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Abstract: Salivary gland regeneration is important for developing treatments for radiation-induced
xerostomia, Sjögren’s syndrome, and other conditions that cause dry mouth. Culture conditions
adopted from tissue engineering strategies have been used to recapitulate gland structure and
function to study and regenerate the salivary glands. The purpose of this review is to highlight
current trends in the field, with an emphasis on soluble factors that have been shown to improve
secretory function in vitro. A PubMed search was conducted to identify articles published in the
last 10 years and articles were evaluated to identify the most promising approaches and areas for
further research. Results showed increasing use of extracellular matrix mimetics, such as Matrigel®,
collagen, and a variety of functionalized polymers. Soluble factors that provide supportive cues,
including fibroblast growth factors (FGFs) and neurotrophic factors, as well as chemical inhibitors of
Rho-associated kinase (ROCK), epidermal growth factor receptor (EGFR), and transforming growth
factor β receptor (TGFβR) have shown increases in important markers including aquaporin 5 (Aqp5);
muscle, intestine, and stomach expression 1 (Mist1); and keratin (K5). However, recapitulation of
tissue function at in vivo levels is still elusive. A focus on identification of soluble factors, cells,
and/or matrix cues tested in combination may further increase the maintenance of salivary gland
secretory function in vitro. These approaches may also be amenable for translation in vivo to support
successful regeneration of dysfunctional glands.

Keywords: salivary gland; tissue engineering; cell culture; soluble cues; media optimization

1. Introduction

Salivary glands are organs that produce saliva, an aqueous fluid that contains enzymes,
electrolytes, mucins, and other components that aid in lubricating the mouth, preliminary
digestion, and antimicrobial and buffering activity to prevent oral infections [1]. There
are three major pairs of salivary glands—the parotid, submandibular and sublingual—as
well as numerous minor salivary glands located throughout the mouth [2]. The general
gland structure consists of clusters of acinar cells, which secrete the proteins/fluid, and
ductal cells, which modify the composition of the saliva and transport it into the oral
cavity (Figure 1). There are also myoepithelial cells that surround the acinar units and
other supportive tissues, including blood vessels, providing an exchange of nutrients and
waste, and nerves, which play a key role in stimulating the glands to secrete [1]. More
extensive reviews of salivary gland anatomy, physiology, and development can be found
elsewhere [1,3–5].
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Figure 1. Schematic of the three major types of salivary glands, general gland structure, and major functions of saliva. 
Created with BioRender.com. 

The normal function of the salivary glands can be diminished by several conditions, 
such as off-target damage from radiation treatment for head or neck cancer, the autoim-
mune disease, Sjögren’s syndrome, some systemic conditions including diabetes and neu-
rological diseases, and a vast array of medications, including anti-hypertensives, β-block-
ers, antidepressants, and many others [2,6,7]. The mechanisms underlying salivary gland 
dysfunction are not well understood and may vary greatly depending on the cause [6]. 
Therefore, existing treatments, including lubricating mouthwashes, gels, chewing gum, 
and sprays only ameliorate symptoms and provide temporary relief. Sialogogues that 
stimulate parasympathetic pathways, such as pilocarpine and cevimeline, have also been 
used, but success requires the patient to have some residual salivary function and they 
can cause systemic side effects [6]. Specific to radiation-induced salivary gland dysfunc-
tion, prevention is feasible by treating with amifostine, a reactive oxygen species scaven-
ger, and/or utilizing intensity-modulated radiation therapy (IMRT), which is a targeted 
approach to avoid direct radiation to the parotid glands, but these methods come with 
drawbacks as well [6,8]. For example, amifostine can cause severe adverse side effects, 
including nausea, vomiting, allergic reactions, and hypotension, resulting in the need to 
discontinue treatment in up to 40% of cases [9]. Additionally, while IMRT has shown a 
benefit in preserving the saliva flow rate, patients may still suffer symptoms of xerosto-
mia, possibly due to changes in saliva composition [10] and further, IMRT may not be 
possible based on tumor location [11]. Ultimately, incomplete understanding of the mech-
anism leading to salivary gland dysfunction has hindered the development of alternative 
treatment strategies and radioprotective drugs. 

The use of in vitro culture systems would be useful to gain more knowledge on the 
mechanisms leading to salivary gland dysfunction as well as enable the development of 
new therapies, such as cell transplantation, the discovery of new radioprotective drugs, 
and methods to regenerate the damaged gland. However, culture of salivary glands has 
historically been difficult due to the rapid loss of secretory phenotype and function in 
vitro. For example, the characteristics of secretory acinar cells, such as mucin biosynthesis 
[12] and amylase production [13], decrease significantly after 1 day in culture. Expression 
of Mist1 (bHLH15a), a transcription factor necessary to specify the acinar cell phenotype 
[14], drops significantly as well [15,16]. Thus, tissue engineering approaches have been 
leveraged to address the requirement of functional tissue to enable drug discovery and 
screening, regeneration, and fundamental studies. In this review, we will discuss trends 
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The normal function of the salivary glands can be diminished by several conditions,
such as off-target damage from radiation treatment for head or neck cancer, the autoimmune
disease, Sjögren’s syndrome, some systemic conditions including diabetes and neurolog-
ical diseases, and a vast array of medications, including anti-hypertensives, β-blockers,
antidepressants, and many others [2,6,7]. The mechanisms underlying salivary gland
dysfunction are not well understood and may vary greatly depending on the cause [6].
Therefore, existing treatments, including lubricating mouthwashes, gels, chewing gum, and
sprays only ameliorate symptoms and provide temporary relief. Sialogogues that stimulate
parasympathetic pathways, such as pilocarpine and cevimeline, have also been used, but
success requires the patient to have some residual salivary function and they can cause
systemic side effects [6]. Specific to radiation-induced salivary gland dysfunction, preven-
tion is feasible by treating with amifostine, a reactive oxygen species scavenger, and/or
utilizing intensity-modulated radiation therapy (IMRT), which is a targeted approach to
avoid direct radiation to the parotid glands, but these methods come with drawbacks as
well [6,8]. For example, amifostine can cause severe adverse side effects, including nausea,
vomiting, allergic reactions, and hypotension, resulting in the need to discontinue treat-
ment in up to 40% of cases [9]. Additionally, while IMRT has shown a benefit in preserving
the saliva flow rate, patients may still suffer symptoms of xerostomia, possibly due to
changes in saliva composition [10] and further, IMRT may not be possible based on tumor
location [11]. Ultimately, incomplete understanding of the mechanism leading to salivary
gland dysfunction has hindered the development of alternative treatment strategies and
radioprotective drugs.

The use of in vitro culture systems would be useful to gain more knowledge on the
mechanisms leading to salivary gland dysfunction as well as enable the development of
new therapies, such as cell transplantation, the discovery of new radioprotective drugs,
and methods to regenerate the damaged gland. However, culture of salivary glands has
historically been difficult due to the rapid loss of secretory phenotype and function in vitro.
For example, the characteristics of secretory acinar cells, such as mucin biosynthesis [12] and
amylase production [13], decrease significantly after 1 day in culture. Expression of Mist1
(bHLH15a), a transcription factor necessary to specify the acinar cell phenotype [14], drops
significantly as well [15,16]. Thus, tissue engineering approaches have been leveraged
to address the requirement of functional tissue to enable drug discovery and screening,
regeneration, and fundamental studies. In this review, we will discuss trends in salivary
gland tissue engineering over the past decade with advantages/disadvantages of different
culture methods. We identify areas of research that provide opportunities to improve
in vitro culture of functional salivary gland tissue.
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2. Materials and Methods

A literature review was conducted by searching for “salivary gland culture in vitro”
in the PubMed database on 4 March 2021. The results were restricted to the past 10 years,
giving a total of 320 articles. The results were screened to remove review articles and articles
that did not contain in vitro culture, used nonmammalian cells, cultured only unhealthy
tissue (ex. samples from a Sjögren’s syndrome or salivary gland cancer patient), or used
non-salivary gland cell sources (ex. adipose, bone marrow, dental pulp) to differentiate
into salivary gland-like structures. While these approaches are beneficial in expanding
knowledge on the salivary gland, they likely demand vastly different culture conditions.

From the remaining 170 articles, various parameters were identified and categorized,
as listed in Table 1. Categories included cell source, cell maturity, cell species, and gland
type. Cell source was divided into Primary cells, Cell line, or Both while cell maturity
indicated whether the study used Adult, Embryonic, or Both types of tissue; cell lines were
considered under the Adult category. Cell species was split into Human, Mouse, Rat, Other,
and Multiple; Other consisted of rarely used species (porcine, rabbit) and Multiple contained
studies that used more than one cell species. Gland type was classified as Submandibular,
Parotid, Minor (i.e., labial or other minor salivary glands), Other, or Multiple. Other consisted
of sublingual or unspecified gland types while Multiple referred to studies that used more
than one gland type.

Table 1. Categorization of information extracted from selected articles.

Cell Source Cell Maturity Cell Species Gland Type Media Type Substrate

Primary

Cell line

Both

Adult

Embryonic

Both

Human

Mouse

Rat

Other
Multiple

Submandibular
Parotid

Minor

Other

Multiple

Growth Factor

Serum

Commercial

Matrix mimetic

Plastic

Transfer

Specialized

Multiple

Membrane

Unreported

Media type was divided into three groups based on the use of Growth Factors, such as
epidermal growth factor (EGF) or fibroblast growth factor (FGF), the use of Serum including
fetal bovine serum (FBS) and fetal calf serum (FCS), or Commercial media that contains
proprietary or specialized additives optimized for a specific cell type. Overlap between
these categories was considered. Individual media components were also extracted and
listed separately.

Substrates were categorized into six groups: Matrix mimetic, Plastic, Transfer, Specialized,
Multiple, Membrane, and Unreported. Matrix mimetic refers to substrates that are intended
to mimic the function of the extracellular matrix (ECM) and was further divided into
collagen, Matrigel®, and polymer sub-categories. Plastic indicates any kind of tissue
culture polystyrene substrate, such as tissue culture plates, culture flasks, and Petri dishes.
No distinction was made between tissue culture-treated and suspension plates, as this
was often not reported in the literature. Transfer refers to cells that were cultured on
one substrate and then transferred to another (ex. plastic for 7 days, then transferred
to Matrigel®). Specialized includes commercially available platforms, such as hanging
drop and GravityTRAP™ plates for 3D cell culture. The Membrane category contains
substrates such as Transwells® and Nuclepore™ polycarbonate filters. Multiple was used
to classify articles that used multiple substrates or combined substrates from the other
defined categories. Unreported was used to describe articles that did not clearly state the
substrate used.

Venn diagrams were created in JMP Pro 15.0.0 (SAS, Cary, NC, USA) using a Venn
Diagram add-in. All other graphs were made in Prism (GraphPad, San Diego, CA, USA)
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version 8.4.3. Figures 1 and 2 were created with BioRender.com (Science Suite, Inc., Toronto,
ON, Canada).
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for the salivary gland is in its infancy [20]. Thus, the majority of studies evaluated use 
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Figure 3D), likely due to the relatively large cell yield and superficial location of the sub-
mandibular gland in mice [21] and the fact that the submandibular gland is the most well-
studied in mice [15,16,22–25]. 

Figure 2. Schematic of the tissue engineering triad as it relates to salivary gland cell culture strategies
with examples of a complete culture system.

3. Trends in In Vitro Salivary Gland Tissue Culture

The tissue engineering paradigm is typically comprised of three main components:
cells, matrix, and soluble cues. Each of these components alone, as well as the intercon-
nectedness between these three branches have important implications on the success of
culture methods. To accurately recapitulate the structure and function of native tissue, the
choice of cell source and the biophysicochemical cues provided to cells are key factors in
determining the success of the culture with broader impacts on experimental significance.
Here, we review the cells, matrices/substrates, and soluble factors and highlight some
of the combinatory approaches that have utilized multiple categories, summarized in
Figure 2. We also discuss the most beneficial approaches and identify opportunities for
further research.

3.1. Cells

Cells are the central aspect of the tissue engineering paradigm. For the salivary
glands, cell lines do not accurately represent all characteristics of normal salivary gland
tissue [17] and many of these cell lines are contaminated with HeLa cells, including the
most commonly use HSG cell line [18,19]. Additionally, pluripotent stem cell technology
for the salivary gland is in its infancy [20]. Thus, the majority of studies evaluated use
primary cells for culturing salivary gland cells (76%, Figure 3A). Cells are most commonly
sourced from adult tissue (77%, Figure 3B) of either mouse or human origins (42% and
40%, respectively, Figure 3C). The submandibular gland is the most frequently used (62%,
Figure 3D), likely due to the relatively large cell yield and superficial location of the
submandibular gland in mice [21] and the fact that the submandibular gland is the most
well-studied in mice [15,16,22–25].
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percentage frequency of the (A) cell source, (B) cell maturity, (C) cell species, and (D) gland type in
the articles analyzed in this review.

Primary cultures from adult tissue typically start with dissociation of the entire gland,
containing acinar, duct, and myoepithelial cells. While some groups dissociate glands into
single cells [23,26], others have highlighted the importance of maintenance of partial tissue
structure to retain cell-cell contacts to promote 3D morphology and polarization [27–30].
For embryonic cultures, tissues are commonly grown as explants on a membrane with an
air-liquid interface [31–33], although they can also be dissociated similar to adult tissue.
In some cases, cells are selected for specific subpopulations using flow cytometry and/or
selective enhancement during in vitro culture for putative stem cell markers such as CD24
and CD29, Kit, or K5 [34–37]. These studies typically aim to develop a cell transplantation
strategy for regenerating the glands.

Co-cultures of salivary gland cells with other cell types, such as mesenchyme and
nerves, have been investigated to support secretory function. For example, mouse cortical
neurons were shown to self-organize around salivary gland cells similar to native tissue [38].
A crucial next step will be to determine if the neurons promote acinar characteristics in this
model. Vining et al., 2019 showed that salispheres only undergo branching morphogenesis
when combined with mesenchyme and parasympathetic ganglion in the presence of
neurturin-containing matrices [23]. In addition, co-cultured endothelial cells were required
for proper salivary gland epithelial patterning in embryonic explants [39]. These studies
highlight the complexity of salivary gland tissue engineering and the need to consider
multiple cell types. Further development in this area will be beneficial for creating a
hierarchical tissue structure, as well as continued development of iPSC models.

3.2. Matrices/Substrates

The extracellular matrix (ECM) is a network of proteins, glycosaminoglycans, and
proteoglycans that fills the intracellular space and provides structural and adhesive motifs
that can influence a wide variety of cell functions such as proliferation, differentiation, and
migration [40]. In the salivary gland epithelium, the ECM and basement membrane consist
of laminin, collagen I, collagen IV, and fibronectin with binding sites for β1, β4, α5, and α6
integrins, among others [41]. These ECM proteins and their integrins orchestrate events
during salivary gland development and homeostasis including branching morphogene-
sis, cleft formation, apico-basal polarization, adhesion, growth, and migration, and can
influence intracellular signaling.
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Given their importance in affecting cell behavior, it is not surprising that matrix mimet-
ics were commonly used for salivary gland in vitro studies over the past decade (28%,
Figure 4A). Of these, Matrigel®, collagen, and other polymers (mainly natural polymers)
were equally as common (Figure 4B). Some of these matrices include: chitosan that in-
creases salisphere size and number without increasing the size of the lumens, which are
hollow openings within the spheroid [25]; hyaluronic acid-catechol that increases branch-
ing proliferation [42]; Matrigel® that promotes 3D structure, amylase activity, tight junction
formation and transepithelial resistance (TER) [43,44]; other laminin-containing matrices
that can promote morphogenesis and Aqp5 expression in combination with FGF2 [22];
laminin hydrogels that induced branching morphogenesis and maintained epithelial pro-
genitors [23]; matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG)
hydrogels that were found to promote polarized expression of zona occludins (ZO-1) and
sodium potassium chloride channel 1 (Nkcc1) [15]; and human placenta basement mem-
brane extract or fibronectin that were shown by transmission electron microscopy (TEM) to
enhance tight junction formation [44].
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Poly(styrene) substrates (tissue culture plates, Petri dishes, etc.) were the second
most common culture platform, which were predominantly used for salivary gland cell
lines (Figure 4C). Membranes (Nucleopore filters, Transwells) and multiple substrates
(culturing on a Matrigel® for some experiments and plastic for others) were more common
for embryonic cells (Figure 4D). These polystyrene and coated substrates are standard, as
many embryonic studies use explants and thus retain the structure of the developing gland
without the need for extensive substrate engineering efforts.

Other substrates include: micropatterned PDMS-based craters with electrospun
poly(lactic co glycolic acid) (PLGA) that were reported to increase the tight junction protein
occuldin expression and expression of water channel Aqp5 [45]; poly(glycerol sebacate)
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(PGS)/PLGA core/shell nanofiber scaffolds that were reported to promote apical localiza-
tion of tight junction proteins and tissue organization when combined with mesenchymal
cells [46]; hanging drop cultures that were reported to produce microtissues mimicking
tissue development [47]; and decellularized porcine gut matrix co-cultured with salivary
gland cells and microvascular endothelial cells that were reported to promote amylase,
claudin-1, and Aqp5 expression compared to 2D [48].

3.3. Soluble Cues

Soluble cues are typically provided to the cells through media supplementation. Salivary
gland media commonly consists of Dulbecco’s Modified Eagle Medium (DMEM)/Ham’s
F12 Nutrient Mixture with a variety of basic supplements to support cell growth in vitro,
such as insulin, glutamine, transferrin, and antibiotics. Both serum-containing and growth
factor-based media are common (Figure 5A), with EGF and FGF2 as the most common
growth factors (Figure 5B). Use of commercial media, including HepatoSTIM, keratinocyte
growth media (KGM), and bronchial epithelial growth medium (BGM), are becoming
more common, although no salivary gland-specific media exists to date. There was sig-
nificant overlap between different categories (ex. serum-containing media that was also
supplemented with growth factors) as indicated by the Venn diagram in Figure 5A, sug-
gesting that a variety of soluble cues are used to promote salivary gland cell growth, but
specific studies contrasting individual benefits are lacking. Serum-containing media was
more heavily used for culturing cell lines (Figure 5C), while Vitamin C (ascorbic acid) and
transferrin were the main components of the media used for embryonic cells (Figure 5D),
suggesting that cells may require a different optimized medium depending on cell source
and cell maturity. A summary of some of the more promising soluble factors are provided
in Table 2 and discussed further in the following sections.
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Table 2. Soluble factors and matrices for improving cultured cell function.

Soluble Factor Cells Substrate/Matrix Outcomes

Fibroblast growth
factor 10 (FGF10) Human submandibular Matrigel®

Increased Mist1, AQP5, α-amylase
and α-SMA, decreased K5,

promoted budding with no effect
on organoid size, increased

carbachol-induced calcium release

[49]

Epidermal growth
factor receptor (EGFR)

inhibitor

Mouse E16
submandibular Nuclepore filter EGFR inhibitor AG1478 retained

epithelial cells and AQP5 [22]

Transforming growth
factor β receptor I
(TGFβRI) inhibitor

Mouse submandibular Matrigel®

Treatment with TGFβ and
TGFβR-I inhibitor SB525334

increased expression of amylase-1,
Aqp5, ZO-1, Occuldin, Fgf7 and

Fgf10 but not collagen type I when
cultured on Matrigel and

increased the size of acinar clusters

[50]

Epiregulin Mouse submandibular Collagen-coated
culture dish

Increased cell proliferation and
levels of EGFR ligands epiregulin,
HB-EGF, amphiregulin and TGFα

[51]

Insulin-like growth
factor I (IGF-I)

SMIE cell line (rat
submandibular)

Collagen-coated
Transwell

Treatment with 100 ng/mL IGF-I
maintained cell number, cell

viability, tight junction expression
and localization and paracellular

barrier function

[52]

Rho-associated protein
kinase (ROCK)

inhibitor Y-27632
Mouse submandibular Matrigel®

Enhanced growth (cell numbers),
survival (Live/Dead),

proliferation (EdU), motility
(scratch assay), maintained

α-amylase expression and induced
C-Met expression

[53]

Neurotrophin 4 (NT-4) Human parotid Cell culture plate
Highest levels of intracellular and

secreted α-amylase at 1 ng/mL
NT-4

[54]

Neurturin (NRTN)

Mouse or human
submandibular with

E13 mesenchyme and
neuronal cells

Laminin-111 hydrogel Initiated branching, innervation
and self-aggregation of spheres [23]

Neureglin 1 (NRG1) Human parotid Cell culture plate
Promoted branching and retention

of acinar-like cells in
submandibular

[54]

Wnt and R-spondin
conditioned media Mouse submandibular Matrigel®

Increased population doubling
and sphere-forming efficiency [55]

Mesenchymal stem cell
(MSC) conditioned

media
Mouse submandibular Matrigel® or laminin-1

Increased acinar-like structure and
when combined with laminin-111,

increased AQP5 and K14 and
decreased in α-SMA compared to

fresh submandibular gland

[56]

p38 MAPK
inhibitor/Src inhibitor Rat parotid Collagen-coated dish or

cell culture insert Reduced cell stress [57]

AQP5: aquaporin-5; α-SMA: α-smooth muscle actin; K5: keratin 5; K14: keratin 14; Nkcc1: sodium-potassium-chloride channel 1; ZO-1:
zonula occludens 1; HB-EGF: heparin-binding EGF-like growth factor; TGF-α: transforming growth factor-α.
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3.3.1. Growth Factors

Growth factors are important in salivary gland development, with FGFs contributing
to branching morphogenesis and end bud formation [58,59], while EGF contributes to
cell proliferation and differentiation along the ductal lineage [60]. EGF was added to the
media in nearly all the studies using primary tissue, along with FGF2 in 25% of studies
(Figure 5C). Other growth factors that are important to salivary gland development but
are less commonly used include FGF7, which is reported to promote end bud formation,
and FGF10, which enhances duct elongation [59]. Similarly, Miyajima et al., 2011 reported
FGF7-induced bud expansion and FGF10-induced duct elongation, but no effect of EGF
was observed on branching morphogenesis [24]. Additionally, FGF10 has been shown to
increase Mist1, Aqp5, α-amylase, and α-SMA while decreasing K5 [49]. Insulin-like growth
factor-1 (IGF-1) has been shown to support growth and maintenance of the paracellular
barrier function (tight junction localization, TER, dextran permeability) at levels similar
to supplementation with FBS, indicating that IGF-1 could be used to replace some of the
functions of FBS in a serum-free media [52].

3.3.2. Chemical Inhibitors
ROCK Inhibitor

Rho-kinases (ROCKs) mediate important processes such as proliferation, motility, se-
cretion, and cell shape [61]. In the salivary gland specifically, ROCKs play an important role
in cleft formation and basement membrane positioning in epithelial tissue polarity [62,63].
In cell culture, ROCK inhibitors have been used to prevent dissociation-induced apoptosis
and preserve stem cell populations [64,65] and thus have been used to promote cell survival
in vitro in many different tissue types [64,66–68]. Additionally, it has also been shown that
ROCK activation can lead to the formation of acinar-to-ductal metaplasia under chronic
pancreatitis conditions [67], suggesting that ROCK inhibition may prevent undesirable
cell plasticity.

ROCK inhibitor Y-27632 has been shown to enhance cell growth, survival, proliferation
and amylase and c-Met expression in salivary gland cultures [53] as well as increase sphere
forming percent of CD24hi/CD29hi cells [35]. However, the effect of ROCK inhibitor
treatment may be dependent on other factors present in the culture media. Koslow et al.
2019 found an increase in sphere number, size, and proliferation and a decrease in cleaved
caspase 3 in serum-free media; however, the increase in sphere size was not apparent in
serum-containing media [69]. Additionally, it may promote different cell populations—Y-
27632 in serum-free media increased Kit+ cells, while K5+ cells were increased in serum-
containing media [69], suggesting it may promote different cell phenotypes altogether.
Y-27632 has been used in culturing several other tissues (pancreas, prostate, lacrimal
gland) to decrease cell stress [66–68], which may account for the increased growth in
ROCK inhibitor-treated cultures. Conversely, it has also been shown to prevent salisphere
formation [25] and cause cells to spread out and adhere to the surface instead of forming
aggregates [25,53]. This may be a drawback to using Y-27632, since the increase in adhesion
likely leads to a loss of 3-dimensional structure, organization, and, consequently, the
secretory function of the salivary gland cells.

EGFR Inhibitors

The epidermal growth factor receptor (EGFR) modulates various processes, including
proliferation, differentiation, and survival [70], and is involved in branching morphogenesis
during salivary gland development [71]. However, aberrant EGFR signaling can lead to
cancer and other diseases [70] and EGFR inhibition has been used as treatment for breast,
lung, and colorectal cancer [67–69].

Several EGFR inhibitors have been used in salivary gland culture, including AG1478,
PD198509, PD168393, and EKI-785. AG1478 retained epithelial cells and AQP5 [22], while
PD198509 did not affect K5, K19, Kit, sphere diameter or sphere count [23] and PD168393
inhibited carbachol (CCh)-mediated morphogenesis and proliferation of K5+ and K19+
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cells [60]. This suggests that EGFR inhibitors may be beneficial in promoting acinar
cells/AQP5 expression, but not keratin-expressing duct cells. This is supported by the role
of EGFR signaling in duct morphogenesis and differentiation and proliferation of the duct
lineage [72] and by pancreas literature in which EKI-785 was used to prevent the transition
of acinar cells into duct-like clusters in vitro [73]. This also highlights a key consideration
in the selection of an optimized media—different goals may warrant different soluble cues.
For example, researchers interested in isolating K5+ or Kit+ cells may benefit from having
ROCK inhibitor in their media, but not EGFR inhibitor.

TGFβR Inhibitors

TGFβ has multiple roles in the salivary gland—it is important during morphogen-
esis [74], but it is also upregulated following stress, a major driver of fibrosis [75] and
overexpression of TGF-β1 can lead to acinar loss [72,76]. Hence, it has been studied in
salivary gland culture with different outcomes. The TGFβR inhibitor, RepSox, promoted
cell growth, proliferation, expression of keratins 8, 14, and 19 and was selective for p63-
expressing cells [77], while treatment with SB525334 increased acinar characteristics [50].
Since both inhibitors target TGFβR1, differences between these outcomes could be due to
inhibitor potency, differences in culture conditions (tissue culture plate with commercial
CnT-PR media [77] vs. growth factor-reduced Matrigel with DMEM/N2 media [50]), or
difference in cell source (embryonic [77] vs. adult [50]).

3.3.3. Neurotrophic Factors

The salivary gland is highly innervated, and salivation is controlled by the auto-
nomic nervous system [78]. Hence, adding neurotrophic factors to the culture media
has been widely considered as an alternative to the complexity of co-culturing salivary
gland cells with nerve cells. Results show that treatment with different nerve factors
has positive effects on salivary gland cultures. Neurotrophin 4 (NT-4) increased levels of
amylase [54], neurturin (NRTN) initiated branching and innervation [23], and neureglin
1 (NRG1) promoted branching and retention of acinar-like cells [79]. This is supported
by a myriad of publications highlighting the importance of neurotrophic factors such
as neurturin and glial cell-derived neurotrophic factor (GDNF) for development of the
salivary gland [60,78,80–83].

3.3.4. Conditioned Media

Conditioned media from a variety of sources has also been shown to improve salivary
gland cell culture. Wnt and R-spondin conditioned media increased long-term expansion of
salivary gland stem cells in vitro, with increased population doubling and sphere-forming
efficiency [55]. Mesenchymal stem cell (MSC)-conditioned media increased acinar-like
structures and Aqp5 and K14 when combined with laminin-111 [56]. Fibroblast-conditioned
media increased amylase protein levels [84] and amylase expression [54] but was dependent
on the substrate the fibroblasts were grown on [54].

3.3.5. Soluble ECM Proteins

In addition to variations in the biomaterials used for the matrix, soluble ECM pro-
teins have also been used to provide signaling cues to the salivary gland cells as media
additives. For example, fibronectin induced branching and ductal elongation [85], which
was enhanced with FGF7. Salivary gland ECM extract (s-Ecx) promoted a compact sphere
structure and increased expression of keratins (K5, K7, K14, K19) and acinar markers
such as Aqp5 and Muc-1 [86]. Chitosan has been shown to increase spheroid size and
polarization [25], with the greatest effect from soluble chitosan.

4. Opportunities for Future Research

Some of the most promising approaches for salivary gland cell culture involve the
combination of the tissue engineering triad—cells, matrices, and soluble cues. While certain
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substrates have been shown to promote growth and expression of acinar markers, matrices
are more relevant to the in vivo environment and versatile, providing structure, signaling
through integrins, allowing for entrapment of signaling molecules and modifications
with matrix motifs. In particular, laminin-based biomaterials have shown promising
results [22,23,35,55,79]; this is supported by the prevalence of laminin in the ECM and
basement membrane of the salivary gland in vivo [41].

Despite the promising polarization supported by matrix mimetics, secretory function
remains limited. This continued challenge points to the need for incorporating combinatory
approaches that optimize the matrix along with the other arms of the tissue engineering
paradigm. While a number of groups have tested one or two matrix and/or media
conditions, a large scale, combined media, and matrix optimization has not been done. In
addition, analysis of how these factors affect a wide variety of markers, both acinar and
duct, would be beneficial for more widespread adoption across the field.

Increasing complexity of models by introducing mesenchyme and neurons will enable
more representative tissue mimetics for fundamental biology studies. However, simplicity
may be desired in other cases for increased convenience, lower costs, and ease of data
interpretation. Thus, it would be beneficial to investigate the specific function provided
by supportive tissues and whether media supplementation or matrix modification can
produce the same results.

5. Conclusions

Traditional salivary gland tissue engineering approaches fail to provide the necessary
conditions to promote secretory function. Researchers have addressed this issue by co-
culturing with neural or mesenchymal tissue, investigating different biomaterials and
supplementing culture media with a variety of soluble cues. A key consideration in
determining the optimal conditions depends on the goal of the work, as some seek to
increase acinar cell characteristics, while others are concerned with increasing expression of
putative stem cell markers or mimicking branching morphogenesis. Specific soluble factors
that have increased the acinar phenotype include FGF10, neurotrophic factors, and EGFR
inhibitors. The use of matrix mimetics, such as Matrigel®, collagen, and functionalized
synthetic polymers, rather than just inert substrates, provide increased opportunities to
improve the acinar cell phenotype. Factors that may improve stem cell maintenance include
ROCK inhibitors and Wnt/R-spondin conditioned media, with mixed results from TGFβR1
inhibitors and MSC-conditioned media.

Based on the current state of the field, this study has revealed there is room for further
optimization to recapitulate the in vivo salivary gland using in vitro culture models. Stud-
ies are needed to simultaneously optimize the combination of soluble factors with matrix
cues and it is intriguing to consider improvements that maybe gained by co-culturing
salivary glands cells with supportive tissues, such as neural or mesenchymal tissue as
described by Vining et al., 2019 and Hosseini et al., 2018. Other pioneering approaches
could include the use of microfluidic devices or 3D printing technology to aid in increasing
the complexity and relevance of cell culture models, such as those developed for other
tissues [87–91].
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