the subsurface
layer leads to the generation of lattice strain, which can influence
the thermodynamics of the sorption process in nanoscale
systems, such as nanoparticles.
Since the surface is the first and last contact of a hydrogen

molecule upon interaction with Pd, it plays a key role in the
sorption processes. Hence, any modification of the physical and
chemical properties of the surface, such as impurities and
strongly adsorbed molecules, or atomic rearrangement due to,
e.g., refaceting or elemental surface segregation in an alloy, will
to a certain degree affect the sorption processes by changing the
overall energy landscape.19,187−194 Furthermore, engineering
the surface-to-volume ratio (SVR) of nanostructures provides a
route to modify the sorption kinetics, where smaller structures

Figure 2. Palladium−hydrogen interaction. (a) Energy landscape encountered by a hydrogen molecule, H2, upon interaction with a Pd surface. In the
first step, the H2 molecule dissociates on the Pd surface. In the next step, the formed hydrogen atoms, H, diffuse into the subsurface region and occupy
subsurface interstitial lattice sites. Subsequently, H diffuses interstitially further into the bulk. (b) Schematic of the different stages of Pd hydride
formation. In the low hydrogen pressure regime, H is highly diluted in a solid solution (α-phase), locally expanding the Pd host lattice. Increasing the
equilibrium concentration of H in the lattice, as a consequence of a hydrogen pressure increase in the environment, eventually creates sizable attractive
H−H interactions via strain fields and electronic interactions that promote the formation of hydride (β-phase) nuclei. The growth of the β-phase then
continues until the entire Pd host is transformed, and it is accompanied by significant expansion of the lattice. (c) Schematic of pressure−composition
isotherms of the Pd−hydrogen system and the corresponding phase diagram. The equilibrium plateau pressure, at which the α- and β-phases coexist, is
temperature dependent and different for hydride formation and decomposition, due to hysteresis. The width of the plateau and the width of the
hysteresis shrink for higher temperatures until they eventually vanish at the critical temperature, TC.
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generally exhibit faster response.19,23,195 However, for particles
larger than 5−10 nm, this is not the consequence of an altered
energy landscape due to, e.g., lattice strain,196 but rather due to
shorter diffusion lengths for H to reach the core of the
structure.197,198

Once the surface is saturated with hydrogen, which for Pd
occurs at very low pressures,199 H species start occupying
interstitial sites of the Pd host lattice to form a solid solution,
which is known as α-phase (Figure 2b). In this regime, H is
highly diluted and H−H interactions are very weak. Thus, the
H/Pd ratio in the system increases proportionally to the square

Figure 3. Different strategies to accelerate sensor response times. (a) Reducing the diameter of PTFE-coated PdAu alloy nanoparticles reduces
response times across a wide range of applied H2 pressure steps for this plasmonic optical sensor. Adapted with permission from ref 19 Copyright 2019
Nature Publishing Group. (b) Kinetics of hydrogenation of three types of colloidal Pd nanocrystals with different shapes and thus varying number of
vertices. Pdmix (24 vertices) responds fastest, followed by Pdcube (8 vertices) and Pdoct (6 vertices), highlighting the role of vertices as nucleation site for
the β-phase. Adapted with permission from ref 193. Copyright 2019 Nature Publishing Group. (c) Kinetics of as-deposited and annealed Pd thin films
upon hydrogenation. After annealing, the kinetics become 40 times slower due to significantly decreased density of grain boundaries in the film.
Adapted with permission from ref 232. Copyright 2015 Elsevier. (d) Top: Temporal response of an optical hydrogen sensor comprising PdAu alloy
nanoparticles with different Au contents. Increasing the Au content up to 25 at. % accelerates the kinetics. Adapted with permission from ref 231.
Copyright 2015 American Chemical Society. Bottom: DFT-calculated hydrogen absorption energy landscape for neat Pd and a PdAu alloy. Note that
for hydrogen diffusion from position O1 (surface) to O2 (subsurface), the PdAu alloy exhibits a lower activation barrier, explaining the faster
absorption kinetics of the alloy observed in the experiments. O and T stand for octahedral and tetrahedral sites, respectively. The schematic shows the
model used for calculation. Adapted with permission from ref 191. Copyright 2018 National Academy of Sciences of the United States of America. (e)
Top: Temporal response of neat Pd nanoparticles to hydrogen with and without a 30 nm PTFE coating. Application of the coating reduces the
response time by a factor 2. Bottom: DFT calculations reveal that the polymer coating reduces the activation barrier for H diffusion from the surface to
a subsurface site and in this way accelerates sensor response. Adapted with permission from ref 19. Copyright 2019 Nature Publishing Group. (f) Top:
Schematic of an electrical Pd film sensor that employs a resistive Pt heater for sensor operation at elevated temperature. Bottom: Response times of the
sensor as a function of applied voltage showing the dramatic decrease of response time as temperature is increase up to 150 °C. At temperatures higher
than 150 °C, the response time increase due to the counterbalance from hydrogen desorption. Adapted with permission from ref 233. Copyright 2012
Elsevier.
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root of pressure according to Sieverts’ Law.200 Upon increasing
the hydrogen pressure, the H-concentration increases propor-
tionally, such that attractive H−H interactions (both electronic
and via lattice strain fields199) become appreciable. This
eventually leads to the nucleation of the hydride (β-phase) at
the two-phase equilibrium pressure (the “plateau”), where both
α+β phases coexist as the system undergoes a first-order phase
transformation (Figure 2b). Since the β-phase has a larger lattice
constant than the Pd host (4.03 vs 3.89 Å),201,202 this process is
accommodated by significant lattice expansion, and the
corresponding lattice strain is the origin of hysteresis between
hydride formation and decomposition at constant temperature
(Figure 2c).183,184,203,204

From a sensor perspective, the processes outlined above quite
dramatically change both the electronic and optical properties of
Pd and thus constitute the mechanism of hydrogen detection
based on Pd, and explain Pd’s intrinsically high hydrogen
selectivity.8,11 Specifically, for electrical hydrogen detection, the
hydrogen absorption induces higher resistivity21,205 or, in the
case of discontinuous Pd nanostructures/films, expands their
volume, which in turn forms new electrical contact points within
the film/structures, resulting in reduced resistivity.40,41 For
optical hydrogen detection, the optical contrast generated due to
hydrogen absorption into the host is measured (i) as a change in
transmittance through a thin Pd film where it obeys the Beer−
Lambert Law,206,207 (ii) as a shift of the surface plasmon
resonance (SPR) frequency of a thin Pd film,77 or (iii) as a
spectral shift of the localized surface plasmon resonance (LSPR)
wavelength of Pd nanoparticles or nanostructures.208,209 Also,
indirect optical readout schemes based on inert plasmonic
nanoantennas adjacent to a Pd nanostructure184,210,211 or
solutions based on nanostructured perfect absorbers212,213

have been reported. They all have in common that the optical
response is linearly correlated with the H/Pd ratio of the
system.207,209,214

Another aspect of importance for hydrogen sensing with Pd is
the two-phase coexistence plateau and the hysteresis between
hydrogen absorption and desorption in this regime because it
creates a number of problems. First, since the phase trans-
formation to the hydride phase, and thus the generation of a
large optical contrast or electric conductivity change, occurs in a
very narrow pressure range, sensitivity on either side of the phase
transformation is rather low. This is problematic, since at room
temperature, hydride formation in Pd occurs at ∼20−30
mbar,199 which means that sensitivity below (and above) this
pressure will be low. Second, hysteresis renders the sensor signal
to depend on the history of the hydrogen pressure, i.e., on which
branch of the hysteresis loop the sensor is located at a specific
point in time. This may create ambiguity in the sensor reading,
which severely hampers its accuracy.
Effects of Nanostructuring. In the limit of (ultra) thin

films, nanostructures and nanoparticles, the SVR increases and
factors like subsurface or low-coordination sites start to play an
increasingly important role.193,198 A second aspect is the impact
of lattice strain, induced either by surface tension effects in the
sub-10 nm particle size range195,215−219 or by the formation of a
subsurface hydride layer in (larger) nanocrystals,183,184,203 or
along grain boundaries of polycrystalline nanoparticles.220,221

These strain effects directly affect hysteresis and render it
particle size dependent.183,184,203,216−218,222−224 Similarly, in
thin film systems, hysteresis can be suppressed by reducing the
film thickness down to a few nanometers, due to clamping effects
at the Pd−substrate interface.225−228

Another interesting effect observed in ultrasmall Pd nano-
particles, as well as in thin films with nanosized grains, is an
apparent increased and decreased H solubility in the α- and β-
phases, respectively.218,229 Together, these two effects give rise
to a narrowing of the two-phase coexistence plateau and have
been explained by an increasing subsurface-to-bulk site ratio
(nanoparticles)223,224 and by the abundance of grain boundaries
(thin films),229 based on the fact that subsurface and grain
boundary sites are likely to be fully occupied before the bulk, due
to their favorable energetics.
As a final important trait of Pd nanostructures in general, and

of Pd nanoparticles in particular, we note that the consequences
of lattice expansion upon hydrogenation are not as severe as for
bulk systems, where it is the main cause for embrittlement,
cracking, and peeling when bound to a substrate, which in turn
leads to rapid sensor aging and failure. Added to the fact that
hydrogenation-induced defects are reversible during the reverse
phase transformation in Pd nanoparticles,230 nanostructured Pd
hydrides promise potential for the improvement of sensor
durability and thus sensor lifetime.

■ RATIONAL DESIGN OF NANOSTRUCTURED
PD-BASED HYDROGEN SENSORS

Accelerating Response Times. In the quest to increase
sensor speed, several different strategies have been tested and
reported in the literature. The first one is based on the effect that
increasing the SVR leads to faster sorption kinetics198 (and thus
response/recovery time) because (i) a larger surface area
accelerates the hydrogen atom flux into the Pd and (ii) a smaller
volume reduces diffusion path length to the core, as well as the
total number of H atoms that need to be supplied to reach the
new equilibrium state. This effect was first quantified in a
fundamental study by Langhammer et al. for small (<5 nm) Pd
nanoparticles.195 In the context of sensors, this effect has been
demonstrated on two examples using different nanostructures
and sensing principles, namely, Pd nanowires with electrical
readout23 and PdAu alloy nanoparticles with optical readout
(Figure 3a).19,231 In both studies, clear proportionality between
higher SVR and faster response time across all hydrogen
concentrations (0.01−10 vol %) was found. By setting aside
other factors influencing the kinetics, this finding suggests
nanostructured Pd as the concept of choice for the design of
ultrafast hydrogen sensors.
A second strategy to improve hydrogen sorption kinetics in

nanostructured Pd is related to engineering its morphology, such
as faceting and grain boundaries. For the former, a number of
recent in situ investigations have shown that vertices of colloidal
Pd nanocrystals act as hydride nucleation sites.234−236 Building
on this insight, a recent study by Johnson et al.193 employed
single-crystalline Pd nanocrystals with three different types of
faceting, and thus different number of vertices, but with similar
surface-to-bulk atom ratios achieved by adjusting size, i.e.,
octrahedral, cubic, and truncated cubic shape, which possess 6,
8, and 24 vertices, respectively (Figure 3b). By means of in situ
XRD measurements, they showed that truncated cubic nano-
particles respond fastest when exposed to 5 vol % H2, followed
by the cubic and octahedral particles. Due to very similar
surface-to-bulk-atom ratios of all particle types, they conclude
proportionality between response time and number of vertices,
highlighting the role of nanocrystal shape in Pd hydrogenation
and thus for sensor applications of single crystalline Pd
nanoparticles. For polycrystalline nanostructured Pd on the
other hand, morphology engineering offers a handle to improve
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response time since grain boundaries have been reported to act
as rapid diffusion paths for hydrogen absorption due to the
associated lower diffusion activation energy compared to
interstitial diffusion within the crystal.232,237−241 Specifically,
to a stepwise 6 mbar H2 exposure Delmelle et al. demonstrated
40 times slower response of an annealed (5 min at 350 °C)
polycrystalline 150 nm Pd thin film compared to the as-prepared
one (Figure 3c), due to significant recrystallization and
corresponding reduction of total grain boundary length (40%)
and defect density (30%), and average grain size increase from
20 to 49 nm.232 However, we also note that other reports
conclude an opposite effect of grain boundaries, i.e., that at very
lowH2 concentrations grain boundaries act as traps for H, which
was reported to decelerate kinetics.240,241

Beyond size reduction and morphology engineering, alloying
of Pd provides yet another strategy to tackle the response time
challenge, since characterization of the sorption kinetics of
nanostructured Pd-alloy systems consistently reveals faster
response than for the pure Pd counterparts, as first reported
for PdNi alloy thin films242 and PdAu alloy nanoparticles
(Figure 3d).231 Specifically for the latter system, systematic
measurements revealed that increasing the Au concentration in
the alloy results in a proportional acceleration of the hydrogen
absorption process. These findings are confirmed in multiple
studies using PdAu alloys in various forms,19,243,244 as well as for
other alloys, e.g., PdAg245 and even the ternary system
PdAuCu.58 To this end, a recent DFT study by Namba et al.
revealed that alloying Pd with Au lowers the energy barrier
between surface and subsurface sites, which is responsible for the
observed accelerated absorption (Figure 3d).191 This is in good
agreement with experimental works that investigated the
apparent activation barriers for hydrogen sorption in PdAu19

and PdCu nanoparticles.58

A fourth way to tailor the energy landscape for hydrogen
sorption to accelerate response times is through interfacing the
Pd surface with another material, such as a polymer or a metal−
organic framework (MOF). This effect was first reported by
Ngene et al. in 2014, who upon sputter-deposition of a 15 nm
thin PTFE layer onto PdAu thin films found significantly faster
hydrogen absorption.246 XPS analysis revealed the formation of
Pd−CFx bonds at the PdAu/PTFE interface, which was
proposed to create favorable adsorption sites for hydrogen.
Further insights on the mechanism of the enhancement effect
were later presented by Nugroho et al.,19 who revealed by DFT
calculations on the example of Pd and PdAu alloy nanoparticles
that the presence of the PTFE layer, via bond formation, reduces
the activation barrier for H to migrate from a surface site to a the
subsurface site (Figure 3e). Interestingly, in the same study a
similar acceleration effect was also observed for another and
chemically different polymer, PMMA, although with slightly
lower barrier reduction. These two examples hint at the
genericity of the effect, which appears to be governed by bond
formation between the Pd surface and the polymer, with specific
barrier reduction depending on the polymer chemistry at hand.
However, we also note that the polymer thickness has to be
considered when designing such a coating. When it is too thick,
the response time may deteriorate due to the increasing
contribution of molecular H2 diffusion through the polymer to
the overall response.247,248

Similar to polymer coatings, also Pd coated with MOFs has
been reported to feature superior hydrogen sorption kinetics.
For example, Koo et al. found an improvement by a factor 20
when coating their Pd nanowires with a thin ZIF-8 layer and

testing their sensor in air.20 They put forward the filtering of O2
by the MOF as the reason because O2 is known to catalytically
react with H2 on the Pd surface to form water and thus
“compete” with hydrogen sorption. However, we argue that this
conclusion cannot explain similar acceleration effects observed
when other Pd@MOFs were exposed to hydrogen in N2
environment or even in pure H2. For example, earlier work by
Li et al. showed that a Pd nanocube@HKUST-1 system
responds faster compared to its uncoated counterpart in pure
H2.

249 A followup DFT study by Nanba et al. then revealed that
the MOF coating leads to an increased diffusion rate of
hydrogen due to hydrogen adsorption destabilization induced
by the Cu atom in the MOF.250 They also propose a steric effect
to take place, which creates a new hydrogen diffusion path
through a Pd5Cu octahedral site. Hence, their findings hint at a
similar generic enhancement effect for MOFs as for polymer
coatings. As a final comment, we note that coating with thin
polymer or MOF layers provides an effective way to accelerate
the Pd-based sensors’ response not only through modification of
absorption energy landscape but also via filtering of unwanted
species that may poison or deactivate the sensor, as we discuss in
detail below.251

To start the discussion of the last reported strategy for
response time enhancement, we remind ourselves that hydrogen
sorption in Pd is an activated process and therefore depends on
temperature. Thus, heating a Pd-based sensor, for example,
using an external heater, can accelerate its detection speed. This
strategy is particularly important when the sensors are to be used
in a low temperature environment. With a hydrogen absorption
activation energy of 60−80 kJ/mol H2 for pure Pd,

19,58,192,196 a
mere 10 K temperature increase from RT will roughly double
the sensor speed. This approach has been demonstrated by
Yoon et al. by positioning the active Pd on a Pt microheater,
which locally heats the active sensing area up to 150 °C (Figure
3f).233 On the downside, however, heating will also reduce the
absolute amount of hydrogen absorbed into the system, and
therefore lower sensor signal amplitude for a specific hydrogen
pressure change, meaning that also the limit of detection will be
reduced.
From the above summary of different factors that affect Pd-

based sensor response times, it is clear that the surface state of Pd
is particularly important. Therefore, as the last point, we want to
highlight here an aspect of high relevance when using colloidal
Pd nanocrystals for hydrogen sensors, namely, that they
inherently come with a surfactant (or similar) coating, applied
during the synthesis in solution to both promote/block growth
of specific surface facets and to prevent aggregation. To this end,
in recent studies, the impact of the presence of the widely used
ligands cetyltrimethylammonium bromide (CTAB), cetyltrime-
thylammonium chloride (CTAC), and tetraoctylammonium
bromide (TOAB) has been investigated in detail. As the key
conclusion, it was shown that their presence in the Pd surface
increases response times significantly, as a consequence of an
increased apparent activation barrier for hydrogen absorp-
tion.192,194 At the same time, in line with the accelerating effect
of a polymer coating discussed above, Stolaś et al. showed that
using the polymeric colloidal stabilizer poly(vinylpyrrolidone),
PVP, instead accelerates the kinetics.192 Similarly, post-synthesis
removal of surfactants from the nanoparticles has been shown to
amend the negative effects of their presence on the Pd
nanoparticle surface.252

Suppressing Hysteresis. The inherent hysteresis between
hydride formation and decomposition in pure Pd significantly
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reduces both dynamic range and accuracy of hydrogen sensors.
Nevertheless, this challenge has not been addressed until rather
recently by alloying Pd with other metals, including
PdAu,19,231,243,244,253 PdCu,58 PdNi,242 PdTa,254 and ternary
PdAuCu58 and PdCuSi alloys.255 Depending on the atomic
radius of the alloyants, two types of pressure−composition
isotherms exist. First, for alloyants with an atomic radius larger
than Pd, e.g., Au, hysteresis shrinks symmetrically and
disappears at room temperature (RT) at ca. 25 at % Au, since
the critical temperature, TC, at this concentration has been
lowered to below RT (Figure 4a).256 Mechanistically, this can be
understood as the Au atoms, which occupy Pd lattice sites,
slightly expanding the Pd host. Thereby, they reduce the strain-
induced energy barrier created upon hydrogen sorption, and
thus hysteresis.256,257 To this end, Wadell et al. have shown that
alloying Pd with 25 at % Au reduces sensor uncertainty to below
5% across the 1−1000 mbar H2 pressure range,

231 which is on
par with the corresponding performance target by the US DoE.
Similarly, alloying with metals with smaller atomic radius than
Pd, e.g., Cu58 and Ni,242 also suppresses hysteresis at ca. 25 at %
alloyant concentration. However, due to a now slightly
contracted Pd lattice that will increase the strain-induced energy
barrier to form the hydride, hydride formation in this case occurs
at higher pressures compared to neat Pd hydrogenated at the
same temperature (Figure 4a).258,259 From a sensing perspec-
tive, this leads to a lower sensitivity in the low hydrogen partial
pressure regime.209,255

Another way to suppress hysteresis is through size reduction
of the system to the regime below 10 nm. This was explicitly
demonstrated by Langhammer et al., who systematically
measured optical pressure−composition isotherms of Pd NPs
of different size across the range between 1.8 and 8 nm and
found that hysteresis vanishes for a size below ∼3 nm at 30 °C
(Figure 4b).215−217,224 Mechanistically, this can be understood
through the so-called metal@hydride core@shell model. In this
model, during the absorption (desorption) process, the hydride
(metal) formation induces expansion (contraction) at the
surface, while the metal (hydride) core shrinks. The volumetric
difference between the two phases and the distortional

deformation formed during the phase transformation lead to a
mechanical stress at the interface of the two phases, which causes
hysteresis. In sufficiently small nanoparticles, the corresponding
strain energy is reduced and hysteresis therefore disappears.224

Similarly, also for a thin Pd film, hysteresis suppression can be
achieved by reducing the thickness down to 5 nm as shown by
Lee et al.227 The suppression is due to the clamping effect by the
support, which becomes more pronounced in an ultrathin Pd
layer. This clamping restricts the Pd lattice such that it is
energetically (too) costly to form the β-phase. Furthermore, the
clamping effect depends on the support material,226 and it can be
intensified, for example, by a Ti buffer layer grown between the
substrate and the Pd film.225

As the last strategy to reduce or completely avoid hysteresis in
a sensor application, local heating of the active sensor area to
above TC can be applied to retain the system in the extended
solid-solution state. For this purpose, Fisser et al. have provided
a guideline for the corresponding hydrogen pressure and
operational temperature required to retain a Pd thin film in
the α-phase (Figure 4c).260 For bulk Pd, TC is 295 °C, while for
small nanoparticles it decreases proportionally to their size.203

As previously mentioned, however, limiting the sensing
operation to the α-phase leads to a reduced limit of detection.

Protection against Poisoning Species and Humidity.
Any surface at ambient conditions is covered by multilayers of
molecular species present in air, including H2O. Since the state
of the surface is critical for any Pd-based hydrogen sensor, this is
problematic. Among molecular species present in ambient air,
CO chemisorbs strongly on Pd surfaces and thus effectively
blocks it for H2 dissociation (other species with similar effect are
NOx and SOx

83,167). This, in turn, significantly slows, or even
completely prevents, hydrogen absorption into Pd. Therefore,
finding ways to eliminate such poisoning effects is very
important to ensure long-term reliable sensor operation. To
this end, it is well-known that alloying Pd with Cu reduces the
affinity of Pd surfaces to CO.261−265 Hence, this concept has
been successfully used in hydrogen separation membrane
technology,263,266 and since rather recently also in hydrogen
sensing. Mak et al. employed Pd70Cu30 alloy thin films as optical

Figure 4. Strategies to suppress hysteresis in Pd. (a) Optical isotherms of PdAu (left) and PdCu (right) alloy nanoparticles measured at 30 °C. As the
alloyant concentration increases, hysteresis shrinks and the α+β coexistence region narrows. Insets: Schematic of the lattice expansion and contraction
induced by Au and Cu atoms, respectively. Adapted from refs 231 and 58. Copyright 2015 and 2019 American Chemical Society. (b) Hysteresis width,
defined as ln(pabs/pdes), of small Pd nanoparticles in the sub-10 nm range, plotted as a function of their radius. Inset: Schematic showing the definition
of pabs and pdes. Adapted from ref 224. Copyright 2010 Elsevier. (c) Phase diagram of Pd hydride as a function of H2 pressure/concentration and
temperature. Hysteresis can be suppressed by operating the Pd-based sensor in a state of solid solution, denoted by the blue-shaded area. Adapted from
ref 260. Copyright 2018 Elsevier.
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hydrogen sensor, however, with the main aim to reduce O2
interference.267 Then, Darmadi et al. presented a systematic
study of optical PdCu alloy nanoparticle sensors with focus on
CO poisoning, which showed that incorporating as little as 5 at
% Cu to Pd effectively eliminates CO poisoning even at 5000
ppm CO in air (Figure 5a).58 Interestingly, they also found that
the addedCuworks synergistically when combined with another
alloyant, i.e., a ternary PdAuCu alloy resulted in a CO-resistant
and hysteresis-free sensor. Unfortunately, however, with regard
to other poisoning gases such as NO2, this alloying strategy
turned out to be insufficient.58

An alternative and potentially more broadly applicable
strategy is the use of the molecular filtering properties of
polymers or MOFs, when applied as coatings to a Pd-based
active sensor surface. The efficiency of this approach is then
directly dependent on the selectivity of the “filter” and the
diffusivity of H2 within it. If the latter is low, even if good
protection is obtained, sensor response time will be dramatically
increased. As an example for a polymer system, PMMA exhibits
high H2 permeability, while diffusivities of CO and NO2 are very
low.269 Therefore, PMMA coatings have been used successfully
to protect hydrogen sensors from these species.19,82,168,247,248

For example, Nugroho et al. have demonstrated that a PMMA
coating as thin as 30 nm is sufficient to enable the operation of a
PdAu alloy optical hydrogen sensor in 30,000 ppm CO2, 1000
ppm CO, and 100 ppm NO2 mixed in synthetic air (Figure 5b).
Furthermore, bulk-processed Pd@PMMA nanocomposite
hydrogen sensors have been demonstrated to exhibit exceptional
long-term stability at ambient conditions.247 Finally, PMMA
also possesses excellent selectivity toward O2,

251 a trait that is
shared with MOFs that have started to find application in
hydrogen sensors as molecular filtering and protection layers,
e.g., ZIF-8.20,82,270

Finally, we propose that employing the concept of a filtering
coating may also hold the key to the development of highly
humidity-tolerant hydrogen sensors and thereby tackle this so
far widely unaddressed scientific challenge and resolve the
corresponding DoE target. As one rare effort in this context,
PTFE coatings have been utilized for humidity protection due to
the inherently high hydrophobicity of fluorinated polymers,268

and Mak et al. have utilized a 30 nm PTFE coating on an optical
fiber sensor to demonstrate efficient hydrogen detection in
oil.267 As an alternative, alloying also may provide a means to
increase the humidity resistance of Pd-based H2 sensors, as
demonstrated for the PdAu system, however, only up to 60%
RH.112 Last, locally heating the region where the active
transducers are placed also provide a potentially effective
strategy to reduce the detrimental impact of humidity, as
demonstrated of the examples of heated Pd@Si nanowire98 and
Pd@graphene119 hydrogen sensors.

■ FUTURE PERSPECTIVES
The recent acceleration in the large-scale global implementation
of hydrogen energy technology has dramatically expedited the
need for fast, selective, robust, and long-lived hydrogen safety
sensors. In this respect, our assessment of state-of-the art
hydrogen sensor technology has revealed a significant gap
between currently available sensor performance and the
performance targets set by stakeholders like the US DoE. This
gap is, however, steadily closing, as a consequence of intense
research activities in the field of hydrogen sensors during the last
15 years. For example, detection limits are now in the low ppm
or even ppb range, and sensor response and recovery times have

developed rapidly with the first reports of subsecond speed in
the 1 mbar pressure regime, which is on par with the
corresponding DoE target.
This development has predominantly been enabled by

nanostructured Pd and Pd alloy transducer materials, which,

Figure 5. Strategies to protect Pd-based hydrogen sensors from
poisoning/deactivation. (a) Time-dependent response of optical Pd
(left) and Pd95Cu5 (right) nanoparticle hydrogen sensors to three 4%
H2 pulses, followed by 9 pulses of 4% H2 + 0.5% CO in synthetic air.
Alloying 5 at % Cu to Pd is sufficient to suppress the CO poisoning
effect. Adapted from ref 58. Copyright 2019 American Chemical
Society. (b) Left: Time-dependent response of optical PdAu nano-
particles@PMMA to pulses of 4% H2 + 3% CO2 + 0.1% CO + 0.01%
NO2 in synthetic air. PMMA provides efficient protection against all of
the poisoning gases, resulting in a stable signal response over 10 cycles.
Adapted with permission from ref 19. Copyright 2019 Nature
Publishing Group. Right: Fresh and 50-weeks-aged Pd nanocube@
PMMA 3D printed optical H2 sensor response to three cycles of 10%
H2, three cycles of 0.5%CO, and four cycles of 10%H2 + 0.5%CO, all in
the synthetic air carrier gas. Adapted from ref 247. Copyright 2020
American Chemical Society. (c) Time-dependent reflectance of a
MgTi/Pd@PTFE thin film hydrogen sensor to pulses of 5% H2.
Intermittently, the sensor was exposed to humid air and dipped in
water, as marked. The PTFE layer provides significant protection as
proven by unchanged response after each exposure to humid
conditions. Adapted with permission from ref 268. Copyright 2012
The International Society for Optics and Photonics.
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irrespective of the readout principle, offer intrinsically very high
selectivity toward hydrogen thanks to the hydride formation
process and rapid response due to short diffusion paths. It is
therefore likely, and also our personal opinion, that clever
engineering of Pd and Pd-alloy material properties at the
nanoscale holds the key to even further push sensor detection
limits and response times. At the same time, alternative material
solutions are highly welcome since the foreseeable broadening of
hydrogen sensor application conditions in the wake of the large-
scale deployment of hydrogen energy technologies most likely
requires increasingly tailored sensor solutions, which will be
hard to provide on a single material platform alone. For example,
hydride forming metals like Mg,268,271 Ta,272 V,273 or Hf272,274

may offer sensors with significantly wider dynamic range and
unprecedented detection limits, however, at the cost of
significantly longer response and recovery times, due to (orders
of magnitude) slower hydrogen diffusion in these materials.
Other highly important metrics that have been much less

addressed by the field are operation temperature, absolute-
pressure range, sensor lifetime, and operation in poisoning/
deactivating conditions and in high humidity. However,
specifically for the last two points, interesting developments
on the basis of polymeric or MOF coatings have been reported,
where the molecular filtering properties of such layers have been
demonstrated to prevent molecules larger than H2 to reach the
Pd surface, and thus hinder poisoning species from blocking the
surface. Interestingly, if combined with nanoscale Pd trans-
ducers, the presence of such layers has also been reported to
enhance response time, due to strong interactions between the
metal surface and the coating. Furthermore, there are convincing
indications that such hydrogen sorption kinetic enhancement
effects are generic to both polymeric and MOF coatings, which
fuels the hope that specific selection and optimization of coating
materials in this respect may enable unprecedented response
times. Here, however, the current lack of fundamental
understanding of these effects hampers the identification of
corresponding material design rules and calls for research efforts
both by experiment and theory.
As a further key message to the community, we identify the

almost complete lack of effort to design hydrogen sensors that
can operate at high humidity levels up to 95% RH. This is critical
in view of the fact that in the context of, for example, fuel cells,
high humidity levels occur in the exhaust, and that hydrogen
production sites at or close to, for example, offshore wind farms
or offshore hydrogen pipelines will experience vast humidity
fluctuations. Mechanistically, it is likely that the concept of
coatings, as well as alloying, may hold the solution to this
problem, but experimental demonstrations are widely lacking.
Furthermore, the long-term stability of coatings or surface
segregation effects in alloys are factors that need to be critically
addressed, ideally already at the early active sensor material
development stage, and not only at the sensor device prototype
or product level, as commonly done today.
Finally, we want to highlight the need for more standardized

hydrogen sensor characterization already at the research level to,
for instance, enable more straightforward comparison of sensor
performance, as well as to guarantee that sensor performance is
measured at conditions relevant for targeted applications. This
means the assessment of detection limits, operation temper-
atures, response and recovery times in (synthetic) air rather than
in inert gas or even vacuum environments, and in the presence of
trace molecular species found in the atmosphere, such as CO2,
NOx, CO, SOx and H2O. It also means the assessment of

response and recovery times over a wide(r) range of hydrogen
concentrations since these performance parameters are strongly
concentration dependent. We also advertise the adaptation of
the ISO 26412 protocol for the assessment of poisoning/
deactivation resistance of hydrogen sensors.
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