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Advancing battery design based 
on environmental impacts using 
an aqueous Al‑ion cell as a case 
study
N. Melzack

The drive to decarbonise our economy needs to be built into our technology development, particularly 
in the energy storage industry. A method for creating performance targets for battery development 
based on environmental impact is presented and discussed. By taking the environmental impact 
assessments from existing lithium-ion battery technology—it is possible to derive energy density, 
cycle life and % active material targets required to achieve equal or better environmental impacts 
for emerging technologies to use. A parameter ‘goal space’ is presented using this technique for an 
aqueous aluminium-ion battery in its early development. This method is based on the main reason for 
battery technology advancement—the mitigation of climate change and the reduction of overall CO2 
emissions in society. By starting out with targets based on emission data, sustainability will be at the 
centre of battery research, as it should be.

Continued development and improvement of energy storage technologies are a major driver for battery research. 
Therefore, it is important that the goals of research match the goals of industry in terms of performance met-
rics (such as available power, energy, lifetime). These goals can be based on a mix of customer expectations or 
requirements—this is driving the research into ‘fast charging’ electric vehicles, aimed to mimic the ease of a petrol 
station1. The goals may also be based on theoretical energy density, or the specific requirements of an assumed 
application, such as stationary storage2–5. Presently, many battery technologies are now setting goals based on 
competing with the current market—namely Li-ion which has a monopoly on battery technology. This is mainly 
defined in terms of capacity, cycle life and temperatures over which a battery operates. However, as the pressure 
to electrify our society is primarily driven by the need to reduce CO2 emissions and promote sustainable develop-
ment—it may be useful to use environmental impacts as a means of setting performance goals.

The life cycle assessment (LCA) is a tool used to determine the overall environmental impacts of a product 
life cycle. From the acquisition of raw materials, through manufacturing, use and end-of-life, the impacts for a 
variety of categories can be estimated, such as global warming potential (GWP), water use, and o-zone depletion 
in the upper atmosphere. Importantly though, environmentally informed decisions can then be made based 
on these estimates, to reduce impacts in future product iterations. There have been many studies looking at 
the environmental impact of a range of battery technologies, including Li-ion6–8 as well as sodium-ion9,10 and 
aluminium-ion battery technologies2,11,12. Other energy storage devices, such as capacitors and supercapacitors 
have also been subject to these environmental impact assessments13,14.

This paper proposes the use of existing LCA information for established energy storage technology (i.e. 
capacitors and lithium-ion batteries) to derive environmentally based performance goals for future technolo-
gies. In using this approach, goals become being at least as good as, if not better, for the environment than the 
contemporary technology—which again, is the main driver for the transition to energy storage systems. Using 
an example emerging technology—the aqueous aluminium-ion battery15—performance goals will be derived 
based on the GWP of Li-ion batteries (from16,17).

An initial LCA of the aqueous Aluminium-ion (aq. Al-ion cell)11 provides the current state of the technology, 
which is still a bench-based design at a low technology readiness level (TRL) of 1/2. This battery is an interesting 
example, as it behaves much like a supercapacitor in that it has a high power discharge compared to its energy 
density17. Aluminium as an energy storage choice presents itself as inherently sustainable—it is the most abundant 
metal in the earth’s crust18,19, and there is already an established circular economy for this metal, including the 
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recycling and re-use18,20–22. Compared to lithium, which is scarce (0.002% earth’s atmosphere, compared to ~ 8% 
for Al19) and has no established recycling route23–25. Further, Al has a high density (2.7 g cm3 @25 °C) leading to a 
volumetric energy density of nearly four times Lithium, 8.04 Ah cm−3 and 2.06 Ah cm−3 respectively26–28. Metallic 
Al also has high theoretical energy capacity and energy density (2981 mAh g−1 and 4140 Wh kg−1 respectively). 
When viewing this alongside the high abundance, safety and established circular supply chain—the sustainability 
of Al as a charge carrier becomes clear.

The early stage of the aq. Al-ion technology means there is scope to tailor its development direction, and 
using the method laid out in this paper, that direction can be towards sustainability. Both the functional energy 
density of the battery and the overall proportion active material goals will be set.

The functional energy density of a battery is defined by the amount of energy it can produce over its useful 
lifetime, defined as (Eq. 1)

We can improve this metric for a given battery by focusing on increasing the energy density of the cell itself 
over one discharge and/or increasing the number of cycles over the lifetime. If this can be achieved in tandem 
with development of more sustainable manufacturing practices, such as energy efficiency and less waste pro-
duced, then the overall environmental impacts can be reduced. By increasing the active material proportion of 
the battery design (the useful material that performs the electrochemical reactions), this means less support 
material (such as battery casing) will be required per kWh produced.

Results
Functional energy density.  The current reported functional energy density for the aq. Al-ion cell is 
26.5 kWh kg−115. This value combines the reported lifetime of 1750 cycles, with the reported discharge energy of 
~ 15 Wh g−115. This is based on the mass of active material within the cell, and not the total mass of the battery. 
An average Li-ion cell has a functional energy density of ~ 500 kWh kg−16,29 when used in an electric vehicle. 
If, however we look at the required functional energy density of the aq. Al-ion cell to match the GWP of Li-ion 
(based on values from16), we see a different value − 200.7 kWh kg−1. This is the performance value required to 
be competitive with Li-ion on GWP, the competitive functional energy density (CFED). While still an order of 
magnitude larger than the current reported value, it is about 40% that of Li-ion technology itself. There are six-
teen impact categories reported in both11,16 and the CFED for each category is presented in Table 1.

The CO2/GWP values are plotted in Fig. 1 rounded to the nearest 100 kWh kg−1. To compete on GWP for 
example, if we did not increase the discharge capacity from 15 Wh kg−1, and focussed mainly on increasing cycle 
life—the performance goal would become 14,000 cycles. This value would require developments to increase cell 
lifetime by 12,250 cycles. This goal may be attainable, as the individual electrodes of the aq. Al-ion cell have been 
reported as having a 28,00030 and 500031 cycle lives. Looking closer at Fig. 1, we can identify the different areas of 
the curve. Below the curve is the development zone, where the battery design is not competitive environmentally, 
and therefore requires design progression and research to become competitive. This is where the aq. Al-ion cell 
currently sits. At or above the curve, the technology is environmentally competitive. It is important to note that 
the development zones and competitive zones will look different for each impact category, and that this is not 

(1)
Functional energy density

(

kWh kg−1
)

= Energy density per discharge
(

kWh kg−1
)

× number of lifetime cycles

Table 1.   Al-ion competitive functional energy density when compared with Li-ion values per kWh from 
(Siret16).

Impact category Al-ion competitive functional energy density (kWh kg−1)

Acidification terrestrial and freshwater (Mole of H + eq.) 321.4

Cancer human health effects (CTUh) 533.2

Global warming potential (kg CO2 eq.) 200.7

Ecotoxicity freshwater (CTUe) 383.1

Eutrophication freshwater (kg P eq.) 557.6

Eutrophication marine (kg N eq.) 311.4

Eutrophication terrestrial (Mole of N eq.) 330.8

Ionising radiation—human health (kBq U235 eq.) 221.2

Land use (Pt) 130.8

Non-cancer human health effects (CTUh) 354.5

Ozone depletion (kg CFC-11 eq.) 7384.6

Photochemical ozone formation—human health (kg NMVOC eq.) 294.6

Resource use, energy carriers (MJ) 227.7

Resource use, mineral and metals (kg Sb eq.) 274.3

Respiratory inorganics (kg PM2.5 eq.) 568.8

Water scarcity (m3 world equiv.) 805.9
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a perfect metric—as these aq. Al-ion cells are low energy density. The key point remains though, that using the 
current market leader as a comparison, design development can still be guided.

It is clear that for each impact category, the CFED will differ, and so this can become a multi-faceted problem, 
with solutions dependent upon which environmental impact is used to calculate performance goals. What is 
clear when looking at this table, is that the global warming potential based CFED (200.7 kWh kg−1) is near the 
lower end of values, with results ranging from 130 kWh kg−1 for land use, to 7385 kWh kg−1 when looking at 
O-zone depletion in the upper atmosphere. Figure 2 presents the normalised required CFEDs alongside the rela-
tive environmental impact of each category. It is more helpful to look at the CFEDs required for the five overall 
highest environmental impact categories based on11. These are respiratory inorganics, resource use, energy car-
riers and minerals and metals, climate change, and acidification of water. The CFEDs required here, range from 
200.7 (climate change) to 568.8 kWh kg−1 (respiratory inorganics).

Figure 1.   Competitive parameter space representing the CFEDs required to match Li-ion in CO2 emissions, 
the line represents the 200 kWh CFED, with the space below being the development space, and the space above, 
where the design is environmentally competitive.

Figure 2.   Relative environmental impacts and required CFEDs, normalised from11.
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To include a broader number of Li-ion reports and chemistries for comparison, global warming potential 
(GWP), reported as kg CO2 eq. per kWh, was isolated for performance goal setting. GWP has been chosen pri-
marily because it is a key metric to monitor in order to mitigate climate change, due to this the majority of LCA 
or environmental impact analyses include GWP, whereas other impact categories are less likely to be calculated 
or reported.

Taking the GWP values averaged in Peters et al.7, for different Li-ion cell chemistries a wider picture can be 
drawn. Table 2 shows the resulting CFED values the aq Al-ion cell would need to meet. These are far higher than 
those calculated above from16, ranging from 1395 kWh kg−1 for lithium cobalt oxide, to 5168 kWh kg−1 for the 
lithium iron phosphate chemistry. A reason for this, is that the studies averaged in Table 2 were all produced 
using slightly differing methodologies, while they are all cradle-to-gate LCA analyses, the methodologies may 
have had an impact on the final reported impact. The methodology used in11 was based on16 which may also 
explain the lower values presented above.

If we look at the averaged value for all the Li-ion chemistries listed in Table 2, the resulting Competitive 
Functional Energy Density is 1853 kWh kg−1. To meet this goal for the aq. Al-ion cell the lifetime would need to 
increase to around 120,000 cycles (if 15 Wh kg−1 were maintained). This is roughly ten times more cycles than the 
14,0000 derived from16, and thus nearly 100 times more cycles than the current state of technology. The parameter 
space presented here is most likely not practical for Aqueous Al-ion battery. There are many advancements in 
similar aqueous Al-ion batteries, such as32, an aq. Al-ion cell, with TiO2 and graphene electrodes, this reported 
energy density of 37.5 Wh kg−1 and a cycle life of 1000—resulting in a FED of 37.5 kWh kg−1. Another aq. Al-
ion cell with MnO2 and pre-treated Al electrodes has a high energy density of 481 Wh kg−133, however the low 
cycle life reported—65—results in a FED of 31.3 kWh kg−1. These examples, while similar to that designed in11, 
have not produced environmental impact assessments or LCAs, and so the direct comparison and targets may 
not be fully applicable. Keeping with the initial aq. Al-ion battery described, the high cycle life required is less 
practical, butby combining an increase in performance with an increase in % active material, the impractical 
goals may become slightly more feasible.

Competing on active material proportion.  The components that make up the aq. Al-ion cell are 
reported in the life cycle inventory in11—and presented in Fig. 3.The cell is made up of the electrolyte, current 
collector, electrode substrate, electrode active layers (including the active materials of TiO2 and copper hexacy-
anoferrate (CuHCF) and the casing). When evaluating the proportion of active material, to the rest of the cell, it 
can be shown that only 0.5 wt% of the entire cell is electrochemically active. The remaining 99.5 wt% is support 

Table 2.   Averaged competitive functional energy density for a variety of Li-ion chemistries—values taken 
from (Peters et al.7).

Cell chemistry GWP (kg CO2 eq.) Al-ion competitive functional energy density (kWh kg−1)

Lithium iron phosphate–carbon 0.078 1671.9

Lithium iron phosphate–lithium titanate 0.0251 5168.8

Lithium cobalt oxide–carbon 0.093 1395.0

Manganese spinel oxide–carbon 0.071 1837.6

Nickel, manganese, cobalt–carbon 0.086 1515.6

Nickel, aluminium, cobalt–carbon 0.068 1904.8

Average 0.070 1853.0

Figure 3.   Components of the aq. Al-ion cell (taken from Melzack et al.11).
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material, such as battery casing. This is not unreasonable for a low TRL (Technology Readiness Level) technol-
ogy, being developed in a lab environment. However, when compared to Li-ion batteries, where the propor-
tion of active material is often closer to 30%6,29, there is clearly a large discrepancy. This 30% value itself could 
be a valid goal for increasing active material to match that of Li-ion. However, within this work, we propose 
increasing the % active material (or reducing the amount of support material), to evaluate the overall impact on 
GWP this has. Using the model from11, and OpenLCA software version 1.10.334, active material proportion was 
increased (or rather the support material was scaled down) to assess the GWP at a variety of % active material 
designs, are reported in Table 3.

These resulting values of climate change impact were then compared to the Li-ion values reported in the 
previous section. From this, the resulting competitive functional energy density required for differing % active 
material were calculated. Both the averaged values from Peters et al. and Siret et al.7,16 were used to create two 
parameter spaces—which are presented in Fig. 4. Each line represents the CFED for a given % active material, 

Table 3.   Resulting climate change per functional kWh impacts for different % active material for the aq. 
Al-ion battery from OpenLCA results.

% active material Total mass of cell (kg) Climate change (kg CO2 eq.) per kWh

0.5 7 4.93

1 3.8 3.62

5 0.76 0.98

10 0.38 0.61

20 0.19 0.41

30 0.12 0.35

Figure 4.   Competitive parameter space representing the functional energy density required to match Li-ion 
climate change impacts for a given % active material, compared to (a) (Siret16) and (b) (Peters et al.7).
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with the current reported values for the aq. Al-ion cell (15 Wh kg%1 and 1750 cycles15) marked as a black square. 
If looking at Fig. 4a, the current aq. Al-ion cell sits on the 10% active material line—however we know that the 
current % active material is only 0.5%. Therefore, if the performance of the cell remained the same, but the design 
changed such that we reach 10% active material, then the cell would be competitive with the Li-ion based on 
climate change impacts—according to16. This is 20 times increase in active material, which could be achieved 
by looked at thinner electrode substrates, ‘jelly roll’ designs such as those used in cylindrical cells, or by using a 
more porous electrode substrate (such as a carbon felt) to allow a higher surface area for electrochemical reac-
tions. This could be done alongside achieved by investigating alternative thicknesses or materials for battery 
casings. When looking at Fig. 4b, the current position of the aq. Al-ion is below the parameter space. Therefore, 
a combination of performance improvement and increasing % active material is necessary to compete. If the 
discharge capacity remained the same, and cycle life increased to 10,000—then we would require 30% active 
material to become competitive.

Comparison to capacitors.  While comparing to the current market leader in energy storage is useful in 
providing development goals, it is important to ensure that the comparison is fair and directs design changes. 
For the aq. Al-ion cell, there is speculation that due to its high power density (300 W kg−1) compared to its low 
energy density (15 Wh kg−1), it may behave more like a capacitor17. Therefore, a comparison with capacitors’ 
and supercapacitors’ GWP results from13,14 in terms of the functional power density was made. Equation 1. was 
rewritten as

and used to calculate the CFPD for the Aq. Al-ion cell as 525 kW kg−1. This was used to compare to supercapaci-
tors and capacitors respectively—with the resulting competitive functional power density reported in Table 4. The 
four capacitors were—Graphene Supercapacitor, Activated Carbon Supercapacitor, Multilayer Ceramic Capacitor 
(MLCC) and Tantalum Electrolytic Capacity (TEC).

Given that the current value of Functional Power Density for the aq. Al-ion cell is 525 kW kg−1, the design is 
already competitive environmentally with the reported capacitors.

Conclusion
This paper has demonstrated the use of environmental impact assessments to create a parameter space 
which informs the performance development goals of emerging energy storage technologies. The aim of this 
analysis was to bring the focus of technology development back to climate change mitigation, the key reason for 
this industry’s success in recent years, and ensure that sustainability is one of the key parameters considered in 
the lab when designing new technology. Combining results from LCAs with real measured data and the expertise 
of the research sector, more holistic performance goals can be set for our energy storage technology.

Using the example of aq. Al-ion batteries, realistic, environmentally evidenced performance goals can be 
set which will inform the direction of development. Increasing the proportion active material will be a primary 
focus of the case study example, however this may not be true for other technologies while using this method. 
The analysis is not a replacement for other modes of setting targets and goals, it is an additional tool to ensure 
that we consider the environmental impacts of our work as a key driver in the direction we take it.

Methodology
Competitive functional energy density.  In order to have a fair comparison, the production and manu-
facturing inputs were added to the life cycle inventory from11. Therefore the production of the aq. Al-ion bat-
tery was added to the model and normalised to the kg output. OpenLCA34 software was used to run a Euro-
pean Union Environmental Footprints Midpoint analysis for the cradle-to-gate section of the life-cycle, and the 
results were derived per lifetime kWh.

For each environmental impact category calculated in an LCA, and listed in Table 1, the impact per kWh for 
the aq. Al-ion cell and the average Li-ion cell are taken, using the equation

the value for the `Competitive functional energy density’ is calculated by

Functional power density
(

kW kg−1
)

= Power density per discharge
(

kW kg−1
)

× number of lifetime cycles

(2)
Al-ion impact value

Li-ion impact value
=

Al-ion kg per functional kWh

‘Competitive’ kg per fuctional kWh

Table 4.   Competitive functional power density for a variety of capacitors.

Capacitor type GWP (kg CO2 eq.) Al-ion competitive power density (kW kg−1)

Graphene super capacitor 2.53 51.58

Activated carbon supercapacitor 1.05 124.29

MLCC 1.13 115.49

TEC 29.6 4.41
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and using Eq. (1), realistic values for the cycle life or discharge capacity can be inferred.
For example, with overall Global warming potential (GWP) the average Li-ion impact from16is 6.45 × 10−1 kg 

CO2 eq., and the Al-ion (baselines) value is 4.93 × 10+0 kg CO2 eq11. Given the current value of kg per functional 
kWh is 0.038 kg kWh−1, Eq. (3) becomes

‘Competitive’ functional energy density = 200.7 kWh kg−1.
The functional power density is acquired in a similar way:

For example, with overall Global warming potential (GWP) the average Graphene super capacitor from14 is 
2.53 × 10−0 kg CO2 eq., and the Al-ion (baselines) value is 4.93 × 10+0 kg CO2 eq.11. Given the current value of kg 
per functional kW is 0.002 kg kW−111, the equation becomes

‘Competitive’ functional power density = 51.58 kW kg−1.

Determining the % active material.  Using the baseline life cycle inventory model in OpenLCA34 from 
the existing model used in11 with the mass of 0.038 kg active material (reported in11), remaining supporting 
materials of carbon polymer electrode substrate, PEEK casing, copper current collector and electrolyte were 
reduced in order to achieve 1%, 5%, 10%, 20% and 30% active material proportion. The manufacturing inputs 
of electricity and water were scaled to the total calculated mass. The European Union Environmental Footprints 
Midpoint analysis was performed, and results presented for a cradle-to-gate section of the lifecycle per lifetime 
kWh. Results were compared to those from7,16 in a similar manner to the previous section. Focusing on climate 
change (or GWP) impacts, due to availability of data, a ’goal space’ of active material % were then derived. This is 
a top-level assessment looking at the current design to provide a guideline idea of the point at which it becomes 
environmentally competitive with Li-ion.

Converting capacitor GWP results to per kW to compare.  The results of LCAs into capacitors were 
not reported in terms of per kW, and therefore conversions were made to allow for comparison. Values from14 
were adapted as described in11.

The conversion into the lifetime impact per kW from13 were adapted via the following method;

1.	 Values were reported in impacts per kg for an MLCC and a TEC
2.	 Energy per capacitor was calculated using E = 1/2CV2 where capacitance (C) is 1μF, and V is the rated 

voltage provided by datasheets (16 V for the MMLC and 25Vfor the TEC)35,36

3.	 Energy was converted into lifetime power by multiplying by the lifetime – given the lifetime testing for 
capacitors is 1000 h this is the value assumed

4.	 The lifetime power per capacitor was then multiplied by the number of capacitors reported in [111] used to 
calculate per kg impacts

5.	 The resulting value here was the lifetime kW kg−1, so taking the inverse gives kg kW−1

6.	 Multiplying the calculated kg kW−1 by the reported impacts in per kg provides the equivalent per kW impacts

Data availability
The datasets analysed during the current study are available in the supplementary documentation for 6 at https://​
doi.​org/​10.​1016/j.​jclep​ro.​2017.​10.​016, the supplementary documentation of 11 at https://​www.​front​iersin.​org/​
artic​les/​10.​3389/​fenrg.​2021.​699919/​full#​suppl​ement​ary-​mater​ial , and within16.
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