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Evading T cell surveillance is a hallmark of cancer. Patients with solid tissue malignancy,
such as glioblastoma (GBM), have multiple forms of immune dysfunction, including
defective T cell function. T cell dysfunction is exacerbated by standard treatment
strategies such as steroids, chemotherapy, and radiation. Reinvigoration of T cell
responses can be achieved by utilizing adoptively transferred T cells, including CAR T
cells. However, these cells are at risk for depletion and dysfunction as well. This review will
discuss adoptive T cell transfer strategies and methods to avoid T cell dysfunction for the
treatment of brain cancer.
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INTRODUCTION

T cells are the key players of the adaptive immune response, and their potency is being leveraged for
the treatment of cancer. T cells represent a diverse population of immune cells in the peripheral
blood and lymphoid organs, and their overarching function is to rid the host of “non-self” or
antigen expressing cells. Many studies have shown a positive correlation between the presence of
tumor infiltrating T cells and prognosis in solid tissue malignancies (1–3) including glioblastoma
(GBM) (4). T cell immunotherapeutic platforms have had success in certain hematologic and solid
tissue cancers (5). However, T cell dysfunction is a major limitation for the efficacy of these
strategies in the treatment of GBM (6).

Dysfunctional T cells are defined by loss of effector function, including loss of cytotoxicity,
decreased secretion of inflammatory cytokines such as interleukin-2 (IL-2), tumor necrosis factor-a
(TNF-a), or interferon- g (IFN-g) (7). These cells often develop due to chronic antigen exposure
with loss of the ability to respond to antigen with cytolysis (Figure 1). Dysfunctional T cells can
limit the efficacy of immunotherapeutic strategies for patients with GBM. Infusion of potent T cells
educated against particular antigens is an attractive strategy to overcome the dysfunction and
sequestration seen in host T cells in patients with GBM. Several platforms are being developed,
including adoptive transfer of autologous T cells followed by vaccination and autologous T cells
engineered for improved anti-tumor efficacy such as chimeric antigen receptor (CAR) T cells. These
platforms have shown some response rates in early trials. However, these therapies are limited by
issues with engraftment, a hostile tumor microenvironment, and induced T cell dysfunction. In this
review, we will discuss adoptive transfer of T cells for the treatment of GBM and factors that affect
the potency of these approaches.
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EXOGENOUS T CELLS FOR GBM

Adoptive T cell infusion provides the host with a bolus of
functional T cells primed against a particular antigen.
Approaches to generate tumor specific T cells are 1) infusion
of autologous, expanded T cells primed against the antigen of
interest, or 2) infusion of autologous, engineered T cells such as
chimeric antigen receptor (CAR) T cells (Figure 2). Autologous
T cells are typically harvested from the peripheral blood (8).
Tumor infiltrating lymphocytes (TILs) are intrinsically tumor
specific, but in patients with GBM, are too few and dysfunctional,
and therefore do not represent a viable source of cells (9, 10).
Peripheral circulating T cells must be primed against antigens by
co-culturing with antigen loaded dendritic cells (DCs) or
through genetic engineering. After detecting antigen specific T
cell clones, these cells are expanded and infused into the patients
as adoptive T cell transfer.

These strategies are being tested in early phase trials
(Table 1). A phase I/II study (NCT00331526) in 2004 studied
the safety of implantation of lymphocytes into the tumor
Frontiers in Immunology | www.frontiersin.org 2
resection cavity in patients with newly diagnosed or recurrent
glioma (11, 12). The lymphocytes were generated from PBMCs
and grown with IL-2. The investigators called these cells
lymphokine activated killer (LAK) cells. They found that this
approach was safe in 40 patients. However, the analysis did not
evaluate the engraftment or persistence of the cells. An on-going
phase I/II study is testing autologous cytotoxic T cells primed
against pp65 CMV antigen in patients with newly diagnosed
GBM (NCT02661282). In this study, patients receive dose
intensified temozolomide to induce lymphopenia and leverage
the homeostatic lymphoproliferation that ensues after
temozolomide induced lymphopenia. Patients receive up to 4
cycles of temozolomide followed by T cell infusion. The results so
far have found that the production of large numbers of T cells
from patients with GBM is feasible, and the treatment has been
safe. Results on engraftment and clinical efficacy are still
underway (13). The ERaDICATe clinical trial (NCT00693095)
is also testing CMV targeting T cells with temozolomide and is
adding DC vaccines to one of the cohorts to determine if this
improves the persistence of T cells (14).
FIGURE 1 | CD8 T cell differentiation pathway. (A) CD8 T cell are activated through MHC I by dendritic cells (DCs) with CD4 “help” via IL-2 and IL-21 secretion. This
results in the development of CD8 effector T cells that can cause cytolysis. (B) Chronic antigen exposure and lack of appropriate support from T helpers result in
exhausted CD8 T cells without effector function to remove tumor cells.
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Similarly, adoptive transfer of clonally selected T cells
targeting tumor has been described for the treatment of
recurrent primitive neuroectodermal tumors (PNETs) (19).
Blood was drawn and tumor biopsies were obtained from 10
patients for vaccine preparation. Autologous T cells were isolated
from patients’ blood and were primed and expanded ex vivo by
exposure to dendritic cells loaded with total tumor RNA
extracted from tumor biopsies. The T cells were infused back
to the patients after conditioning chemotherapy. Some patients
received non myeloablative chemotherapy, and others received
myeloablation followed by stem cell rescue. These conditioning
regimens have significant implications for the potential for T cell
proliferation and are further discussed in the following sections
of this review. Patients subsequently received three dendritic cell
(DC) vaccines. T cell receptor (TCR) RNA sequencing of
peripheral blood mononuclear cells (PBMCs) after treatment
demonstrated a large clonal expansion of T cells, which
correlated with clinical outcomes. This platform is now also
being tested in high-grade pediatric glioma (NCT03334305) and
diffuse intrinsic pontine glioma (DIPG) (NCT03396575).
Frontiers in Immunology | www.frontiersin.org 3
Alternatively, T cells can be engineered to provide a more
potent population of cells. Autologous patient derived T cells
isolated from patients can be modified with a CAR gene. CAR T
cells are designed to express artificial T cell receptor using viral
transfection to recognize cancer antigens. CARs are composed of
extracellular, transmembrane and intracellular domain. The
extracellular domain, also known as tumor targeting domain, is
composed of single chain variable fragment (scVF) that is made
up of the variable regions of the heavy and light chains (20). The
tumor targeting domains are not restricted by MHC bound
antigens. They can recognize non-MHC cell surface proteins.
Intracellular domain composed of CD3z to direct T cells for
performing the primary cytolytic activity. However, cytotoxic T
cells require further signaling when they encounter a cognate
foreign antigen to induce expansion, persistence, and cytokine
secretion (21). To address this issue, 2nd and 3rd generation of
CAR T cells developed with the 2nd generation composed of co-
stimulatory domains such as CD28, 4-1BB to improve
proliferation and cytokine production of CAR T cells. The 3rd

generation of CAR T cells, composed of multiple signaling
FIGURE 2 | T cell therapy for cancer treatment is transfer of T cells that are specific for tumor antigens to the patients after ex vivo expansion. T cells are matured
from peripheral blood mononuclear cells (PBMCs) and primed against antigen or genetically engineered to express CARs that specific for the antigen and reinfused
to patients after ex vivo expansion.
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TABLE 1 | T cell clinical trials for brain tumors.

Title/ Trial NCT Phase Disease T cell product Interventions n OS Status Reference

Cellular Adoptive
Immunotherapy in Treating
Patients with Glioblastoma
Multiforme
(NCT00331526)

II Brain and CNS
tumors, newly
diagnosed or
recurrent
glioma

PBMC derived
lymphocytes grown with
IL-2 (lymphokine
activated killer cells)

Biologic:
1. Aldesleukin

86 Median
survival of
20.5 months
with a 1-year
survival rate
of 75%)

Completed (11)
(12)

Autologous CMV-Specific
Cytotoxic T Cells and
Temozolomide in Treating
Patients with Glioblastoma
(NCT02661282)

I/II Newly
diagnosed
CMV positive
GBM

Ex vivo expanded
polyclonal CD8+ and
CD4+ CMV T cells from
peripheral blood of GBM
patients

Drug:
1. Dose-intensified
Temozolomide

65
(34 were
screened)

N/A Active, not
recruiting

(13)

Evaluation of Recovery from
Drug-Induced Lymphopenia
Using Cytomegalovirus-specific
T-cell Adoptive Transfer
(ERaDICATe)

(NCT00693095)

I GBM CMV-autologous
lymphocyte transfer

Biologic:
1. CMV-DC vaccine

22 N/A Completed (14)

Adoptive Cellular Therapy in
Pediatric Patients with High-
grade Gliomas (ACTION)
(NCT03334305)

I GBM Total tumor RNA primed
autologous T cells

Biologic:
1. TTRNA-DC
vaccines with GM-
CSF
2.Autologous
Hematopoietic
Stem cells (HSCs)
Drug:
1. Dose-intensified
Temozolomide
2.Td vaccine

18 N/A Recruiting NCT03334305

Brain Stem Gliomas Treated With
Adoptive Cellular Therapy During
Focal Radiotherapy Recovery
Alone or With Dose-intensified
Temozolomide (BRAVO)
(NCT03396575)

I Diffuse intrinsic
pontine glioma
(DIPG)

Total tumor RNA primed
autologous T cells

Biologic:
1. TTRNA-DC
vaccines with GM-
CSF
2.Autologous
hematopoietic stem
cells (HSCs)
Drug:
1.
Cyclophosphamide
+ Fludarabine
2.Td vaccine

21 N/A Recruiting NCT03396575

CAR T Cell Receptor
Immunotherapy Targeting
EGFRvIII for Patients with
Malignant Gliomas Expressing
EGFRvIII
(NCT01454596)

I/II Recurrent
GBM

A single infusion of
EGFRvIII CAR T cells

Drug:
1. Aldesleukin
2. Fludarabine
3.
Cyclophosphamide

10 8 Completed (20)

Genetically Modified T-cells in
Treating Patients with Recurrent
or Refractory Malignant Glioma
(NCT02208362)

I Recurrent or
Refractory
GBM

Intratumoral Infusion of
IL13R alpha 2-specific
CAR T cells followed by
infusions into the
ventricular system

N/A 92 N/A Recruiting (21)

IL13Ralpha2-Targeted Chimeric
Antigen Receptor (CAR) T Cells
with or Without Nivolumab and
Ipilimumab in Treating Patients
with Recurrent or Refractory
Glioblastoma
(NCT 04003649)

I Recurrent or
Refractory
GBM

Intratumoral Infusion of
IL13R alpha 2-specific
CAR T cells followed by
infusions into the
ventricular system

Drug:
1. Ipilimumab
2. Nivolumab

60 N/A Recruiting NCT
04003649

CMV-specific Cytotoxic T
Lymphocytes Expressing CAR
Targeting HER2 in Patients With

I Recurrent
GBM

Infusion of autologous
CMV-specific cytotoxic
T-lymphocytes
genetically modified to

N/A 17 24.5 Completed 22

(Continued)
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TABLE 1 | Continued

Title/ Trial NCT Phase Disease T cell product Interventions n OS Status Reference

GBM
(NCT01109095)

express CAR19 targeting
the HER2 molecule

3rd Generation GD-2 Chimeric
Antigen Receptor and iCaspase
Suicide Safety Switch (GRAIN)
(NCT01822652)

I Relapsed or
refractory
Neuroblastoma

Infusion of third
generation GD2-CAR
(GD2-CAR3) generated
from patients’ PBMC

Drug:
1.
Cyclophosphamide
2. Fludarabine
3. Pembrolizumab

11 16.8 Active, not
recruiting

(41)

Pembrolizumab in Patients
Failing to Respond to or
Relapsing After CAR T Cell
Therapy for Relapsed or
Refractory Lymphomas
(NCT02650999)

I/II CD19 Diffuse
Large B-cell
Lymphomas,
Follicular
Lymphomas,
Mantle Cell
Lymphomas

Infusion of PBMC derived
CAR T cells specific for
CD19

Drug:
Pembrolizumab

12 N/A Active, not
recruiting

(42)

Study of DC Vaccination Against
Glioblastoma
(NCT01567202)

II GBM Infusion of DC vaccine
loaded with glioblastoma
stem cell-like (GSC)
antigens

Biologic:
1. DC vaccination
Drug:
1. Temozolomide
Radiation:
1. Radiotherapy

43 13.7 Recruiting

Chemotherapy, Radiation
Therapy, and Vaccine Therapy
With Basiliximab in Treating
Patients With Glioblastoma
Multiforme That Has Been
Removed by Surgery
(NCT00626015)

I GBM N/A Biologic:
1.PEP-3-KLH
conjugate vaccine
Drug:
1. Daclizumab
2. Temozolomide

16 Completed NCT00626015

EGFRvIII CAR T Cells for Newly-
Diagnosed WHO Grade IV
Malignant Glioma
(NCT02664363)

I GBM EGFRvIII CAR T cells Drug:
1. Dose-intensified
temozolomide

3 N/A Terminated NCT02664363

CMV, cytomegalovirus; DC, dendritic cells; TTRNA, Total tumor RNA; GM-CSF, Granulocyte-macrophage colony-stimulating factor; TD vaccine, tetanus; diphtheria vaccine.
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domains such as CD28 and 4-1BB or Ox40. The most current
generation CAR T cells, T cells redirected for universal cytokine-
mediated killing (TRUCKS), have co-stimulatory molecules and
are armed with transgenes to express a synthetic protein of
interest such as immune stimulatory cytokines of IL-2, IL-5,
IL-12 to exhibit an improved anti-tumor function and resistance
to immunosuppressive tumor microenvironment (22, 23).

Two FDA approved CAR T cell therapies are available for
treatment of acute lymphoblastic leukemia (ALL) and diffuse
large B cell lymphoma (DLBCL), Tisagenlecleucel (CTL019,
Kymriah©) and axicabtagene ciloleucel (Yescarta©). Three
single antigen CAR T cell therapies are under investigation for
GBM targeting EGFRvIII, IL13Ra2, and HER2. A single infusion
of EGFRvIII CAR T cells was tested in 10 patients with recurrent
GBM in a phase I study (NCT01454596) that required EGFRvIII
expression in tumor samples (15). Patients did not receive
conditioning with chemotherapy prior to infusion. Cells were
detectable by flow cytometry or PCR but declined significantly
(2-10 fold) within 14 days post infusion. The level of existing
lymphopenia did not correlate with peak engraftment. EGFRvIII
CAR T cells were detectable in the tumor specimens of patients
who had early surgery after infusion (within two weeks). However,
some of the specimens also had infiltration of immunosuppressive
regulatory T cells and upregulation of IDO1, PD-L1, and IL-10,
suggesting that the infiltration of EGFRvIII cells within the
tumor incited a compensatory immunosuppressive response.
Frontiers in Immunology | www.frontiersin.org 5
IL13Ra2 targeting CAR T cells are also being tested in patients
with recurrent GBM either as monotherapy (NCT02208362) or in
combination with immune checkpoint blockade (NCT 04003649).
A report of a single patient with multiple intracranial and spinal
lesions of recurrent, wide-spread GBM demonstrated regression
when treated with intrathecal delivery of IL13Ra2 CAR T cells
developed from autologous cells (16). The patient eventually
succumbed to disease progression. Similarly, HER2 CAR T cells
were tested in a phase I study in patients with recurrent GBM with
HER2 expression (24). No conditioning regimenwas given prior to
infusion.Most patients had the highest concentrations of detectable
HER2 CAR T cells in the peripheral blood within two weeks of
infusion. Six weeks after infusion, detectable CAR T cells declined
significantly. The median overall survival was 24.5 months after
diagnosis and was 11.1 months after T cell infusion.
BARRIERS TO T CELL-BASED THERAPY

Engraftment
A major hurdle for T cell therapy is the engraftment of cells.
Engraftment for T cell therapy in brain tumors refers to presence
of the cells in the peripheral blood and migration within the tumor
microenvironment for sustained anti-tumor responses. This
definition is different from the traditional concept of engraftment
of hematopoietic stem cells, which are expected to take residence
August 2021 | Volume 12 | Article 705580
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in the bone marrow for cellular production. The kinetics of
autologous T cells after the infusion is a decline as they distribute
in the tissues, an increase as they proliferate, and a subsequent
decline that persists (25, 26). As discussed in the previous section,
most patients do not have detectable levels of infused T cells within
two weeks after infusion. Approaches to improve engraftment are
pre-conditioning with chemotherapy to induce lymphopenia. This
allows for the infusedTcells tohave less “competition” for cytokines
and also to leverage the homeostatic lymphoproliferation that
results from the lymphopenia (27–29). Another alternative
strategy is the use of DC vaccination following T cell infusion. In
a pilot study, 17 patients with newly diagnosed GBM were
randomized to receive CMV targeting T cells alone or with DC
vaccines (14). The patients who received vaccines had significant
increases (~1.5-fold, p=0.04) in T cells that expressed IFN gamma,
TNF alpha, and CCL3. However, this analysis was performed only
seven days after T cell infusion. Therefore, the persistence of cells
after DC vaccination was not evaluated.

Anothermethod toovercome issueswith loss ofT cell frequency
in the circulation is to force cells to accumulate in the tumor
microenvironment. This technique was utilized successfully in
pre-clinical models testing a CD70 CAR T cell (30). The CD70
CAR T cell was modified to express IL-8 receptors (CXCR-1 and
CXCR-2) (31). In the setting of CD70 expressing tumors treated
with radiotherapy (RT), themodified CD70 CART cells hadmuch
greater trafficking to the tumors due to IL-8 upregulation after RT.
The improved CAR T cell tumor infiltration resulted in long term
survivors compared toonly35days of survival inuntreatedanimals,
and a strong memory T cell response that prevented regrowth of
tumors on re-challenge.

Potency
One of the limiting factor of transferred T cells’ potency is
exhaustion. Exhaustion is a T cell state that develops gradually in
both transferred and host T cells due to repeated stimulation of
the T cell from persistent antigen exposure (32). Exhaustion has
distinct signatures but one of the most important characteristics
of exhausted T cells is persistent over-expression of inhibitory
checkpoints. The over-expression of immune checkpoints is also
present in activated T cells. However, activated T cells experience
a transient upregulation of immune checkpoints while exhausted
T cells have a persistent upregulation of immune checkpoints.

Exhausted T cells are heterogeneous and include two different
cell populations: progenitor exhausted T cells and terminally
differentiated exhausted T cells. Progenitor exhausted T cells can
be generated from both effector T cells or directly from naïve T cells.
Progenitor exhausted T cells have some stem cell like characters
similar to central memory T cells as they have the potential to
proliferate and expand and also reverse to effector T cells after
vaccination or PD-1 blockade (33, 34). Although these cells have a
high expression of PD-1 and T cell factor-1(TCF-1), which is a self-
renewal marker, they have a limited expression of other inhibitory
molecules and lack expression of markers like Tim-3 (35).

Terminally differentiated exhausted T cells are generated
from high PD-1 expressing cells with expression of multiple
immune checkpoints and lack of responsiveness to immune
Frontiers in Immunology | www.frontiersin.org 6
checkpoint blockade (36). Persistent antigen exposure leads to
upregulation of transcription factor TOX and alterations of
nuclear factor activated T cells (NFAT), which is required for
formation of exhausted T cells (37, 38). In GBM, TILs expressing
high levels of Tim-3, Lag-3 and PD-1 that fail to secrete IFN-g,
IL-2 and TNF-a are considered terminally exhausted (9).

Exhaustion can also be seen in transferredCARTcells that results
in reduced anti-tumor efficacy. In elegant experiments performed by
Dr. Rao’s group, CD19 reactive CART cells were found to have gene
expression and chromatin accessibility associated with NFAT
pathway including activation of NR4A1-3 (37). When the three
NR4A bindingmotifs were knocked out in the CAR T cells, the gene
expression profiles and chromatin regions of effector CD8 T cells
were characterized, and they caused tumor regression and prolonged
survival in tumor bearing mice (75% in triple knockout CAR T cells
versus <5% wild type CAR T cells, p<0.0001).

Other potential strategies to avoid exhaustion of CAR T cells
include combining with immune checkpoint blockade (39). Pre-
clinical models have demonstrated enhanced anti-tumor efficacy
when PD-1 blockade is added to CAR T cells in murine models
of lung cancer and breast cancer (40–42). In a small study of
patients with neuroblastoma, the addition of PD-1 blockade to
lymphodepletive chemotherapy did not enhance the expansion
or persistence of third generation GD2 CAR T cells (17).
Administration of PD-1 blockade in 10 adult patients with
high grade gliomas resulted in blockade of PD-1 on both host
T cells and intracranial injected CAR T cells with reduction of
PD-1 on T cell surface from 39.3% to 3.8% (18). In this study the
effect of PD-1 blockade on T cell function and phenotype were
not evaluated. Therefore, T cells engineered to secrete immune
checkpoint antibodies are being developed (43, 44).

Another strategy is having the CAR induced only when the
antigen is present. Choe et al. developed a CAR T cell that has
CAR activation only when a synNotch receptor interacts with the
tumor antigen (45). They utilized EGRvIII and myelin
oligodendrocyte glycoprotein (MOG) targeting CARs to
demonstrate that these particular CAR T cells were more likely
to be in a naïve/stem cell memory state. This correlated with better
anti-tumor efficacy. NCG mice implanted with GBM6 PDX GBM
were treated witha-EGFRvIII synNotch–a-EphA2/IL13Ra2 CAR
T cells which resulted in long-term remission of all tumors. In
other studies, CAR T cells targeting alkaline phosphatase
placental-like 2 (ALPPL2) in murine models of human ovarian
and mesotheliomas tumors had longer persistence and better
tumor control when synNotch was added (46). Animals bearing
M28mesotheliomas tumors were treated with ALPPL2-synNotch-
MCAM CAR T cells and demonstrated complete responses in the
majority of animals with less PD-1+/CD39+ exhausted CD8 T
cells (~60%) compared to MCAM CAR T cells (~75%).

T cell-based therapies have been limited thus far due to the
inability to target all antigen-expressing tumor cells. Strategies to
overcome issues with T cell effector function began with the
development of 2nd and 3rd generation CAR T cells. First
generation CAR T cells only had CD3z intracellular domain
signaling, which limited the ability of complete activation
signaling and secretion of cytokines long-term as the signaling
August 2021 | Volume 12 | Article 705580
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diminished over time (47). Second and third generation CAR T
cells added 4-1BB and CD28, which are co-stimulatory factors
that improved activation and expansion (22). Fourth generation
CAR T cells provide the ability to secrete a protein of interest
such as cytokines and chemokines with enhanced T cell
persistence and anti-tumor function (23).

In GBM, CAR T cells have also been modified to improve
activation. IL13Ra2-CAR T cells were engineered to overexpress
IL-15 to enhance effector function (48). Transgenic IL-15 expressing
IL13Ra2-CAR T cells had greater expansion and enhanced anti-
tumor effector function as measured by cytokine production. IL-15
secretingCART cells showed enhanced intracranial persistencewith
resultant tumor regression in the U373 human glioblastoma
orthotopic xenograft mouse GBM model. However, tumors
recurred after 40 days due to IL13Ra2 antigen loss (48).

Antigen Loss
Tandem and trivalent CAR T cells have been developed in an
attempt to overcome the issue of antigen loss post CAR T cell
therapies that has been seen with both EGFRvIII CAR T cell
therapy in patients with GBM (15) and IL13Ra2 CAR T
cell therapy in a xenograft GBM mouse model (48). In a
Frontiers in Immunology | www.frontiersin.org 7
murine GBM model, tandem CAR T cells targeting HER2 and
IL13Ra (two specific antigen targeting domains within one CAR
construct) displayed enhanced activation and anti-tumor
function without being more exhaustible than co-expressed
HER2 and IL13Ra CAR T cells (biCAR T cells) or pool of
single antigen HER2 or IL13Ra CAR T cells (49) (Figure 3).
These tandem CAR T cells had moderate increases in IFN-
gamma and IL-2 secretion and improved tumor-killing capacity
(~60% in tandem CAR vs~20% in biCAR in U373 model,
p<0.05). The animals treated with tandem CAR T cells had a
survival of >140 days compared to biCAR (85 days) (p<0.0001).

Due to the heterogeneity of GBM tumor cells, the expression of
surface antigens significantly varies between patients, and
targeting two antigens may not be an effective treatment for all
patients. CAR T cells targeting HER2, IL13Ra2, and ephrin-A2
(EphA2) have been developed to provide antigenic “coverage” for
almost all patients (50). This trivalent CAR T cell demonstrated
improved anti-tumor activity and survival in GBM patient derived
xenografts compared to biCAR (IL13Ra2, andEphA2) and single
IL13Ra2 CAR T cells, while lower T cell doses were required to
control tumor growth. The ability of the trivalent CAR to
overcome tumor antigen loss is still unknown.
FIGURE 3 | Engineered CAR T cells specific for multiple tumor antigens.
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Peptide based CAR T cells exploit the binding potential of the
peptides to target diverse heterogeneous tumor cells without a
shared specific antigen. Researchers complexed a peptide
[chlorotoxin (CLTX) extracted from the scorpion’s venom] to the
CD28 end of the CAR (51). Although the specific tumor cell surface
receptor for CLTXhas not been identified, this study found that the
CLTX CAR T cells tumor recognition was mediated by expression
of membrane-bound matrix metalloproteinase-2 (MMP-2) on the
tumor cells. These peptide targeting CAR T cells resulted in anti-
tumor effects in orthotopic xenograft models including tumors that
did not express typical GBM associated tumor antigens such as
IL13Ra2. Therefore, CARs targeting peptides have the potential to
overcome the limitations of CARs that target 1 or 2 antigens with
recurrence of tumors due to antigen loss.

Immunosuppressive Microenvironment
In addition to intrinsic problems with infused T cell function, these
cel ls are l imited by the immunosuppress ive tumor
microenvironment (TME). Macrophages and microglia within
the murine GBM tumor microenvironment produce CCL2
cytokine to recruit CCR4+ Tregs and CCR2+ Ly6C+ myeloid
cells (52). Overexpression of immunosuppressive cytokines and
the recruitment of Tregs and myeloid derived suppressor cells
(MDSCs) create a hostile environment for engraftment or effector
functionof cytotoxicT cells (53, 54). This environment ishostilenot
only locally but also peripherally as T cells have been shown to be
sequestered within the bone marrow of patients with GBM (53).
These data suggest that T cell egress and trafficking into intracranial
malignancies are additional inhibitory mechanisms that must be
overcome to initiate and perpetuate a cycle of self-sustaining
cancer immunotherapy.

Myeloid cells compose 30-50% of GBM tumor mass and
accumulate in the peripheral blood sabotaging the efficacy of T
cells (54, 55). Tumor associated myeloid cells express high levels
of PD-L1 (55). The majority of PD-L1 expression in the tumor
microenvironment results frommyeloid cells and not tumor cells
(56). In a murine study, radiation therapy was used to upregulate
the expression of PD-L1 on myeloid cells to produce synergy
when combined with PD-L1 blockade (55). Targeting of myeloid
cells and PD-1 expression on T cells leads to reversal of immune
resistance to DC vaccination and abundance of T cell infiltration
within the tumor with resultant long-term survival in GL-261
GBM bearing mice (56). However, these strategies have not yet
been tested in combination with T cell infusion therapies.

Other signaling pathways except than PD-1/PD-L1 are also
involved in the dysfunction of T cells mediated by tumor associated
myeloid cells. B7 superfamily membrane 1 (B7S1), also known as
B7-H4, is an inhibitory molecule expressed by tumor associated
myeloid cells that negatively regulates activation of T cells and
promotes exhaustion of tumor infiltrating CD8 T cells (57).
Inhibition of B7S1 on tumor infiltrating myeloid cells and PD-1
on T cells improves CD8 T cell anti-tumor immune responses in
murine cancer models (57). In phase II randomized trial
investigating DCs loaded with lysates from GBM cells cultured in
stem cellmedia, patients with lowB7-H4 expression had prolonged
survival (58). This increase in survival was associated with higher T
cell infiltration in the tumors.
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Adoptive transfer of autologous T cells is also limited by
immunosuppression from circulating Tregs (59–61). Patients with
GBM have natural, or thymus derived Tregs and induced Tregs (62,
63). Tregs are associated with reduced survival and are linked to
tumor recurrence in patients with GBM (64). IDO expression on
tumor cells andCCL-2 secretion frommicroglia andmacrophages in
the tumor microenvironment contribute to recruiting Tregs (CD4
+CD25+ FOXP3+) (52, 60, 65). Targeting Tregs may have the
potential to be synergistic with T cell infusions, but this has not
been tested. Treatment targeting Tregs has thus far only been tested
alone or in combination with standard chemotherapy or radiation.
For example, glucocorticoid-induced TNFR-related protein (GITR)
are receptors expressedonTregs, and antibodyblockade ofGITRhas
been shown to have efficacy in murine models (66). Intratumoral
treatmentwithanantibodyagainstGITRwas foundtohavea survival
benefit in a murine GBM model (30 days compare to 19 days in
control, p<0.01, and 10% of mice being long-term survivors).
However, this benefit was only seen when treatment was delivered
within the tumor through FcgR-mediated destruction of Tregs.
Systemic delivery did not deplete intratumoral Tregs and did not
extend survival significantly. Anti-GITR, non-depleting antibodies
combinedwith stereotactic radiation also increases overall survival in
murine GL-261 Luc glioma model (67). In GBM patients, selective
depletion of Tregs with anti-IL-2Ra mAb during lymphopenia,
enhanced response to an EGFRVIII peptide vaccine and improve
anti-tumor humoral immunity (68). The effects of anti-Treg therapy
in combination with infusion of cytotoxic T cells has not been tested.
OPTIMIZING EXPANSION, ENGRAFTMENT,
AND FUNCTION OF T CELLS

Current treatment strategies for GBM all have effects on the host
immune system. Although many of these effects are
immunosuppressive, some of the immune-related changes can be
leveraged for improved efficacy of immunotherapy. Experimental
data of cancer models and results from metastatic cancer patients
suggest addition of radiotherapy to immunotherapy contributes to
systemic anti-tumor immunity (69). In murine models, GL261
tumor bearing mice had a median survival of 53 days when treated
with PD-1 blockade combined with stereotactic radiosurgery
compared to 25-28 days in control animals or those treated with
monotherapy (70). In a pre-clinical study evaluating a second
generation NKG2D targeting CAR T cell, investigators found that
the addition of a single dose of 4 Gy radiation to the tumor resulted
in significantly more intra-tumor T cell migration (71). This was
associated with increased long-term survival in the SMA-560
glioma model (42% versus 14% with CAR alone, p<0.001). In
patients with newly diagnosed high grade glioma, radiation was
given 9days after intra-tumoral administrationof adenoviral vector
(ADV-TK) as preclinical studies suggest increased efficacy with the
combination (72). Twelve patients were treated and 4/4 tumors
were found to haveCD3T cell infiltrates onH&E analysis. This was
a phase IB study and further investigation is ongoing.

Chemotherapy has also been described to improve engraftment
after T cell infusions. Using a murine melanoma tumor model
treated with OT-1 T cell infusion followed by OVA peptide
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vaccination, myeloablation using temozolomide led to a 70-fold
expansion of antigen specific T cells compared to controls (28). In
the same model, temozolomide-induced lymphopenia increased
antigen specific T cell expansion in a dose dependent fashion (73).
Interestingly, the immune effects of temozolomide vary based on
the dosing schedule. When combined with PD-1 blockade,
standard dosing of temozolomide abrogated the survival benefit
of PD-1 blockade inmurineGL-261 gliomamodels (74).When the
same total dose was delivered in smaller individual doses over a
longer period of time (metronomic schedule), the survival benefit of
PD-1 blockade was preserved due to avoidance of T cell
dysfunction. In a phase II study of DCs loaded with GBM lysate
combined with adjuvant temozolomide, CD8 T cells expanded, but
the effectormemory (CCR7 low,CD45ROhigh) decreased after the
first adjuvant temozolomide dose (75).

The ideal conditioning chemotherapy regimen prior to T cell
infusion is controversial. Myeloablative dosing has been shown
to increase T cell engraftment. However, myeloablation requires
stem cell rescue and is more toxic. A myeloablative dose of
temozolomide was tested in B16 F10-OVA melanoma model, in
combination with T cell transfer and OVA peptide vaccine
improved survival by 10 days compare to non-myeloablative
dose (28). The improved survival was mediated by elevated levels
of IL-2 post chemotherapy. Higher levels of IL-2 contributed to a
significant expansion of transferred T cells and differentiation of
naïve T cells to effector T cells with a higher capacity for pro
inflammatory cytokine secretion.

Lymphodepletion without myeloablation may be enough.
Lymphodepletion prior to CAR T cells targeting EGFRvIII was
found to cause regression of tumors and resulted in 50% long term
survivors (over 200 days) (29). Animals that received higher
temozolomide doses (dose intensified) had enhanced proliferation
and persistence of CAR T cells compared to animals receiving the
standard dose. Based on this study, phase I clinical trial had been
designed to evaluate the anti-tumor efficacy of EGFRvIII CART cells
after host preconditionwithdose intensified temozolomide fornewly
diagnosedGBMpatients (NCT02664363). In another phase I clinical
trial for patients with recurrent central PNETs, the efficacy of T cell
transfer targeting total tumor RNA combined withDC vaccine was
evaluated post non myeloablative doses of cyclophosphamide and
fludarabine (19). Massive clonal expansion of T cells were found
using TCR sequencing. However, the function of these expanded T
cells has not been described.

Tcelldysfunction isamajor limitationof anyTcell-based therapy.
One strategy to avoid T cell dysfunction is replacement of exhausted
and senescent T cells with effector and memory T cells. This
replacement can be performed by promoting apoptosis by
targeting FOXO4/p53 peptide in senescent T cells (76) and
substituting the exhausted T cells with effector and memory T cells
using stem cell transplantation (77). Alternatively, dysfunctional T
cells can be replaced by T cells recruited by hematopoietic stem cell
(HSC) infusion. In amurineGBMmodel,HSCswere shownmigrate
to the tumor microenvironment (78). Secretion of chemoattractants
such as growth factors and cytokines from tumor cells attract HSCs
whereHSCs can recruit tumor-specificT cells. A studybyFlores et al.
demonstrated that HSC infusion after myeloablative RT resulted in
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homing of tumor specific lymphocytes to the tumor (KR158) via
CCL3 secretion and tumor control with improved survival (doubling
of median survival compared to control) (79).

An alternative is use of induced pluripotent stem cells (iPS)
which differentiate into functional T cells (80). For example,
murine embryonic fibroblasts were used to create iPS cells using
Flt-3 and IL-7 (81). These iPS cells were used to create T cells
which were able to reconstitute a normal pool of T cells in a T cell
deficient mouse model. Differentiation of T cells from iPS cells
can be used as a strategy to produce “rejuvenated” T cells with
high proliferative capacity and elongated telomeres (82).
Moreover, iPS grown T cells can be transduced with CARs or
engineered TCRs specific for tumor antigens (83).

Restoration strategy is another novel area of research. This
technique requires harvesting of a functional thymus from
cadaveric donor, isolation of thymus organoids and bioengineering
them with growth promoting factors and thymo-stimulatory
cytokines such as IL-21 (84). These thymic organoids can be
transduced with recipient HLA molecules followed by
recellularization of bioengineered organoid scaffold to be prepared
for transplanting into the recipients (85, 86). These strategies are still
experimental and require further study to determine their role in the
treatment of patients with GBM.

Preventing or reversing T cell dysfunction will be the key to the
future of immunotherapy in the treatment of GBM. Importantly,
the effects of standard treatment modalities on the host and
exogenously derived T cells will be critical. Manipulation of the
peripheral and intra-tumoral immune microenvironment,
optimizing the timing and duration of T cell antigen exposure,
and providing sufficient T cell activation have the potential to
improve responses to immunotherapy. Furthermore, adoptive T
cell therapy with antigen specific T cells including CAR T cells or
hematopoietic stem cells, are promising approaches to replace
dysfunctional T cells in patients with GBM.
CONCLUSION

Patients with GBM present with several mechanisms of
immunosuppression and T cell dysfunction. Targeted efforts to
improve T cell function will result in greater efficacy of platforms
such as adoptive T cell transfer and CAR T cell infusion. These
efforts include designing T cells that target the major tumor
antigens, improving persistence and effector function of T cells,
and optimization of tumor microenvironment for the efficacious
T cell response in the immunosuppressive tumor setting. The
efficacy of immunotherapy for GBM rests on the ability to
overcome T cell dysfunction.
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