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Abstract
Federated learning (FL) is a promising decentralized deep learning technology, which allows users to update models coopera-
tivelywithout sharing their data.FL is reshaping existing industry paradigms formathematicalmodeling and analysis, enabling
an increasing number of industries to build privacy-preserving, secure distributed machine learning models. However, the
inherent characteristics ofFL have led to problems such as privacy protection, communication cost, systems heterogeneity, and
unreliability model upload in actual operation. Interestingly, the integration with Blockchain technology provides an oppor-
tunity to further improve the FL security and performance, besides increasing its scope of applications. Therefore, we denote
this integration of Blockchain and FL as the Blockchain-based federated learning (BCFL) framework. This paper introduces
an in-depth survey of BCFL and discusses the insights of such a new paradigm. In particular, we first briefly introduce the FL
technology and discuss the challenges faced by such technology. Then, we summarize the Blockchain ecosystem. Next, we
highlight the structural design and platform of BCFL. Furthermore, we present the attempts ins improving FL performance
with Blockchain and several combined applications of incentive mechanisms in FL. Finally, we summarize the industrial
application scenarios of BCFL.
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1 Introduction

The quality and security of data are the keys to the devel-
opment of machine learning and artificial intelligence (AI).
However, rich data is often privacy sensitive and large scale,
which will hinder traditional methods to log into a data cen-
ter and train there. Besides, most of the data and resources
needed for effective training of machine learning models
are owned by a few large technology companies, which
is detrimental to privacy protection and further leads to
centralization problems. Thus, a novel, distributed learn-
ing approach that allows large-scale joint modeling without
publishing rawdata becomes imperative. In this context, Fed-
erated learning (FL) proposed by Google (Konečnỳ et al.
2016; Aledhari et al. 2020; Konečnỳ et al. 2016; McMahan
et al. 2017) has recently received great attention at both the
research and application levels.

Specifically, FL is an emerging machine learning technol-
ogy consisting of many mobile devices and a central storage
server. This technology allows distributed model training
using local datasets from large-scale nodes, such as mobile
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devices. FL updates the parameters without uploading the
original training data and then builds a shared model by
aggregating the locally computed updates (Xu et al. 2020).
A typical example is the FedAVG algorithm, which is based
on the iterative model averaging proposed in McMahan
et al. (2017). This method is robust and allows to generate
imbalanced and independent, and constant distribution non-
IID data distributions. The basic design structure of FL is
shown in Fig. 1. Based on this, FL offers promising privacy
protection for mobile devices while ensuring high learning
performance.

However, despite the many benefits mentioned above,
FL still faces serious challenges. The gradient aggregation
mechanism used for FL makes the entire algorithmic model
dependent on the control of a central node. So we need to
address two trust issues: one is to ensure that there is a cen-
tral node that all participants trust, and the other is to ensure
that information about the operations of the central node is
transparent. First of all, FL relies on centralized databases
and remains at risk of distributed denial of service DDoS
attacks and privacy breaches. Again, currently, FL systems
do not have suitable and transparent contribution evaluation
mechanisms and incentive mechanisms to ensure continu-
ous active training of training nodes. Finally, an effective
distributed system needs to identify and prevent malicious
nodes. However, the currentFL system does not provide ade-
quate mechanisms to implement these operations.

Interestingly, Blockchain technology provides an oppor-
tunity to address the above challenges of FL. More precisely,
through the combination of chain structure, tree structure,
and graph structure, the Blockchain ensures secure storage
and data traceability (Liang et al. 2020). Besides, through the
consensus mechanism of proof-of-work (POW ), Blockchain
realizes the untamperability of data. In more detail, due to
the validation process of Blockchain local training results,
the proposed BCFL framework can avoid the single point of
failure (SPOF) and extend its federation scope to untrusted
users in the public network. In addition, by providing rewards
proportional to the size of the training samples, BCFL can
realize effective incentives and thus facilitate the union of
more devices with a large number of training samples. There-
fore, the Blockchain can be seen as a perfect complement
for FL, providing it with improved interoperability, privacy,
security, reliability, and scalability (Liang et al. 2021).

Although many papers involve different aspects of the
BCFL paradigm, there is no systematic investigation on
this paradigm. In this article, we present a survey on a
new paradigm for integrating Blockchain and FL. This sur-
vey denotes such a synthesis of Blockchain and FL as
Blockchain-based federated learning (BCFL) framework.
To present a complete picture of BCFL-related studies, we
surveyed the related works focusing on structure design,
performance enhancement attempts, incentive mechanism

Fig. 1 The architecture of FL

design, and industrial applications ofBCFL, in a period rang-
ing from 2016 to 2021. Given the previous work, we aim to
(i) provide a conceptual introduction to FL and Blockchain
technology, (ii) provide a systematic analysis of the poten-
tial of incorporating Blockchain into FL, and (iii) discuss the
specific applications of BCFL in depth.

In detail, the main contributions of this paper are summa-
rized as follows.

• We provide an overview of the definition, architectural
design, and deployed platform for Blockchain and FL
convergence.

• We provide a systematic survey on the studies dedicated
to improving the performance of FL by integrating block
FL systems.

• We survey the existing studies on effective incentive
mechanisms for training nodes using Blockchain.

• Wesummarize the current feasible applications forBCFL
in industrial applications.

The rest of this article is organized as follows. We
first introduce the related work in Sect. 2. Section 3 then
introduces the background and fundamentals of FL and
Blockchain. Subsequently, Sect. 4 presents the convergence
architecture and deployment platform of BCFL. Section 5
then summarizes the attempts to make appropriate improve-
ments to the BCFL. Section 6 discusses the transparent
contribution recognition and effective reward for clients in
BCFL. Section 7 next summarizes the feasible application of
BCFL. Finally, Sect. 8 concludes the paper.
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(a) (b)

Fig. 2 The loosely related researches of Yang’s work and Zheng’s work

2 Related work

Currently,many studies have investigated the ideology, struc-
ture, and related research ofFL andBlockchain, respectively.
Particular, the works proposed in Konečnỳ et al. (2016),
Konečnỳ et al. (2016), McMahan et al. (2017), Kairouz et al.
(2019), Yang et al. (2019), Bonawitz et al. (2019), Yu et al.
(2021), Li et al. (2020), Gu et al. (2019), Li et al. (2019),
Mothukuri et al. (2021), Liang et al. (XXXX) comprehen-
sively introduced the relevant information of FL, while the
works proposed in Zheng et al. (2017), Kumar and Jaiswal
(2019), Xiao et al. (2020), Gramoli (2020), Liang et al.
(2020), Zhou et al. (2020), Saleh (2020), Li et al. (2020),
Hewaet al. (2021), Liang et al. (2019),Xiao et al. (2020) sum-
marized the main information concerning the structure and
characteristics of Blockchain. In this work, we take Yang’s
work (Yang et al. 2019) andZheng’swork (Zheng et al. 2017)
as baselines and organize the closely related research. As Fig.
2 shows, Yang’s work is associated with more highly cited
articles, and Zheng’s work links more paper groups.

In conclusion, the technological development of FL has
attracted much attention, and the related research has shown
an explosive growth trend. However, as Table 1 shows, there
is no existing survey related to the combination ofBlockchain
and FL in the literature. To fill this gap, we propose in this
work the first survey that performs a thorough investigation
of the relevant studies published in recent years on BCFL.
Again, we systematically present the structural designs,
deployed platforms, performance improvement, node incen-
tive mechanisms, and the industrial applications of BCFL.
Finally, based on the related works, Table 2 defines a list of
acronyms and the definitions used in this survey.

3 Background

In this section, we provide all the background necessary
to understand better and follow this paper. More precisely,
we briefly introduce FL integration in Sect. 3.1 and present
Blockchain ecosystem in Section 3.2.

3.1 Federated learning integration

FL refers to the calculation process that enables the data
owner Fi to perform model training and obtain the model
MFED without giving their data Di while ensuring that the
gap between the effect VFED of the model MFED and the
effect VSUM of the model MSUM is small enough. This cal-
culation can be expressed as follows.

ωi
t = &argmin

ωi
t

F
(
ωi
t

)
(1)

F
(
ωi
t

)
& = 1

|Di |
∑
j∈Di

f j
(
ωi
t

)
(2)

Where |Di | is an arbitrarily small positive value, 1 ≤ i ≤
n, and n is the number of participants to the system.

3.1.1 Taxonomy of FL

The basis of FL is the data matrix. As shown in Fig. 3, based
on the different distribution patterns of sample space and fea-
ture space of data, FL can be divided into three categories:
horizontal federated learning (HFL), vertical federated learn-
ing (VFL), and federated transfer learning (FTL) which
divide the dataset horizontally (i.e., user dimension), lon-
gitudinal (i.e., feature dimensions), and non-dimensionally,
respectively.

3.1.2 The workflow of FL

FL systems generally consist of data holders and central
servers. The amount of local data or the number of features
of each data holder may not be enough to support successful
model training. Therefore, support from other data holders
is required. Figure 4 illustrates the FL process for the client-
server architecture.

In a typical cooperative modeling process of FL, the train-
ing of local data by the data holders occurs only locally to
protect data privacy. Next, the gradients generated by the
iterations are used as interaction information after desensi-
tization and uploaded to a third-party trusted server instead
of local data, waiting for the server to return the aggregated
parameters to update the model. In detail, the steps of FL can
be summarized as follows.

• Step 1. System Initialization. First, the central server
sends the modeling task and seeks to participate in the
client.

• Step 2. Local Calculation. After the joint modeling task
is opened and the system parameters are initialized, each
data holder will be required to perform local calculations
according to the data locally first.

123



4426 D. Li et al.

Ta
bl
e
1

T
he

su
m
m
ar
y
of

se
le
ct
ed

ov
er
vi
ew

s
an
d
su
rv
ey
s
fo
r
F
L

C
at
eg
or
y

R
ef
.n
o

A
ut
ho
r(
s)

To
pi
c

Pu
bl
is
he
d

Fu
nd
am

en
ta
la
rc
hi
te
ct
ur
e,
al
go
ri
th
m
,a
nd

m
od
el

K
on
eč
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(a) (b) (c)

Fig. 3 The category of data partition for FL

• Step 3. Central Polymerization. After receiving the cal-
culation results from multiple data holders, the central
server aggregates the calculated values. In the aggrega-
tion process, efficiency, security, privacy, and other issues
need to be considered.

Notably, the work of the FL central server is similar to a
distributed machine learning server, which collects the gra-
dients of each data holder and then returns a new gradient
after performing aggregation operations in the server.

3.1.3 Applications of FL

Currently, FL has been integrated with other emerging tech-
nologies by many scholars to enable industrial applications,
such as the efficiency improvement of mobile and wireless
communication (Konecný et al. 2016; Sattler et al. 2020; Rei-
sizadeh et al. 2020; Li et al. 2020; Niknam et al. 2020), edge
computing (Wang et al. 2019;Doku et al. 2021;Lu et al. 2020;
Fantacci and Picano 2020; Wang et al. 2019; Li et al. 2020;
Lim et al. 2020), health care (Rieke et al. 2020; Bogdanova
et al. 2020; Zerka et al. 2020), Internet of Things (Savazzi
et al. 2020;Yang et al. 2020;Yuan et al. 2020;Qolomany et al.
2020; Briggs et al. 2020; Lim et al. 2020; Gao et al. 2020;
Kamel andMougy 2020; Imteaj andAmini 2019), Internet of
Vehicles (Samarakoon et al., 2020; Hsu et al., 2020; Du et al.,
2020), anomaly detection (Nguyen et al. 2019;Weinger et al.
2020), smart city (Jiang et al. 2020), financial fraud identi-
fication (Fan et al. 2020), visual object detection (Liu et al.
2020) and fog computing (Zhou et al. 2020; Cai et al. 2020).
It can be seen that FL is prominent in industrial applications
for privacy-sensitive data and the processing of non-IID data.
Practical industrial-scale applications are not yet sufficient,
but theoretical preparations are relatively well established.

3.1.4 Open-source frameworks of FL

There are currently a few open-source frameworks for
researchers and developers to build FL systems. A summary
of such frameworks is listed in Tab 3.

Table 2 The summary of acronyms and definitions

Acronym Definition

FL Federated learning

HFL Horizontal federated learning

VFL Vertical federated learning

FTL Federated transfer learning

BCFL The integration of
Blockchain and
federated learning

AI Artificial intelligence

DDoS Distributed denial of service

SPOF Single point of failure

PoW Proof of work

PoS Proof of stake

DPoW Delayed proof-of-work

DPoS Delegated proof-of-stake

PBFT Practical byzantine fault tolerance

dBFT Delegated byzantine fault tolerance

PooL Verify the pooling

IoV Internet of vehicles

IoT Internet of things

DTWN Digital twin wireless network

5G 5th Generation mobile networks

6G 6th Generation mobile networks

Fig. 4 The workflow of FL

3.2 Blockchain ecosystem

3.2.1 Overview of Blockchain

Blockchain is essentially a decentralizeddistributeddatabase.
All the interactive records (transactions) generated in the sys-
tem are linked into chains as blocks and stored in each section
in time. Furthermore, each transaction is guaranteed by cryp-
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Table 3 The summary of open-source frameworks of FL

Project Publisher Framework Open source Refs. Github

Tensorflow
Federated

Google Tensorflow Code blocks XXXX (XXXX) https://github.com/tensorflow/federated

PySyft Ryffel et.al PyTorch Code blocks Ryffel et al. (2018) https://github.com/OpenMined/PySyft

FATE Webank KubeFATE API XXXX (XXXX) https://github.com/FederatedAI/FATE

PaddleFL Baidu PaddlePaddle API Ma et al. (2019) https://github.com/PaddlePaddle/PaddleFL

FedML University of
Southern
California

worker-oriented
program

API He et al. (2020) https://github.com/FedML-AI/FedML

LedgerLedger

Tx1 Tx2 Tx3 Txn

HashHash

Hash Hash

Hash

HashHash

Hash Hash

Hash

Tx1 Tx2 Tx3 Txn

HashHash

Hash Hash

Hash

Blockchain NetworkBlockchain Network

Access 
Control
Access 
Control

Block Header
Previous

Hash NoncePrevious
Hash Nonce

Timestamp CoinbaseTimestamp Coinbase

Model ID Data IDModel ID Data ID

Root Previous
HashRoot Previous
Hash

Previous
Hash Nonce

Timestamp Coinbase

Model ID Data ID

Root Previous
Hash

Tx1 Tx2

Txn-1 Txn

Block Body

 Network Layer

Consensus Layer

Data Layer

Applica�on Layer

 Network Layer

Consensus Layer

Incen�ve Layer

Data Layer

Applica�on Layer

Fig. 5 The architecture of Blockchain

tography and PoW algorithms that cannot be tampered with
or forged, so each node in the system can achieve secure
peer-to-peer transactions. As Fig. 5 shows, a block consists
of a block header containing metadata and some transaction
records. These blocks are linked by the hash pointer of the
block header to form a complete ledger, which is the narrow
definition of Blockchain. More precisely, from the bottom
to the top, the Blockchain is composed of the data layer,
incentive mechanism, consensus layer, network layer, and
application layer (Zheng et al. 2017; Fan et al. 2021; Zheng
et al. 2018; Lu 2018; Liang et al. 2019).

Based on different application scenarios and designed sys-
tems, the Blockchain is generally divided into public chain,
consortium chain, and private chain. Table 4 presents the
comparison of three different types of Blockchain. Gener-
ally, different types of Blockchain are selected according to
the requirements of different business scenarios (Liang et al.
2021). However, in a broad sense, only the public chain can
meet the original design intention of the Blockchain.

3.2.2 Consensus mechanism

The most fundamental consensus mechanism of Blockchain
is the proof-of-work (POW ). A node chooses to store the
hash value of a specific block in the current block and then

mines it. Once successfully linked, it means that the node
accepts the transactions of this block and all previous blocks
linked by this block. In addition toPoW, there are many other
types of consensus mechanisms. Table 5 lists several typical
consensus mechanisms and gives a comparative explanation.

3.2.3 Smart contract

The smart contract can digitally verify the negotiated or
executed contracts and allow trusted transactions without a
third party. Besides, these transactions are traceable, and irre-
versible (Huang et al. 2019). Thus, the success of Ethereum
has contributed to the realization of smart contracts. As
shown in Fig. 6, it includes transaction processing and preser-
vation mechanism and a complete state machine for accept-
ing and processing various smart contracts. Smart contracts
bring great versatility and adaptability to the Blockchain. It is
because of the smart contract functionality that various algo-
rithms, including FL, can be deployed on the Blockchain.

4 Structure design of BCFL

This section outlines the main characteristics of the Blockch
ain-based federated learning (BCFL) framework. More pre-
cisely, in Sect. 4.1, we first introduce the BCFL architecture
arising from the integration of Blockchain and FL. Then, we
present the design of data storage and the deployed platform
of BCFL in Sects. 4.2 and 4.3, respectively.

4.1 Architecture of BCFL

The first related research focused on the construction of
BCFL has been proposed by Kim et al. (2018). The main
concept underlying the BCFL is to solve the issues on private
exchange and rewardmechanismsbyusingBlockchain (Hieu
et al. 2020). Subsequent related studies, such as Mugunthan
et al. (2020), Kang et al. (2020),Ma et al. (2020), andMajeed
and Hong (2019), have also built some contributions on this
foundation, but only introducing some small-scale improve-
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ments. Besides, tomake an intuitive display, a demo ofBCFL
has been proposed by Zhang et al. (2020). However, these
follow-up studies all adopted this basic design structure, as
shown in Fig. 7.

Specifically, the Blockchain mainly serves as a central
database for the FL system, which is fully decentralized and
privacy-protected. Therefore, the main goal is to reward the
clients according to the quality of their contributions while

Fig. 6 Smart contract

Table 4 Taxonomy of
Blockchain systems

Blockchain Participants Characteristics TPS

Public Anyone Decentralized 3–20 data writes per second

Consortium Authorized nodes Partially centralized 1000 data writes per second

Private Authorized nodes Centralized 1000 data writes per second

Table 5 The summary of
Consensus in Blockchain

Consensus Merits Weakness

PoW Complete centralization, nodes
free access

Waste of energy and difficult to
reduce the confirmation time of
blocks

Simple algorithm Prone to forking and need to wait
for multiple forks to reach
consistency

The cost of destruction is
huge(destroyer exceed 50%)

PoS cLow performance requirements
for nodes

No final consistency, need
checkpoint mechanism to
compensate and finality

Short consensus time

DPoW Significantly reduce the number of
nodes involved in validation

Sacrifices the concept of
decentralization, not suitable for
public chains

DPoS Energy conservation Slightly more centralized, e.g.,
participants with high equity can
vote to make themselves a
validator.

Rapidity

PBFT High consensus efficiency for high
frequency trading

The existence of cryptocurrency
and the incentive mechanism will
create a Matthew effect making
the poor poorer and the rich
richer in the community

The system will stop when only
33% of the nodes are left running

dBFT Highly fault-tolerant with
bookkeeping done by multiple
nodes

The system will not be able to
provide services when more than
one-third of the bookkeepers stop
working

Every block has finality

The algorithm has a strict
mathematical proof that it will
not bifurcate

PooL No cryptocurrency required Less decentralized

Second-level consensus
verification
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Fig. 7 The architecture of BCFL

protecting the privacy of the underlying dataset and fending
off malicious adversaries.

4.2 Data storage

As with any distributed system, FL bears the privacy leak-
age challenge. For BCFL, the Blockchain plays a pivotal
role in solving this problem (Liang et al. 2020). Indeed, the
decentralized functioning of Blockchain enables to make FL
fault-tolerant (Shayan et al. 2021), and can help to avoid
attacks effectively. More precisely, to better solve the secu-
rity problem of data storage, many studies try tomake further
improvements based on ordinary Blockchain. For example, a
new ring decentralization algorithm (Hu et al. 2020), and an
innovative committee consensus mechanism (Li et al. 2021)
was shown to be feasible solutions for improving decentral-
ized FL performance and reducing consensus computation,
respectively. In summary, the Blockchain data storage model
can protect the privacy of a single client update and maintain
the large-scale performance of the global model.

4.3 Deployed platform

In BCFL, the functions of the Blockchain layer need to
be implemented with the support of a platform. Differ-
ent Blockchain platforms have different characteristics. For
example, public chains provide stable performance, con-
sortium chains provide robust security, and private chains
provide more customization features. From a careful anal-
ysis of the literature, the current BCFL mainly adopts four
platforms: Ethereum, Hyperledger Fabric, EOS, and Cus-
tom Blockchain. The features comparison of these platforms
is shown in Table 6.

4.3.1 Ethereum

As the earliest programmable Blockchain, Ethereum is
Turing-Complete (Buterin XXXX). The work proposed by

Nagar (2019) deploys theBCFL platformusing anunlicensed
side chain, using a technique proposed by layer 2 extension.
Moreover, based on smart contracts in Ethereum, Mugun-
than et al. (2020) proposes the BlockFLow architecture,
which initially realizes accountable and privacy-preserving
FL through anovel contribution scoringprocedure. Similarly,
Baffle (Ramanan et al. 2020) and ChainFL (Korkmaz et al.
2020) are both Etherium-based FL systems, which use smart
contracts to coordinate round partitioning, model aggrega-
tion, and update tasks in FL.

4.3.2 Hyperledger Fabric

As an open-source project, Fabric is initiated by the Linux
Foundation and maintained by several corporate organiza-
tions. Zhang et al. (2020) demonstrate FL training neural
network model on FL client’s physical distribution dataset.
The underlying communication between the server and the
client uses the new Blockchain-based protocol on the secure
data exchange system.

4.3.3 EOS

The Enterprise Operating System (EOS) is a Blockchain-
based operating system designed for commercial distributed
applications (Grigg XXXX). For example, an EOS-based FL
framework is proposed in Martinez et al. (2019), in which
the model owner O has the total liability of payment for the
device and producer work, as opposed to devices D needing
to pay for their transactions.

4.3.4 Custom Blockchain

Although there are many well-established public chains or
consortium chains on the market, many researchers still
choose to load FL systems with Custom Blockchains. The
main reason is that the CustomBlockchain allows better flex-
ibility, programmability, and extensibility. In particular, the
work of Kim et al. (2020) proposes BlockFL, an architec-
ture based on a Custom Blockchain in which local learning
model updates are exchanged and validated. Similarly, Lu
et al. (2020) propose a system consisting of a dual-module
containing a permission Blockchain module and a FL mod-
ule.

5 Model improvement in BCFL

FL is essentially a kind of machine learning. Therefore, its
learning performance, efficiency, and security are important
aspects to take into account. For this reason, several studies
have been proposed to make appropriate improvements to
the BCFL and enhance the above model performance. Table
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Table 6 The summary of Deployed Platform for BCFL

Platform Blockchain type Consensus Identity Recent studies Refs.

Ethereum Public PoW, PoS Anonymity BlockFLow,
BAFFLE,
Chain FL

Nagar (2019),
Mugunthan et al.
(2020), Ramanan
et al. (2020),
Korkmaz et al.
(2020)

Hyperledger
Fabric

Consortium SOLO, Kafka Known identity DEMO Zhang et al. (2020)

EOS Consortium DPoS,BFT Known identity BlockFL Martinez et al.
(2019)

Custom
Blockchain

Private PBFT Known identity BlockFL*,
Secure-
DataShar-
ing

Kim et al. (2020), Lu
et al. (2020)

7 summarizes the current effective attempts to improve the
BCFL.

5.1 Performance improvement

FL is a distributed machine learning method that supports
local storage of data. In this method, the client implements
training through interactive gradient values. Therefore, the
underlying idea for improving the accuracy of the model is
similar to classical machine learning.

5.1.1 Fault tolerant enhancement

ChainFL proposed inKorkmaz et al. (2020) achieves encour-
aging results on the Modified National Institute of Standards
and Technology database digit recognition task (MNIST ) and
Canadian Institute for Advanced Research image classifi-
cation task (CIFAR-10). Such results demonstrate that the
BCFL model can enhance the system fault tolerance without
losing the corresponding model performance compared to
the traditional FL model.

5.1.2 Solving non-IID issues

The ID labels of data samples have a significant impact on the
accuracy of machine learning models. To address the prob-
lem that user-generated data samples across devices are likely
to become non-IID, Jeong et al. (2018) proposed federated
augmentation( FAug), a data augmentation scheme that col-
lectively trains generative models on each device to enhance
the local data to generate IID datasets.

5.2 Efficiency tracking and improvement

For industrial areas such as languages and games, large-scale
computations still have high demands on overall algorithm
performance (Ogiela and Ogiela 2009). Thus, the tracking
and measurement of the algorithm’s efficiency are therefore
crucial.

5.2.1 Replace oracle service with chaincode

Theefficiencyof thedatabasewill have an appreciable impact
on the efficiency of FL. Again, the smart contract function in
the Blockchain can replace the oracle service to achieve the
data access function. Thework ofDrungilas et al. (2021) uses
chaincode in Hyperledger structures instead of oracle ser-
vices in the database and compares the runtime of functions
executed using either chaincode or oracle services, demon-
strating that negligible differences between implementations
justify the flexible choice of model.

5.2.2 Setting weight parameter

Blockchain allows the performance of algorithms to be
securely stored and recorded, and in particular, the long-term
trend of FL can be tracked, depicting the overall situation
and future dynamics of algorithm efficiency during opera-
tion. Therefore, weights based on each client’s local learning
accuracy andweights based on each client’s frequency of par-
ticipation can be used to achieve higher stability and faster
convergence times to target accuracy. For instance, Kim and
Hong (2019) propose a local learning weighting method for
node recognition. This method selects nodes according to the
participation frequency and data and weights to achieve fast
convergence and stable learning accuracy.
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5.3 Security improvement

Existing schemes have proven that the Blockchain-based
decentralized control mechanism of Blockchain can effec-
tively prevent risks such as SPOF (Liu et al., 2020; Kim
and Kim, 2020; Firdaus and Rhee, 2021; Dwivedi et al.,
2021; Ruggeri et al., 2020), DDoS attacks (Li et al., 2019;
Saad et al., 2019; Rodrigues et al., 2017; Houda et al., 2019;
Elisa et al., 2020), and poisoning attacks (Liang et al., 2019;
Barański and Konorski, 2020; Rathore et al., 2019). How-
ever, the considerable computing power and storage cost of
standard solutions are still critical challenges.

5.3.1 Re-encryption algorithms

Another possibility to achieve low-cost security improve-
ments is to use re-encryption algorithms (Hanet al. 2020). For
example, the work by Li et al. (2020) proposes a crowdsourc-
ing framework called CrowdSFL, in which a re-encryption
algorithm based on the ElGamal cryptosystem is designed to
ensure that interaction values and other information are not
exposed to other participants outside the workflow. In this
way, users can realize crowdsourcing with less overhead and
higher security.

5.3.2 Improved consensus

As mentioned in Sect. 4.2, the consensus mechanism in the
Blockchain can better ensure the security and privacy ofFL’s
data storage. Therefore, the appropriate improvement of the
consensus mechanism can make FL more suitable for differ-
ent scenarios and data. A reliable worker selection scheme
for FL tasks proposed in Kang et al. (2020) introduces the
concept of reputation as a metric to identify trusted and reli-
able workers in joint to prevent unreliable updates.

6 Incentive mechanism in BCFL

FL participants pay for computational resources. How-
ever, the training and commercialization of models are not
instantaneous, and therefore, there is some delay before the
federation reimburses participants. In this section, we out-
line the incentive mechanism underlying the BCFL. More
precisely, in Sect. 6.1, we summarize the current attempts to
apply Blockchain technology in handling lazy clients, while
in Sects. 6.2 and 6.3 we assess the client contribution and
compelling motivation, respectively.

6.1 Handling lazy clients

Basic FL does not take into account the identification of lazy
clients and lacks incentives for influential learning clients.
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Some studies have already begun to try the node incentive
of FL, such as Ng et al. (2020), Khan et al. (2020). How-
ever, since there is no actual token mechanism design, these
studies mainly focus on documentation, detection, and sim-
ulation. In contrast, Block-FL’s incentive mechanism deals
with lazy nodes more practically. Typically, the works of Li
et al. (2020) and Li et al. (2021) propose and evaluate the
learning performance of Blade-FL with bounds that are con-
vex concerning the total number of rounds K and optimize
the computational resource allocation to minimize the upper
bound.

6.2 Assessing client contribution

To sustain the long-term engagement of the high-quality data
owners (especially enterprises), the FL system needs to pro-
vide appropriate incentives based on the accurate evaluation
of computational contributions. The systems in FL can be
synchronous or asynchronous, depending on whether they
use communication or not. In practice, the system function-
ality of FL can be well realized only if the computational
work of the participating nodes is reasonably and well eval-
uated. The current, reliable methods mainly include a joint
learning framework based on Blockchain protocol (Ma et al.
2021) and a newmeasurement standard based on verification
error (Martinez et al. 2019). Similarly, some of thesemethods
introduce the concept of competition to preventworkers from
deviating from the protocol (Ogiela et al. 2016), rewarding
only those who contribute (Toyoda et al. 2020).

6.3 Effectivemotivation

Based on the contribution score assessment, part of theBCFL
model attempts to incentive highly reputable mobile devices
with high-quality data to participate inFL (Kang et al. 2019).
The peer-to-peer payment system is a natural profit allocation
mechanism in the Blockchain. Taking inspiration from that
mechanism, the work of Liu et al. (2020) proposes a support
vector machine-based profit allocation framework based on
the proof of Shapley protocol. On the other hand, the frame-
work proposed in Cai et al. (2020) is based on evaluating the
fractions of the dataset for the corresponding share rewards
and a framework of reasonable contribution scores generated
by both protocols.

7 Industrial applications of BCFL

Due to the strong adaptability exhibited by BCFL, there is an
increasing trend of its wide application. This section mainly
studies the industrial applications of BCFL. As shown in
Table 8, we divide these applications into nine areas and

summarize the benefits and improvements brought by the
corresponding research.

7.1 Data processing in health care

The health care industry is in a prominent position in using
data to create value and improve human health. However,
it has been proved that the traditional methods used to alle-
viate the privacy problems of health data are insufficient to
protect personal interests. For this reason, it is easy to guess
that medical data is highly privacy sensitive. BCFl can be an
effective solution to mitigate the problems mentioned above
since it can perfectly meet the data processing requirements
in the field of medical and health care. In particular,BCFl not
only completes the modeling requirements of physical ther-
apy data but also avoids privacy leaks on relevant data. For
instance, a new agent model based on BCFL is proposed in
Dp et al. (2021), as a real-time medical data processing sys-
tem. Again, to strengthen the privacy of health care data, the
model proposed in Passerat-Palmbach et al. (2019) adopts the
integration of unique privacy protection technology based on
a protocol composed of protected hardware components and
the native Ethereum cryptographic toolkit. Finally, the work
of Passerat-Palmbach et al. (2020) also uses a similar model,
and on this basis, it strengthens the incentive mechanism of
data operation.

7.2 Anomaly detection in network security

Open networks and service sharing scenarios are complex
and varied, leading to serious security challenges (Li et al.
2021). In the FL setting, adversaries have more opportuni-
ties to poison a local machine learning model with malicious
training samples, thus affecting the results of FL and evad-
ing detection. However, the work of Preuveneers et al.
(2018) shows that audit machine learning models using an
anomalydetection algorithm that detects incremental updates
recorded on a Blockchain ledger can effectively prevent
attacks. For the same purpose, the framework proposed by
Desai et al. (2020) uses smart contracts to detect and punish
attackers through fines automatically.

7.3 Device failure and anomaly detection in IoT

Device fault detection is one of the most critical issues in the
industrial Internet of Things (IIoT ). However, in traditional
IoT device fault detection, client devices need to upload raw
data to a central server for model training, which carries the
risk of leakage of sensitive business data (Zhao et al. 2021).
Given the sensitivity, massive volume, fragmentation, and
security ofmulti-party data computation in IoT environment,
the works of Yin et al. (2020), and Rahman et al. (2020)
both propose a BCFL-based learning approach for device
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fault detection in IoT. In particular, to solve the data hetero-
geneity problem in IoT fault detection, Zhang et al. (2021)
proposed a novel centroid distance weighted federated aver-
aging (CDW_FedAvg) algorithm. In detail, this algorithm
effectively enhances the applicability and model accuracy
by taking the distance between positive and negative classes
of each client dataset as the basis for calculation.

7.4 Internet of vehicles for trustworthy vehicular
networks

On the Internet of Vehicles (IoV ), sharing data between
vehicles for collaborative analysis can improve the driving
experience and service quality (Xu et al. 2021). However,
efficiency, security, and privacy issues have becomeobstacles
for data providers to participate in the data sharing process
(Meng et al. 2021; Pokhrel and Choi 2020; Zou et al. 2021).
Fortunately, theBCFL framework is a suitable solution to the
contradiction between large-scale data sharing and privacy
protection. More precisely, the fundamental applications of
BCFL deal with using the validation and consensus mecha-
nisms within the Blockchain to secure IoV data and jointly
ensuring trustworthy shared training for mutual machine
learning models on decentralized end devices (Otoum et al.
2020). In detail, such operations are carried out by adapt-
ing instant block validation at the Blockchain level (Pokhrel
2020) and assessing the trustworthiness of vehicle obser-
vations during data collection (Chai et al. 2020). On this
basis, the work of Pokhrel and Choi (Pokhrel and Choi 2020)
uses the consensus mechanism of Blockchain to manage
data without any centralized training or coordination. Mean-
while, the characteristics of controllable networks and BCFL
parameters (such as retransmission limit, block size, block
arrival rate, and frame size) can better capture their impact
on system-level performance. Finally, some researchers have
deployed SVM (Hua et al. 2020), and DRL algorithms to
improve the efficiency.

7.5 5G and 6G for secure communication

In recent years, a large number of new applications requiring
different network services have emerged. To secure FL in 5G
communication, the main current solutions are Blockchain
authorization (Liu et al. 2020) and decentralized federated
slicing architecture (Hu et al. 2020). Furthermore, the work
of Lu et al. (2021) proposed a digital twin wireless network
(DTWN) schemewhichmoved real-time data processing and
computing to the edge plane by merging digital twins into
wireless networks.

7.6 Intelligent edge computing

Edge computing architecture can quickly process the data
collected by the Internet of Things (IoT ) Zou et al. (2021).
Based on the concept of Blockchain reputation perception
for fine-grained FL, the model proposed in Rehman et al.
(2020) can ensure credible collaborative training in mobile
edge computing systems. Again, the work of Cui et al. (2020)
proposes to apply a compression algorithm of FL, assisted
by the Blockchain, to predict the content caching of files.
On the other hand, as shown in Shen et al. (2021), a new
attribute inference attack is proposed. This attack exploits
the unexpected attribute leakage of FL aided by Blockchain
in intelligent edge computing.

7.7 Fog computing

As an extension of cloud computing and the foundation of
IoT, fog computing is experiencing rapid growth. Indeed, fog
computing has the potential to alleviate some thorny issues,
such as network congestion, latency, and local autonomy.
However, privacy concerns and consequent inefficiencies are
slowing down the performance of fog computing (Huang
et al. 2019). FL-Block proposed in Qu et al. (2020) modifies
the structure of the fog server by storing global updates on
the Blockchain to secure the global updates, allowing the end
devices to maintain the global model and coordinates based
on distributed consensus.

7.8 Cognitive computing

Cognitive computing is used to teach a computer to think like
a human brain, not just to develop an artificial system. In par-
ticular, with the success of AlphaGo and other AI algorithms,
cognitive computing has also ushered in a vast development.
In this context, the work of Qu et al. (2021) introduces a
BCFL-based customized reward system to promote public
equipment to participate in high-performance industries by
deploying Blockchain as the underlying architecture.

7.9 Sustainable society

Defense organizations and armed forces are crucial elements
for the protection and survival of a nation. However, ensur-
ing these elements requires robust networks and computing
power to coordinate intelligence and information process-
ing efficiently. Moreover, given the highly classified nature
of national data, Sharma et al. (2020) propose a distributed
computational defense framework for a sustainable society
using Blockchain technology and FL features. In particular,
the proposed framework enables us to infer battlefield states
while protecting the privacy of sensitive data.

123



4436 D. Li et al.

8 Conclusions and future research directions

This paper presents a survey on the applicability and inte-
gration of Blockchain with federated learning FL. More
precisely, we denote this integration as the Blockchain-based
federated learning (BCFL) framework and provide a compre-
hensive survey of issues related to BCFL implementation. In
this paper, we first provide a basic description of the def-
initions and ecosystems characterizing Blockchain and FL.
Then,we present the structure design ofBCFL as awhole and
summarize the feasible deployment platforms. Next, we dis-
cuss the model improvement of FL through the introduction
of Blockchain. After that, we survey the research related to
Blockchain incentives as an element to improve FL systems.
Finally, we summarize the full range of possible applications
of BCFL in the industry.

In conclusion, the combination of Blockchain and FL is
an auspicious research direction, as it can better ensure data
security and privacy in the case of abundant data. In addition,
this combination makes it possible for more application sce-
narios to adopt this distributed learning model that does not
need to share raw data for joint modeling.

This survey aims to provide a clear view on this topic to
ensure that more and more researchers would start working
on it. Future research directions could deepen and develop
the following aspects:

(1) This paper does not use a cross-referencing and quanti-
tative measure to quantify the overall trends in relevant
research. Therefore, future research could consider intro-
ducing these elements as a supplement.

(2) Future studiesmay consider summarizing and classifying
the related works from a broader range of perspectives
to uncover additional research information relevant to
BCFL.

(3) BCFL may be applied to increasingly more industrial
fields. Consequently, some research efforts may consider
more application effects in different industrial fields and
make more comparative studies.
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