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Abstract: The maintenance of the physiological values of blood pressure is closely related to unchange-
able factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary
fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse,
smoking and use of psychogenic substances). Hypertension is usually characterized by the presence
of a chronic increase in systemic blood pressure above the threshold value and is an important risk
factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular
diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered
production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular
resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine
stimuli, initially determining an adaptive response, which over time lead to an increase in risk or
disease. The gut microbiota is composed of a highly diverse bacterial population of approximately
1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the
intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset
of various diseases. The gut microbiota has been shown to produce unique metabolites potentially
important in the generation of hypertension and endothelial dysfunction. This review highlights the
close connection between hypertension, endothelial dysfunction and gut microbiota.

Keywords: blood pressure; hypertension; cardiovascular diseases; endothelium dysfunction; microbiota;
intestinal dysbiosis

1. Introduction

Blood pressure (BP) is the pressure exerted by blood against the walls of blood vessels
and depends on the amount of blood that pumps the heart and the resistances that oppose
its free flow. Physiological BP values are approximately 115/75 mm Hg [1,2]. The main-
tenance of these values is closely related to lifestyle; in particular, some non-modifiable
factors, including genetic predisposition or pathological alterations, can negatively influ-
ence BP. On the other hand, modifiable factors, such as dietary fat and salt intake, sedentary
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lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and the
use of psychogenic substances, are fundamental for the alteration of the homeostatic condi-
tion and for the alteration of BP [3]. It is also important to highlight that some commonly
taken medications (steroids, non-steroidal anti-inflammatory drugs, nasal decongestants,
oral contraceptives and antidepressants) can result in BP elevations [4]. The American
College of Cardiology, the American Heart Association and the European Society of Hyper-
tension have established behavioral guidelines to ensure the maintenance of baseline BP
values, based on non-pharmacological interventions such as intensifying physical activity
with a program of defined aerobic exercises, limited salt and alcohol intake, weight loss,
and use of the Dietary Approaches to Stop Hypertension (DASH) diet, with a high intake
of fruits and vegetables and low in fat [5–7].

Accordingly, even in guidelines for the identification and management of systemic
hypertension in animals, such as dogs and cats, factors such as age and sex are related to
increased BP [8]. Indeed, an association has been found between aging, sex, systolic and
diastolic BP and mean arterial blood pressure values [9]. Among several factors (temper-
ament, exercise regimen, breed or sex), age accounts for the majority of the variation in
systolic and diastolic blood pressure in healthy dogs. In fact, a significant difference was
found between all these parameters among young and elderly dogs, with an increase in
systolic and diastolic blood pressure per year from 1 to 16 years of age of 1–3 mmHg [10]. In-
terestingly, as in humans with secondary hypertension, it has been suggested that increased
blood pressure can be expected in dogs and cats with kidney disease, hypothyroidism,
diabetes mellitus, liver disease and hyper-adreno-corticism. For the latter, a close relation-
ship with increased blood pressure was found along with the risk of consequences such as
retinal or renovascular damage [8,11].

Furthermore, obesity is an additional factor related to the increase in BP. Indeed,
overweight animals have higher BP than normal weight ones [10]. A significant increase in
blood pressure was observed in rabbits fed a high-fat diet compared to lean controls, and
this finding was associated with higher glycosaminoglycan content in the kidney leading
to impaired renal fluid regulation with the onset of arterial hypertension [11]. Moreover,
it has been suggested that the presence of co-morbidities, such as chronic kidney disease,
endocrinopathies or cardiopathies could explain the relationship between obesity and
hypertension [12].

Hypertension is usually characterized by a chronic increase in systemic BP above
a certain threshold value and is an important risk factor for the onset of cardiovascular
diseases including myocardial infarction, stroke, micro- and macro-vascular diseases [13].
In fact, the progression of hypertension is associated with functional and structural car-
diovascular abnormalities with damage to the heart, vessels, kidneys, brain and other
organs. In humans, hypertension can cause alterations to other organs that will produce
some typical symptoms; in fact, although the conduction arteries try to protect the tissues
from large pressure excursions, some organs will be damaged. In particular, the heart will
have to work with a greater load leading to ischemia [14], thickening of the arteries [15],
rupture of the brain thin vessels generating brain hemorrhages [16], damage to the retinal
arteries of the ocular fundus [17] and possible renal microangiopathy which will contribute
to systemic arterial hypertension [18]. The main organ damage generated by hypertension,
is shown in Figure 1.

Hypertension is often associated with renal damage, and it still represents one of the
most important causes of end-stage renal disease. Kidney damage induced by hypertension
determines morphological and functional renal alterations, which results in nephropathy
associated to glomerular, tubular and interstitial injury. The severity of disease depends on
several factors, such as the causes of disease, the presence of underlying kidney disease
or the hypertension degree, as well as on individual susceptibility. In particular, it is well
known that, among the complex mechanism involved in the mechanism of hypertension,
kidney modifications occurs [19]. As is known, alteration of physiological pressure levels is
linked to the modification of several neurohumoral system such as the role of natriuretic
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peptides and the endothelium, the sympathetic nervous system (SNS) and the immune
system and in particular, the renin–angiotensin–aldosterone system (RAAS), alterations
in which lead to increase in mean blood pressure, blood pressure variability and organ
damage such as chronic kidney disease, associated with cardiovascular disease [20]. RAAS
has the important role of balancing pressure and volume in the kidney in response to a
reduction of extracellular fluid linked to sodium excretion. These actions are made by the
ability of RAAS to regulate blood pressure as it mediates sodium retention and natriuretic
pressure, salt sensitivity, vasoconstriction, endothelial dysfunction and vascular injury [20].
As for humans, and also in small animals, renal disease is a frequent event associated with
hypertension. Similarly, there are multi-factorial causes leading to the development of renal
hypertension, such as the above-mentioned sodium retention, or RAAS activation that
could lead to kidney disease. Kidney disease is commonly associated with hypertension in
dogs, cats and other species. There are multiple mechanisms underlying the development
of renal hypertension including sodium retention, activation of the renin–angiotensin
system and sympathetic nerve stimulation. The relative importance of these and other
mechanisms may vary, both between species and according to the type of kidney disease
that is present. Consideration of underlying disease mechanisms may aid in the rational
choice of therapy in hypertensive patients performed by the gut microbiota [21]. Indeed,
thanks to its metabolites, the gut microbiota stimulates the enteric afferent sensory fibers
or affects the target organs responsible for BP regulation, such the kidney, as has been
observed in the link between Gut’s SCFAs production and blood pressure alteration, which
is due to olfactory receptors expressed in the vasculature and kidneys [22,23].
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As with humans, a sustained increase in BP also causes damages to various tissues in
animals. Studies in dogs, cats and humans have observed a link between proteinuria and
renal damage [8]. Indeed, dogs with renal damage and hypertension have higher kidney
lesion scores for mesangial matrix, tubule damage, fibrosis and cell infiltrate [24].

Moreover, in dogs with proteinuria associated with chronic renal glomerular damage,
renal pathological analysis showed tubulointerstitial damage, fibrosis, atrophy, and renal
inflammation [25,26].
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Other lesions also affect the eye, due to hypertensive retinopathy with blindness,
retinal detachment, and retinal hemorrhage with ocular lesion [27]; the brain, with en-
cephalopathy associated with microhemorrhages and thrombi [28–30]; and the heart, with
cardiovascular changes along with left ventricular hypertrophy, impaired cardiac function,
increased heart rate, left ventricular mass index, decreased E/A ratio and diastolic dys-
function [31]. Histological observation showed multifocal dissolution and fragmentation of
the myofilaments in cardiomyocytes with mitochondrial and cellular swelling, and loss of
mitochondria and cells, along with myocardial fibrosis [32]. Although hypertension affects
30% of the population and 70% of the elderly, as well as being the most common cardio-
vascular risk factor, the etiology of most cases remains undefined [33]. In fact, in about
90% of cases the precise causes are unknown [34]. The functioning of the endothelium, the
inner layer of blood vessels that controls circulation through the production of vasoactive
substances and maintains vascular homeostasis, is one of the first targets in cardiovascular
risk factors [35,36]. One of the first diseases associated with the reduced bioavailability
of factors released by the endothelium is arterial hypertension, but, from the knowledge
available in the scientific literature, it is not possible to determine whether endothelial
dysfunction is the cause or a consequence of arterial hypertension [37]. Furthermore, a
great deal of evidence describes the role of the gut microbiota in cardiovascular diseases,
with particular attention to hypertension. In this review the role of the endothelium and
intestinal microbiota in the phenomenon of arterial hypertension will be investigated in
order to provide new therapeutic targets in the study, treatment and resolution of this
pathology, which considerably increases cardiotoxic risk.

1.1. Endothelial Function and Dysfunction

Anatomically, the endothelium is made up of a monolayer of endothelial cells (EC)
that extends along the entire circulatory system and forms the inner lining of blood vessels.
Initially it was thought that the endothelium was made up of inert cells, with an exclusively
structural function. To date, it is known that these cells are metabolically active, dealing
with different physiological functions including the control of vasomotor tone, blood
cellular traffic, maintenance of vascular homeostasis, permeability, proliferation, survival,
innate and adaptive immunity. The main functions of the endothelium are the maintenance
of vascular tone, cell adhesion, platelet aggregation, leukocyte trafficking, coagulation
cascade, inflammation, permeability and regulation of thrombosis and fibrinolysis [38].
Vascular tone, defined as the balance between the degree of constriction of the blood
vessel and its maximum dilation, is modulated by the release of relaxing and constricting
factors derived from the endothelium. In fact, physiologically, ECs synthesize and release
several endothelium-derived relaxing factors including vasodilator nitric oxide (NO),
prostaglandins and endothelium-dependent hyperpolarization factors (EDHs).

NO is a soluble gas that demonstrates important protective vaso-relaxing functions
and is regulated by endothelial nitric oxide synthase (e-NOS), an enzymatic isoform con-
stitutively expressed in ECs. This enzyme catalyzes the conversion of L-arginine into
L-citrulline and NO. When NO is synthesized, it spreads into smooth vascular muscle cells,
stimulating soluble guanyl cyclase and increasing cyclic guanosine monophosphate, (NO
effector), which promotes vasodilation [39]. Nevertheless, the endothelium is also able
to produce contracting factors such as endothelin, thromboxane A2, angiotensin II, and
superoxide; thus the correct balance between the production of vasodilators and vasocon-
strictors guarantees a correct maintenance of the vascular tone [40]. Endothelial cells are
also able to relax vascular smooth muscle cells by generating EDH, the mechanism of which
may vary depending on vascular beds and species. In fact, in some vascular beds and
under specific conditions, endothelial cells generate EDH, release the calcium ion, presum-
ably from the endoplasmic reticulum, and activate K+ channels. Their spread to adjacent
smooth muscle cells, via myoendothelial gap junctions, induces endothelial-dependent
hyperpolarization and relaxation in arteries’ resistance [41]. This mechanism makes it clear
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that EDH impairment can lead to both endothelial dysfunction and altered blood pressure
regulation [42].

The endothelium also plays an important role of acting as a selective barrier between
the blood and surrounding tissue, regulating the exchange of water, solutes and cells,
and maintaining normal homeostasis. An alteration of this function can lead to hyper-
permeability with the passage of blood components through the endothelium [43]. The
passage of water and solutes occurs through the endothelial cell itself, from the luminal
membrane to the basolateral membrane or in the opposite direction, through the so-called
transcellular transport. Macromolecules cross the endothelium using the nearby endothelial
transcellular space, connected by protein complexes, also called junctions. Cell junctions
can be of three types: gap junctions, adherent junctions and tight junctions [44,45]. The
endothelium plays a crucial role in maintaining blood fluidity and preventing thrombosis:
in physiological conditions, it provides the correct hemostatic balance through different
anticoagulant and antiplatelet mechanisms [46,47]. The endothelium is also involved in
the formation of blood vessels. Indeed, endothelial cells produce a specific growth factor
for vascular endothelium (VEGF) and recent studies have described a pattern of vascular
formation that begins with the formation of immature vessels, which subsequently un-
dergo remodeling and maturation [48]. Some of the main functions of the endothelium are
represented in Figure 2. The inability of the endothelium to maintain vascular homeostasis
is defined as endothelial dysfunction, a state in which the endothelial cell phenotype is
altered, vasodilation is reduced, and the proinflammatory and prothrombotic state and the
accumulation of reactive species are increased. Endothelial impairment includes two con-
secutive moments: (a) activation of endothelial cells; (b) overt endothelial dysfunction. The
activation of endothelial cells occurs following an insult that causes the phenotypic trans-
formation of the cells from a physiological condition to a pro-inflammatory state [49]. The
pro-inflammatory phenotype is characterized by an increased expression of chemokines,
cytokines, and cell adhesion molecules (CAMs) that facilitate the recruitment and adhesion
of circulating leukocytes on the vascular wall [50]. If the harmful stimulus is prolonged
and/or repeated there is the pathological transformation of the endothelium into an overt
endothelial dysfunction, characterized by a pro-coagulant state, increased reactive oxygen
species (ROS) levels, a sustained inflammatory state and constriction of blood vessels [51].
The blood cells that first reach the inflammatory site are the neutrophils which, after being
firmly attached to the CAMs’ components expressed by the endothelium (selectins and
integrins), cross the endothelial barrier, and thus leaving it. The process by which leuko-
cytes transmigrate across endothelial barriers consists of six sequential steps: (1) rolling;
(2) activation of leukocytes and endothelium; (3) adhesion to endothelial cells; (4) crawling
toward the endothelial junctions; (5) trans-endothelial migration and (6) diapedesis [52].
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Endothelial dysfunction is associated with most cardiovascular diseases (such as
chronic heart failure, peripheral vascular disease, coronary heart disease, hypertension,
diabetes, chronic kidney failure) [53–55], but also with severe viral infections, neurological
diseases, and metabolic diseases among others [56–59]. ROS are reactive oxygen inter-
mediates, which are physiological by-products of cellular metabolism. At physiological
concentrations, ROS are very useful for cellular homeostasis, acting as second messengers
in the cellular signals’ transduction and predisposing toxicity reactions against bacterial
infections [60]. Conversely, when the amount of ROS exceeds the antioxidant capabili-
ties of the cell or when the antioxidant enzymes have a reduced activity, oxidative stress
occurs. This condition is extremely dangerous as ROS can react with major biological
macromolecules and modify them accordingly [61,62]. Cell membranes are particularly
susceptible to oxidative damage caused by ROS and can undergo “lipid peroxidation”,
a process in which ROS remove electrons from lipids and damage phospholipids. This
alteration can also lead the cell to apoptotic death [63,64]. The accumulation of ROS is
involved in the onset of several diseases, including cancer, metabolic diseases, such as dia-
betes and obesity, neurodegenerative disorders, lung diseases and kidney diseases [65–68].
It has recently been shown that there is a close correlation between ROS accumulation,
increased inflammation, and endothelial dysfunction [69–71]. For example, the reduction
in the bioavailability of NO may be due not only to the reduced expression of e-NOS
protein, but also to an increase in the level of ROS and above all of anion superoxide (O•−),
responsible for the formation of peroxy-nitrite (ONOO−). The latter promotes protein
nitration contributing to endothelial dysfunction and cell death [72,73]. The pathologies in
which the availability of NO is altered, and which determine a harmful impact on the en-
dothelium, through the mechanism described are multiple and include not only metabolic
disorders (hyperglycemia, hyperlipidemia, hypertension) [74,75], but also prolonged ex-
posure to drugs, aging and mental disorders [76–79]. To date, it is known that oxidative
stress favors the extravasation of leukocytes: indeed, some scientific studies have shown
that the exposure of Human Umbilical Vein Endothelial Cells (HUVECs) with hydrogen
peroxide for 1 h, involves the translocation of selectin P on the cell surface, thus increasing
the adhesion of neutrophils [53,80]. At the same time, antioxidant cell treatment removes
O•− accumulation reducing the early stages of the extravasation mechanism [81,82]. The
Intercellular Adhesion Molecule 1 (ICAM 1) is a protein continuously present at low con-
centrations in the membranes of leukocytes and endothelial cells, which when stimulated
by cytokines, considerably increases its concentration. ICAM-1 is another inflammatory
mediator that plays a key role in neutrophil recruitment and neutrophil-mediated vascular
injury. In addition, ICAM-1 is regulated at the level of gene transcription by numerous
transcription factors involved in oxidative stress, including NF-kB, and Activator protein
1 (AP-1), highlighting the involvement of ROS in the transcriptional activation of this
adhesion molecule. Treatment with hydrogen peroxide has been shown to rapidly increase
ICAM-1 mRNA and its cell-to-surface protein expression in HUVECs [82,83]. Further-
more, treatment with the antioxidant N-acetyl-L-cysteine (NAC) reduces the expression
of ICAM-1 by reducing the extravasation of leukocytes [84]. The accumulation of ROS
can facilitate the induction of the autophagic process, which determines the elimination
of dysfunctional mitochondria. However, when autophagy is excessive, it can lead to cell
death. Recent experiments have shown that antioxidant treatment reduces ROS excess,
restores proper autophagy, and reduces endothelial cell death [57,85,86]. The inflammatory
process is closely related to the accumulation of ROS in endothelial dysfunction. Indeed,
these two effects are complementary to each other and it is difficult to determine which
effect occurs first: they can certainly be considered the common denominator of endothe-
lial dysfunction [87,88]. The endothelium plays an important role in the initiation of the
inflammatory process. The first step involves, as already mentioned, endothelial cells
undergoing an activation process, usually classified into two types: type I activation is
rapid and generates a transient response in which endothelial cells interact with leukocytes
and platelets after loss of their cellular junctions and subsequent release of the P-selectin
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adhesion protein; type II activation is slower but more persistent and affects the expression
of a variety of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and
interleukin-1 (IL-1) [89]. Following the activation of endothelial cells, there is an increase
in vascular permeability, the expression of pro-inflammatory cytokines, chemokines and
enzymes, and an over-expression of adhesion molecules, such as ICAM-1, selectin-E and
vascular cell adhesion molecule-1. This condition generates a real inflammatory process,
responsible for the activation of leukocytes [90]. The release of inflammatory mediators,
including vasoactive amines (histamine and serotonin), peptides (bradykinin, protease
of thrombin) and eicosanoids (thromboxanes, leukotrienes and prostaglandins) and the
recruitment of leukocytes continues with an intracellular inflow of calcium ion. Calcium
is a key second messenger involved in the signaling pathways that affect endothelial per-
meability. The mediators produced bind their receptors on endothelial cells, triggering
the opening of calcium channels; the increased concentration of this ion activates calcium-
dependent proteins. Calcium influx is involved in a number of phases of the inflammatory
cascade and the leukocyte extravasation cascade, including leukocyte rolling, adhesion,
migration and diapedesis [91]. It is increasingly confirmed that hypertension reduces
endothelium-dependent relaxation in both large and small arteries [92]. In general, most
studies on endothelial dysfunction focus on mechanisms related to the reduced bioavail-
ability of NO resulting from both decreased NO production and increased NO degradation.
In hypertension, the mechanisms involved in changes in NO metabolism are decreased NO
production and increased NO inactivation [93,94]. A reduced NO synthesis can result from:

(a) a deficiency in the substrate of NO synthase, L-arginine [95];
(b) a high concentration of endogenous NO synthase inhibitors [96];
(c) deficiency of cofactor for NO endothelial synthesis [97];
(d) reduced expression of e-NOS [98];
(e) an alteration of the transduction signals leading to the uncoupling of endothelial NO

synthase [99];

1.2. Endothelial Dysfunction and Hypertension

Considering these findings, it is known that hypertension is associated with an increase
in ROS production and a decrease in the level of antioxidants [100,101]. The connection
between oxidative stress and hypertension is also demonstrated by the knowledge of scien-
tific data, which shows that vitamin C restores NO production and improves endothelial
function in hypertension. In arterial hypertension, the reduction in the bioavailability of
NO, also justified by its binding with various molecules such as hemoglobin or albumin,
becomes more persistent due to the interaction of NO with O•−. In fact, in physiological
conditions, the endogenous antioxidant system limits the interaction between NO and
O•−. On the contrary, pathological diseases, such as diabetes mellitus, tobacco smoke,
hyperlipidemia and hypertension, lead to an increase in the production of O•−, which
results in a reduction of NO availability. In this case, NO reduction is responsible for
vasoconstriction, arterial remodeling, arterial stiffness, thickening of the subendothelial
sheet, increase in the amounts of proteins, lipids and proinflammatory cells, changes in
the viscoelastic properties of the arterial wall, the onset of local inflammatory processes
and increased leukocyte adhesion [102,103]: precisely for this reason, antioxidant agents
are included in the treatment of hypertension. Hypertension is closely related to func-
tional changes in the endothelium and hypertensive patients exhibit endothelial-associated
vasodilation impairment with an abnormal NO function. The impaired production of
vasoconstricting and vasodilating substances can lead to an increase in vascular resistance.
These alterations make the endothelial tissue unresponsive to autocrine and paracrine
stimuli, initially determining an adaptive response which over time leads to an increase in
risk or disease. Therefore, targeting of endothelial dysfunction is crucial for the treatment
of hypertensive subjects [104–106].

In rabbits, intravenous administration of a NOS inhibitor, N omega-monomethyl-L-
arginine (L-NMMA), induced a dose-dependent increase in mean systemic arterial blood
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pressure. This increase in BP was due to inhibition of NO release from ex vivo perfused
aortic segments. L-arginine infused through the aortic segments was able to reverse
this inhibition within 15 min, demonstrating that L-arginine-derived NO in the vascular
endothelium is important in regulating blood pressure [107]. Furthermore, L-arginine
was also able to counteract the inhibitory effect on endothelium-dependent relaxation of
L-NG-methylarginine, which after its infusion in guinea pigs leads to a dose-dependent
increase in systolic and diastolic blood pressure [108].

Moreover, changes in NO-mediated vasodilatations via L-NMMA infusion in dogs
were highlighted by a dose-related increase in aortic pressure, decreased rest phasic coro-
nary blood flow and heart rate, and by the increase in basal epicardial coronary vasomotor
tone [109].

In all in vivo models of hypertension there is a high impairment of endothelium-
dependent vessel relaxation in both large and small resistance arteries.

Endothelial dysfunction is also well described in human hypertension, in small and
large epicardial coronary arteries [110,111]. Hypertension is not only responsible for
changes in endothelial regulation of vasomotor function, but also for the induction of
inflammation in the vascular wall [112]. Hypertension contributes to the endothelial devel-
opment of many serum markers’ inflammation, including cytokines, interleukin-6, alpha
tumor necrosis factor, CAMs, fibrinogen and C-reactive protein [113]. A representation of
endothelial involvement in hypertension is shown in Figure 3.
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2. Gut Microbiota and Hypertension

The gut microbiota is composed of a very varied bacterial population of about
1014 bacteria and whose intestinal colonization begins at the birth of the organism. Al-
though the fetal microbiota has been shown to depend on the maternal microbiota, it is now
known that its composition differs within the first 3–5 years of life [114]. The microbiota of
an adult individual is mainly characterized by three enterotypes, each of which is composed
of a prevalent bacterial species: enterotype 1 is characterized by Bacteroides, which recover
maximum energy from the fermentation of carbohydrates and proteins. They are also
responsible for the production of biotin, riboflavin, pantothenic acid and ascorbic acid.
Enterotype 1 is often related to a diet high in animal proteins and fats and low in fiber
and plants, such as the Western diet. Enterotype 2 is characterized by a preponderance
of bacteria of the genus Prevotella, which can degrade host glycans and proteins. They
produce high levels of thiamine and folic acid. Enterotype 2 is related to a diet high in fiber
and carbohydrates. Enterotype 3 is characterized by bacteria of the genus Ruminococcus,
which can colonize the superficial mucosa, consume simple sugars, and could play an
important role in modulating the immune system. Due to the absorption of carbohydrates
and simple sugars, enterotype 3 can be related to a tendency to gain weight [115]. Af-
ter birth, breastfeeding involves the intake of lactose, the main carbohydrate in human
milk, which promotes the growth of Lactobacillus. Subsequently, the consumption of solid
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foods reshapes the intestinal microbiota, with the colonization by anaerobic Proteobacteria,
Lactobacillus and Bifidobacterium. Subsequently, several genera will appear within the phy-
lum Bacteroidetes [116,117]. In healthy adults, the composition of the gut microbiota is stable
but diet and environmental factors can generate imbalances. In the elderly population
there is a reduction in bacterial diversity, with an increase in some Proteobacteria and a
decrease in Bifidobacteria. This modification causes an interruption of the intestinal barrier
function and the likelihood of toxin accumulation [118]. The integration of probiotics and
prebiotics has been shown to have protective effects on health, with a reduction in chronic
inflammation and increase in longevity [119,120]. This important observation highlights
the importance of the gut microbiota in maintaining general health [121]. Therefore, it is
clear, that a balanced intestinal microbiota preserves the digestive and absorbent functions
of the intestine, limits the invasion of pathogens and toxic metabolites into the circulation
and reduces the occurrence of various diseases [122–127]. The gut microbiota has been
shown to produce unique metabolites that are potentially important in blood pressure con-
trol. These bacteria are the only source of short-chain fatty acids (SCFAs), products of the
digestion of dietary fibers and the fermentation of undigested carbohydrates, from the gut
microbiota, for the body. SCFAs are fatty acids with less than six carbon atoms, including
the most abundant, acetic acid, propionic acid, butyric acid, and the least abundant, valeric
acid and caproic acid. Bacteria synthetize SCFAs in sequential steps from glycolysis of
glucose to pyruvate, acetyl-CoA and finally acetic acid, propionic acid, and butyric acid.
SCFAs are known to be beneficial metabolites for blood vessel control and can influence
the immune, epithelial, nervous and blood vessel systems and modulate blood pressure,
reducing the risk of hypertension [128]. Indeed, hypertension has been associated with a
decreased intestinal microbial diversity and SCFA-producing bacteria [129]. Furthermore,
the abundance of SCFA-producing bacteria in pregnant women is negatively correlated
with blood pressure [130]. Mechanistically, SCFAs has been shown to bind to a G protein
by activating intracellular signaling in various cell types [131] and by modulating blood
pressure [132,133]. Indeed, a relationship was found between Gpr41, a G protein-coupled
receptors, and SCFAs produced by the gut microbiota. In particular, the binding of SCFAs
to Gpr41 leads to a stimulation of renin secretion which results in a BP increase. More-
over, Grp41 has been shown to influence the endothelium in determining vasodilation
and that the absence of this G protein in KO mice results in isolated systolic hypertension
compared to wild type mice, together with an elevated pulse wave velocity, as observed
by the telemetry measurement. These effects suggest that the gut microbiota, through
SCFAs, can influence BP regulation [134]. The modulation of BP, SCAF mediated, occurs
also with many sensory receptors (olfactory receptors, taste receptors). These receptors,
in addition to playing their role in sensory tissues, also act in other districts where they
serve as selective and sensitive chemo-receptors. For example, olfactory receptors (OR) are
expressed in a variety of tissues in mice, humans, and other primates, and their ligands are
often generated by physiological or metabolic processes [135,136]. Olfactory Receptor78
(Olfr78) is expressed in olfactory epithelium, but also in renal afferent arteriole, the site
where renin (the initial, limiting passage in the renin–angiotensin–aldosterone pathway)
is stored for possible release into the blood, playing an important role in blood pressure
control, autoregulation of tissue blood flow, and/or extracellular fluid volume regulation.
In vitro and in vivo studies have shown that Olfr78 is a receptor for SCFAs, in particular
acetate and propionate [137,138].

Moreover, SCFAs demonstrate an epigenetic effect on epithelial cells by acting on
histone deacetylase [139] and by increasing the transcription of interleukin-10, an anti-
inflammatory and immunosuppressive cytokine produced by a variety of mammalian cell
types and capable of reducing inflammation, inhibiting the synthesis of pro-inflammatory
cytokines such as IFN-γ, IL-2, IL-3, TNFα. Iterleukin-10 also exhibits a potent ability to
suppress the antigen presenting-capability of antigen presenting-cells. Knockout studies
have suggested that interleukin-10 acts as an essential immunoregulator in the intestinal
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tract: in fact, patients with Crohn’s disease react favorably to treatment with recombinant
interleukin-10 producing bacteria [140,141].

The correlation between SCFA concentrations, inflammatory status and dysbiosis has
also been demonstrated in dogs with chronic enteropathy which show lower fecal con-
centration and altered SCFA patterns associated with fecal microbiota modifications [142].
Dysbiosis caused by inflammatory bowel disease resulted in a reduction of SCFA-producing
bacteria and alterations in ileal and colon mucosal bacteria in dogs, as observed by the
increase in adherent bacteria, such as total bacteria, Enterobacteriaceae, E. coli and the pres-
ence of invasive bacteria, such as Enterobacteriaceae, E. coli, and Bacteroides in the sites of
intestinal mucosa. Overall, these effects lead to worsening of the clinical disease [143,144].

SCFA maintains the epithelial barrier to reduce inflammation and their reduction has
been identified as a responsible factor for the increase in blood pressure in obese pregnant
women [145]. Overall, these findings support the assumption that the gut microbiota
reduces the risk of hypertension [146–148]. However, it is important to note that some
intestinal bacteria by-products have direct negative effects on blood pressure in the case of
intestinal dysbiosis [149]. The composition of the gut microbiota is constantly changing
and evolving and is influenced by several factors including diet, intestinal mucosa, drug
consumption/abuse, the immune system, and the microbiota itself. When there is a correct
balance between the composition of the gut microbiota and its entire genetic heritage
(microbiome), a condition known as “intestinal eubiosis” is established. Conversely, when
there are reductions in microbial diversity with expansion of specific bacterial taxa, a
state of dysbiosis occurs [150]. Therefore, dysbiosis is a condition of microbial imbalance
caused by an excessive growth of “harmful” bacteria inside the intestine, which cause
irritation and predispose to the onset of various diseases including ulcerative colitis and
Crohn’s disease, necrotizing enterocolitis, colorectal cancer, autoimmune diseases and
neurological disorders [127,151–156]. The close connection between intestinal dysbiosis
and hypertension has been well studied and highlighted [157]. Some by-products of
intestinal bacteria can induce, as previously described, the onset of diseases in the case of
intestinal dysbiosis and this can occur when a systemic inflammatory process is induced.
For example, microbiota-derived metabolites can easily cross the blood-brain barrier (BBB),
affecting the inflammatory state in the brain and inducing pathologies such as multiple
sclerosis [158] and hypertension [159]. Probiotic and prebiotic supplementation should
be administered in all adult/elderly individuals, to ensure intestinal eubiosis and also to
normalize blood pressure. Figure 4 shows a diagram representing the protective role of the
gut microbiota in a condition of eubiosis.
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2.1. Gut Microbiota and Endothelial Dysfunction

The maintenance of endothelial function also occurs in relation to the endogenous
mediators with which it comes into contact. Therefore, the derivatives of the metabolism of
the microbiota can contribute to the physiology of the organism by helping to maintain
homeostasis or causing the onset of diseases. It has also been shown that these metabolites
can demonstrate different effects on endothelium function [160]. In particular, intestinal
bacteria can affect the endothelium of the circulatory system through two main pathways:
on the one hand, the microbiota and its metabolites can stimulate the enteric nervous
system and, consequently, the activity of the brain centers that control the cardiovascular
system; on the other hand, it can enter the bloodstream, through the blood–intestinal bar-
rier, modulating the function of the tissues and organs that control the homeostasis of the
circulatory system [161]. For this reason, the maintenance of the microbial composition in a
state of eubiosis and the attenuation/resolution of intestinal dysbiosis has been proposed
as a strategy to reduce endothelial and vascular dysfunction [162]. SCFAs, as previously
mentioned, have beneficial effects on the endothelium and blood vessel control. Conversely,
there are some harmful metabolites that will be investigated below. Trimethylamine (TMA),
an organic compound with the formula N(CH3)3, is a tertiary amine produced in humans
following the ingestion of foods from certain plants and animals, containing choline, phos-
phatidylcholine, glycerol-phosphocholine, carnitine, betaine, lecithin and L-carnitine. These
substrates provide the gut microbiota with the ability to form TMA, which is absorbed into
the bloodstream and subsequently oxidized to trimethylamine N-oxide (TMAO) in the
liver [163]. TMAO is considered a cardiac risk biomarker as it possesses pro-atherogenic
properties and is capable of predicting myocardial infarction, stroke or death [164]. In
particular, the mechanism of action involves endothelial dysfunction and the prothrombotic
effect caused by platelet aggregation [165]. TMAO-induced endothelial dysfunction occurs
following activation of the transcription factor NF-kB, responsible for up-regulation of
inflammatory signals and adhesion of leukocytes to endothelial cells [166,167]. In addition,
in vitro studies have shown that high plasma TMAO levels were related to a reduction in
circulating endothelial metabolites, increased endothelial dysfunction and severe cardio-
vascular events [168,169]. Moreover, it was found that an increase in TMAO is related to
endothelial dysfunction and atherosclerosis [170] and that mice with high TMAO values,
following a diet rich in choline, showed high endothelial damage, evident dyslipidemia
and hyperglycemia [171]. Furthermore, an interesting clinical study showed that a high
plasma level of TMAO was associated with increased inflammation and concomitant re-
duction of endothelial progenitor cells in patients with cardiovascular disorders [172]. In
addition to the mechanisms already described, TMAO downregulates the expression of the
anti-inflammatory cytokine IL-10, which can protect the endothelium from damage caused
by increased inflammation and oxidative stress [173] TMAO leads to ROS generation and
reduction of nitric oxide, both of which exert adverse effects in maintaining normal vascular
function [174]. In an important and elegant study, Matsumoto et al. highlighted another
mechanism by which TMAO is able to alter the vascular endothelial function. In fact,
the effects of TMAO on endothelial-dependent relaxation in two arteries, in particular
the upper mesenteric artery and the femoral arteries, have been studied and it has been
shown that TMAO is able to induce both the inhibition of EDH and its consequent arterial
relaxation. However, it is important to note that the described phenomenon does not occur
in all vascular beds, but acts selectively: in this case, in particular, the femoral arteries are
involved, but not the upper mesenteric artery [175].

A relationship between blood levels of TMAO, increased risk of mortality and renal
insufficiency was found in humans and animals as observed by renal tubulointerstitial
fibrosis, with increased levels of the early renal injury marker KIM-1 and enhanced phos-
phorylation of Smad3, and renal dysfunction observed by elevated cystatin C values after
choline intake [176].

Finally, TMAO impairs the self-healing ability of damaged endothelial cells, leading
to irreversible endothelial dysfunction [177].
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Uremic toxins are metabolites derived from the metabolism of the gut microbiota
of amino acids that contain aromatic groups, such as tyrosine, phenylalanine and tryp-
tophan. The gut microbiota metabolizes these amino acids in the host liver to produce
certain toxins, such as indoxyl sulfate, indoxyl glucuronide, indoleacetic acid, p-cresyl
sulfate, p-cresyl glucuronide, phenyl sulfate, phenyl glucuronide, phenylacetic acid, and
hippuric acid [178,179]. These circulating nitrogen metabolites are considered to be a
predictive biomarker of coronary atherosclerosis [180]. Uremic toxins alter endothelial
balance and promote dysfunction by activating NF-kB transcription factor signalling, over-
riding ICAM-1, the endothelial- and leukocyte-associated transmembrane protein long
known for its importance in stabilizing cell–cell interactions, and monocyte chemoattractant
protein-1 (MCP-1), which plays an important role in the selective recruitment of monocytes,
neutrophils, and lymphocytes [181]. Furthermore, these toxins inhibit NO synthesis and
increase ROS accumulation. The involvement of oxidative stress is provided by the con-
sideration that the antioxidants N-acetylene and apocynin can mitigate the pro-apoptotic
effect of p-cresyl sulfate in the endothelium [182]. In addition, the treatment with caffeic
acid, a polyphenol present in white wine with antioxidant properties, was able to restore
NO production and reduce ROS [183,184]. 3-hydroxyphenylacetic acid (3-HPAA), other
metabolites produced by the gut microbiota after the intake of polyphenol-rich foods,
and in particular quercetin have been shown to be potentially beneficial in hypertension.
Indeed, in spontaneous hypertensive rats a dose-dependent reduction in mean systolic and
diastolic pressure, associated with no heart rate changes, was observed after administration
of 3-HPAA, by bolus or after slow intravenous infusions, but not by intravenous injection,
suggesting that this effect was based only on peripheral relaxation. Meanwhile, 3-HPAA
treated porcine coronary arteries isolated from pigs’ hearts showed a dose dependent
vasodilatory response mediated by endothelium-derived NO [185].

Finally, intestinal microorganisms release proteins and peptides that act not only on
other bacteria, but also on the rest of the body. Pathological bacteria are able to release
peptides that destroy the blood–intestinal barrier, resulting in the spread of bacteria in the
bloodstream, a considerable increase in inflammatory state and induction of permeability,
transmigration and angiogenesis in the intestinal microvascular endothelial cells [186].

Along with human observation, a reduction of fecal bacterial diversity has been
observed in cats affected by chronic kidney disease, which is associated with a significantly
higher blood indoxyl sulfate concentration [187,188]. Likewise, in cats and dogs with
chronic kidney disease with persistent azotemia, it was shown that increased levels of
indoxyl sulfate were related to serum phosphorous concentration, loss of renal function,
and smaller kidneys compared to non-azotemic cats [189]. Moreover, the increased levels
of uremic toxins were associated with the increased concentration of fibroblast growth
factor-23 [190] and with the increase of blood urea nitrogen, serum creatinine phosphate
and the decrease of hematocrit [191].

Although the study of the direct correlation between gut microbiota and the develop-
ment and progression of hypertension in animals, such as dogs and cats, is still premature,
some interesting noteworthy research has been conducted in relation to other known
cardiovascular diseases.

For example, canine degenerative mitral valve disease (DMVD) is one of the most
common forms of cardiovascular disease in the dog and shares several molecular and
pathophysiological similarities with that of humans.

Recent studies have shown that high circulating concentrations of TMAO and its
nutrient precursors, including choline and L-carnitine, phosphatidylcholine, betaine, and
trimethyl-lysine, together with uremic toxins, such as guanidino compounds and urea,
were recorded in dogs with DMVD and Congestive Heart Failure (CHF) compared to
asymptomatic or healthy dogs [192,193]. Interestingly, some of the short-chain and long-
chain acyl-carnitine concentrations were reduced after a targeted dietary intervention
mainly based on medium-chain triglycerides, fish oil and antioxidants [194,195].
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The main question for the authors is to establish whether the increased concentrations
of TMAO and its precursors registered represent the cause of the development and progres-
sion of DMVD and CHF or an effect of these conditions. Elevated TMAO concentrations are
the result of impaired cardiovascular energy metabolism, or alternatively may be related to
the inflammation associated with cardiovascular diseases.

A pilot study recently published on Scientific Reports clearly showed that quantifiable
dysbiosis occurs in dogs with CHF due to increased levels of Proteobacteria, with a particular
increase in Escherichia coli and an unclassified species of Enterobacteriaceae, suggesting a
similar pattern to that described in human patients [196,197]. In agreement with previous
studies, the authors correlated the elevated levels of Escherichia coli with the increased
concentrations of TMAO in dogs with CHF. Furthermore, they pointed out the opportunistic
nature of these bacteria; indeed, while some strains of E. coli are benign, some other are
compatible with pathobionts inducing inflammation and contributing to inappetence,
malnutrition and cachexia seen in dogs with CHF [198].

An interesting study published on 2021 identified, for the first time the relationship
between gut microbial dysbiosis and circulating gut-derived metabolites in dogs with
preclinical mixomatous mitral valve disease (MMVD) or with CHF secondary to MMVD,
compared to healthy dogs [199]. In particular, the authors showed greater alpha and beta
diversities in the gut of healthy dogs than in the dogs with MMVD, identified changes in
five genera and six species of bacteria and clearly demonstrated that the dysbiosis index
progressively increased with the severity of MMVD. Moreover, the dysbiosis index was
inversely associated with Clostridium hiranosis, a key bile acid converter in the gut, while
secondary bile acids promote the growth of beneficial bacteria and inhibit that of harmful
ones. Finally, a positive correlation was identified between the key intermediates of long-
chain fatty acid transport and oxidation, circulating short-chain acyl-carnitines and gut
bacteria Lactobacillus and Megamonas, whose levels are reduced in MMVD dogs [199].

Thanks to these and other studies, the so-called “gut hypothesis” has been confirmed.
According to this hypothesis, gut dysbiosis arises in the preclinical stages of the disease
when no symptoms of cardiac remodeling are detectable, laying the foundations for a
future targeted diagnostic and therapeutic approach. The beneficial or harmful effects of
circulating metabolites of the gut microbiota on endothelium are shown in Figure 5.
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2.2. Gut Microbiota and LPS/TLR4 Signal Transduction

The correlation between microbiota and hypertension has been studied experimen-
tally using numerous animal models including spontaneous hypertensive rats, Dahl-
sensitive rats, angiotensin-II induced hypertensive rats and deoxycorticosterone acetate
(DOCA)-salt mice [200–203]. The results obtained showed that hypertension is accom-
panied by marked differences in the composition of the microbiota and their metabo-
lites. In particular, there is less abundance of SCFA-producing bacteria, less abundance
of Bacteroidetes, more abundance of lactate-producing bacteria and more abundance of
proteobacteria and cyanobacteria [204]. Hypertension has been associated with lower gut
microbial alpha diversity in several cross-sectional studies; in fact a greater abundance of
Gram-negative bacteria has been appreciated, such as Klebsiella, Parabacteroides, Desulfovibrio
and Prevotella [23,205,206]. Gram-negative bacteria are a source of endotoxins, such as
lipopolysaccharides (LPS), which are pro-inflammatory molecules. The potential mecha-
nisms contributing to hypertension development linked to dysbiosis involve: (1) metabolism-
dependent pathways, consisting in a decrease in SCFA and TMAO production; (2) metabolism-
independent pathways: LPS and peptidoglycan translocation [207]. In animal studies, LPS
has been commonly used to induce vascular dysfunction [208], while in human samples the
presence of high levels of LPS in the bloodstream has been identified as “endotoxemia” and
has been correlated with cardiovascular disease and mortality [209]. Lower gut microbial
alpha diversity in hypertension leads to intestinal dysbiosis with impaired integrity of the
intestinal barrier resulting in the entry of LPS into the blood stream. In this way, LPS can
advance intestinal dysregulation creating positive feedback damage. Bacterial endotoxins
are recognized by toll-like receptors (TLRs), 13 integral I-type transmembrane receptors
that play an essential role in hypertension and produce low-grade chronic inflammation,
vascular remodeling, and oxidative stress [210]. TLRs are known for their ability to recog-
nize evolutionarily conserved components of microorganisms, including bacteria, viruses,
fungi and parasites [211]. Among these, TLR4 is the most commonly explored in hyper-
tension. TLR4 binds LPS with the help of LPS-binding proteins and contribution of the
MD-2 protein, stably associated with the extracellular fragment of the receptor. Prolonged
activation of TLR4 is associated with several human neurodegenerative and autoimmune
diseases and cancer [212,213]. When bacterial LPS binds to TLR4, this Complex activates
the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and promotes
the subsequent inflammasome activation [214]. The infammasome serves to promote au-
toproteolysis and activation of caspase-1, which, in turn, cleaves pro-IL-1β and pro-IL-18.
In summary, animal studies suggest a causal link between gut microbiota composition
and BP regulation. In fact, the use of prebiotics has determined the reduction of BP in
hypertensive patients [215]. Despite these favorable outcomes, it is still not clear how TLR4
affects BP under normal and hypertensive conditions and additional and specific studies
should be organized.

2.3. High Salt Intake, Hypertension and Gut Microbiota

In order to maintain the balance of liquids and cellular homeostasis, the human
body needs a very small amount of salt. Over time, however, salt consumption has
increased exponentially both because of a diet based on the “emphasis of flavor” (diet
developed in Western countries), and the development of food technologies that use salt
as a preservative in many foods. The result has been a consumption of a quantity of
salt that exceeds by approximately 20 times the real requirement [216]. Since the human
body is not adapted to expel this large amount of salt, multiple repercussions on our
health have occurred, motivating millions of deaths per year [217]. To date, it is known
that excess salt in the diet is an important risk factor for hypertension and the onset of
cardiovascular disease; for this reason, the American Heart Association has recommended
the correct amount of salt to be taken [218]. The salt should not exceed 2300 mg per day,
although less than 10% of the US population observes this recommendation [219]. In
addition, large numbers of individuals are hypersensitive to salt changes and develop
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BP alterations even if they are normotensive subjects. An excess of salt involves organ
damage in the kidney, vasculature, and central nervous system, although it has recently
been discovered that even the intestinal microbiota and immune cells can perceive excesses
of Na+ and contribute to inflammation and hypertension [220–222]. The involvement of
the gut microbiota has been demonstrated with some experimental evidence: first of all
the transplantation of the intestinal microbiome of hypertensive subjects causes increased
blood pressure in germ-free receiving mice [223]. In addition, germ-free mice are resistant
to hypertension, vascular dysfunction and have less renal and vascular infiltration of
immune cells after infusion of angiotensin II [224]. Both examples of evidence suggest a
causal role of the intestinal microbiome in the development of hypertension. A high salt
intake in the diet modulates both the composition and the function of the microbiota in
rodent models and in humans [225,226]. Several bacterial taxa were observed to be different
between hypertensive and normotensive groups: for example, gut microbiome of both
hypertensive rats and humans is characterized by an increase in the Firmicutes/Bacteroidetes
ratio [227]. High salt administration also reduces the prevalence of Lactobacillus murinus
by increasing the count of splenic pro-inflammatory Th17 cells. Daily administration
of Lactobacillus murinus, as a probiotic therapy, leads to the reduction of Th17 cells and
improves blood pressure in treated rats [228]. Therefore, it can be deduced that the high
salt intake and the reduced abundance of species Lactobacillus generates a mechanism
that causes the interruption of intestinal homeostasis, as well as hypertension. Since the
excessive intake of salt causes an alteration that also involves the gut microbiota, it would
be desirable, in this condition, to take pre and probiotics, which regulate immune function,
improve the intestinal environment, tend to decrease inflammation, increase levels of
SCFAs, Bacteroidetes, Bifidobacterium, and decrease Firmicutes [229,230].

3. Discussion

This review highlights the close connection between hypertension, endothelial dys-
function and gut microbiota. In the first part of the article the meaning of blood pressure
and hypertension was developed. Hypertension is the best known risk factor for devel-
oping heart failure. In fact, chronic hypertension causes cardiac remodeling within the
left ventricle, which culminates in the onset of hypertensive cardiomyopathy and heart
failure [231].To date, it is known that there are numerous factors that prevent proper blood
pressure control, such as unhealthy lifestyle that includes smoking, alcohol abuse, excess
fat and salt in the diet, use of incorrect dosages and/or inappropriate associations of drugs,
poor adherence to treatment, overweight and sedentary lifestyles, or prescription of drugs
that induce hypertension including nonsteroidal anti-inflammatory drugs, antidepressants,
steroids, nasal decongestants and oral contraceptives [232]. Non-pharmacological recom-
mendations for the control of hypertension include weight loss, limited salt and alcohol
intake, use of the Dietary Approaches to Stop Hypertension (DASH) diet, high in fruits
and vegetables, and intensification of physical activity [233,234]. Although antihyperten-
sive drug treatment is a well-established strategy, hypertension remains poorly controlled
worldwide for the following reasons: (1) not all the pathophysiological mechanisms un-
derlying hypertension are fully neutralized by the various classes of pharmacological
treatments currently available and (2) the counter-regulatory mechanisms activated by
these drugs can reduce their hypotensive effect [235–237]. The second part of this review
delves into the correlation between hypertension and endothelial dysfunction. In fact, it
has been shown that morphological and functional alterations of the endothelium also
occur in hypertension, as evidenced by the accumulation of subcutaneous fibrin, by the
infiltration of endothelial cells, by alterations in NO-mediated processes and by variations
in endothelium-dependent vascular tone. Furthermore, the essential role of the endothe-
lium in the control of inflammation, vascular function, thrombosis and proliferation, makes
it particularly involved in hypertension. For this reason, endothelial dysfunction should
be considered a central focus for the treatment of hypertension. Several treatments for en-
dothelial dysfunction have been tested for the management of hypertension and, although
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they have provided promising results, further studies are needed [238,239]. Finally, the
third part of this review explores the possible correlation existing between hypertension
and the gut microbiota. Despite limited studies, it is now known that not only there is
a link between hypertension and endothelial dysfunction but also between endothelial
dysfunction and gut microbiota. Indeed, animal models of hypertension have shown
concomitant intestinal pathologies and dysbiosis [240,241]. Furthermore, hypertension has
been observed to become more pronounced with increased intestinal permeability, fibrosis,
decreased calyx cells and villous length in the small intestine [242]. The gut microbiota is
capable of releasing certain metabolites which have different effects on endothelial function
and blood pressure. Among these, SCFAs, TMAO and uremic toxins may or may not be
beneficial for both the endothelium and the control of hypertension [243]. Alongside the
great advances made in understanding the important role of gut microbial dysbiosis on
hypertension and also other severe cardiovascular diseases in humans and in experimental
rodent models, a great deal of attention has turned, in the research, to companion animals
such as the dogs and cats. Thanks to the scientific data collected so far, the so-called
“gut hypothesis” has been corroborated. According to this hypothesis, the presence of
gut dysbiosis could represent early evidence connected to the subsequent onset and pro-
gression of hypertension and other cardiovascular diseases when, however, there are no
detectable symptoms, thus serving as a potential therapeutic approach for the treatment of
cardiovascular and metabolic diseases.

4. Conclusions

In conclusion, we suggest that hypertension, endothelial dysfunction, and intestinal
microbiota can be considered as the vertices of the same triangle, which are closely related.
For the improvement of one of these dysfunctions, it is possible to act on the other two.
Despite the data reported in the scientific literature, further confirmatory data would
be needed.
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