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Abstract: The topology effects of cyclization on thermal phase transition behaviors were investigated
for a series of amphiphilic Pluronic copolymers of both hydrophilic–hydrophobic–hydrophilic and
hydrophobic–hydrophilic–hydrophobic block sequences. The dye solubilization measurements
revealed the lowered critical micelle temperatures (TCMT) along with the decreased micellization
enthalpy (∆Hmic) and entropy (∆Smic) for the cyclized species. Furthermore, the transmittance
and dynamic light scattering (DLS) measurements indicated a block sequence-dependent effect
on the clouding phenomena, where a profound decrease in cloud point (Tc) was only found for
the copolymers with a hydrophilic–hydrophobic–hydrophilic block sequence. Thus, the effect
of cyclization on these critical temperatures was manifested differently depending on its block
sequence. Finally, a comparison of the linear hydroxy-terminated, methoxy-terminated, and cyclized
species indicated the effect of cyclization to be unique from a simple elimination of the terminal
hydrophilic moieties.

Keywords: cyclic polymer; block copolymer; Pluronic; micellization; cloud point; phase transition

1. Introduction

The investigation into the properties of polymers with non-linear architecture, namely,
topological polymers, has revealed various unique structure–property relationships [1].
Amongst them, polymers having a cyclic topology have especially been the subject of atten-
tion from both synthetic and physical property viewpoints, resulting in extensive reviews,
highlights [2–9], and more recently, application-oriented researches [10–14]. Naturally,
the effects of the cyclic topology have been investigated beyond simple homopolymers to
self-assembling block copolymer systems, where the thermodynamics and structural prop-
erties of self-assembly phenomena were found to be affected by the geometrical constraints
induced from the cyclic topology [15–18]. In general, cyclic copolymer amphiphiles were
found to assemble micelles having reduced dimensions and higher densities compared
to their corresponding linear counterparts [16,17,19]. In other examples, the morphology
of the assembled micelles differed depending on the topology of the polymers [20,21].
Moreover, enhancement in thermal and salt stability was found for cyclized copolymer
micelles compared to their corresponding linear species, resulting from the inhibition of
agglomeration induced by chain-bridging of micelles [22].
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The effects of polymer topology are, in theory, not bound by its chemical structure.
However, physical properties exhibited by actual polymer systems are affected by a va-
riety of factors of physical and/or chemical origin, thus complicating the elucidation of
the topology effects. For this reason, polymers with a wide understanding of the rela-
tions between physical properties and structural parameters such as molecular weight,
block ratio, and block sequence are attractive candidates for an investigation into the ef-
fects of polymer topology. In this context, symmetrical triblock copolymers comprised of
hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(propylene glycol) (PPG)
blocks, commercially registered under trademark names of Pluronic [23] are ideal due to
their well-studied nature [24,25]. Pluronic copolymers can be classified into two types based
on their block sequence. Copolymers with the PEG–PPG–PEG sequence are widely known
as ABA-type Pluronic, with the hydrophobic PPG block sandwiched between two hy-
drophilic PEG blocks. In contrast, copolymers with a PPG–PEG–PPG sequence are known
as “reverse” or BAB-type Pluronic, consisting of a middle hydrophilic PEG block with two
terminal hydrophobic PPG blocks. Attention has been focused on the property–structure
relationships regarding parameters, such as molecular weight and block ratios [26–30],
where, for example, micellization conditions were found to be more significantly influenced
by the length of the PPG blocks compared to the PEG blocks [30]. While fewer studies
have focused on the block sequence, direct comparisons between ABA-type and BAB-type
Pluronic copolymer solutions revealed reduced self-assembling tendencies for the latter,
owing to the looped geometry of the copolymers required upon micellization [31,32].

To date, only a single investigation conducted by Booth and coworkers has focused
on the physical properties of cyclized Pluronic copolymers [33], apart from our recent
report [34]. In their work, cyclization was achieved for a single relatively large Pluronic,
EG52–PG34–EG52, via acetalization. The cyclization for this Pluronic species, however, did
not confer a significant effect upon its micellization conditions or micelle hydrodynamic
radii, while a more notable increase in the aggregation number (Nagg) was found. Our
more recent study reported the synthesis and interfacial properties of cyclized Pluronic
copolymers of diverse chemical compositions, revealing an enhancement in interfacial
activity via cyclization to be a prevalent phenomenon [34]. Furthermore, the degree of
enhancement in interfacial activity upon cyclization was found to be influenced by the block
ratio and sequence of the linear species, with a prominent difference in the linear and cyclic
species arising in surfactants having a large PEG block composition. Since our previous
study focused on the effect of cyclization at the air–water interface, its micellization and
phase transition properties were not investigated. However, the obtained results suggest
the cyclic topology affects the interfacial properties of the solutions, albeit with different
magnitudes depending on their structure and composition. It is, therefore, of importance to
expand the work and conduct a comprehensive study into the bulk solution properties of
various cyclized Pluronic copolymers in order to elucidate the effects of the cyclic topology
in relation to other chemical parameters.

This work presents a comprehensive investigation into the effects of cyclization on
the temperature-induced aggregation phenomena of various Pluronic copolymers. The
determination of critical micellization temperatures (TCMT) through dye solubilization and
cloud point (Tc) through light transmittance revealed distinct effects of cyclization. For
example, cyclized species were found to display generally lower TCMT compared to their
linear counterparts. Furthermore, thermodynamic studies revealed reduced micellization
enthalpy (∆Hmic) and entropy (∆Smic) for the cyclized species. Both TCMT and the thermo-
dynamic parameters of micellization were more heavily affected upon cyclization for the
copolymers with a BAB-type block sequence. The Tc, on the other hand, was more signifi-
cantly affected upon cyclization for the ABA-type copolymers, resulting in prominently
reduced values. The obtained results suggest that cyclization influences various phase
stability of Pluronic copolymers in relation to their block sequence.
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2. Materials and Methods
2.1. Materials

CH3I (>99.5%), KOH (>85.5%), NaCl (>99.0%), Na2SO4 (>99.0%), CH2Cl2 (>99.0%),
MeOH (>99.5%), and CHCl3 (>99.0%) were purchased from Kanto Chemical Co., Inc.,Tokyo,
Japan, while TsCl (>98.0%) and chlorobenzene (>99.0%) were purchased from Junsei Chemi-
cal Co., Ltd.,Tokyo, Japan, and Nacalai Tesque, Inc., Kyoto, Japan, respectively. All reagents
of the above-mentioned were used as received. n-Hexane (>99.0%) was purchased from
Kanto Chemical Co., Inc., Tokyo, Japan, and purified by distillation before use. Dehydrated
tetrahydrofuran (THF), stabilizer free (>99.5%), and dehydrated dichloromethane (CH2Cl2)
(>99.5%) for the reactions were purchased from Kanto Chemical Co., Inc., Tokyo, Japan,
and purified using a solvent purification system (MB-SPS-Compact, MBRAUN, Garch-
ing, Germany). Poly(ethylene glycol)–block–poly(propylene glycol)–block–poly(ethylene
glycol) (Pluronic L35, Mn~1900), poly(ethylene glycol)–block–poly(propylene glycol)–block–
poly(ethylene glycol) (Pluronic L64, Mn~2900), poly(propylene glycol)–block–poly(ethylene
glycol)–block–poly(propylene glycol) (Pluronic 10R5, Mn~1700), poly(propylene glycol)–
block–poly(ethylene glycol)–block–poly(propylene glycol) (Pluronic 17R4, Mn~2700) were
purchased from Sigma–Aldrich (Merck KGaA, Darmstadt, Germany) and poly(ethylene
glycol) (PEG), (Mn~2000) was obtained from Tokyo Chemical Industry, Co., Inc., Tokyo,
Japan. The linear polymers were purified using preparative SEC. Pluronic L35 and L64 were
further purified by a previously reported method [35,36]. Thus, 1.0 g of the copolymers
was vigorously stirred in 100 mL of n-hexane at room temperature for 15 min, and the
supernatant n-hexane phase was removed. While the majority of the copolymer remained
undissolved, hydrophobic polymeric impurities were extracted into the n-hexane phase
and thus removed through this procedure. This purification procedure was repeated three
times, and the copolymer was dried under reduced pressure overnight.

2.2. Nuclear Magnetic Resonance Spectroscopy

A JNM-ESC400 instrument (JEOL Ltd., Tokyo, Japan) was used to measure proton (1H,
400 MHz) and carbon (13C, 100 MHz) nuclear magnetic resonance (NMR) spectra using
CDCl3 at room temperature.

2.3. Size Exclusion Chromatography

Size exclusion chromatography (SEC) measurement was carried out using a PU-980
Plus pump (JASCO Co., Tokyo, Japan) equipped with KF-804L columns (8.0 mm × 300 mm
× 2, Shodex) and a KF-G guard column (Shodex, Tokyo, Japan) inside a CO-2065 Plus
column oven (JASCO Co., Tokyo, Japan) set at a temperature of 40 ◦C. An RI-2031 Plus
differential refractometer (JASCO Co., Tokyo, Japan) was used as a detector, and THF as an
eluent was set at a flow rate of 1.0 mL/min.

2.4. Preparative SEC

Fractionation using preparative SEC was carried out using a Japan Analytical Industry
LC-908 recycling preparative HPLC equipped with a RI detector RI-5 (JAI. Co., Ltd., Tokyo,
Japan) and L-7110 pump (Hitachi, Ltd., Tokyo, Japan) and JAIGEL columns (2H, 3H, and a
pre-column, JAI. Co., Ltd., Tokyo, Japan) connected in series. Filtered CHCl3 as eluent was
set at a flow rate of 3.5 mL/min.

2.5. Synthesis of Cyclized Polymers

The intramolecular cyclization of PEG homopolymer and Pluronic copolymers having
hydroxy end groups was performed in accordance with previous reports [33,34,37]. For
PEG and ABA-type copolymers, cyclization was carried out by the Williamson-ether
synthesis. Typically, the reaction was conducted by gradually adding 50 mL of a THF
solution of Pluronic L35 (5.0 g, 1 equiv. mol) and TsCl (1.3 equiv. mol) at a rate of 20 µL/min
into a THF/n-hexane (100 mL, 70/30 v/v) suspension of KOH (5.0 g) at 40 ◦C under an
Ar gas atmosphere. The mixture was additionally stirred for 2 d at the same temperature.
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After filtration, the reaction mixture was concentrated under reduced pressure overnight.
The obtained residue was dissolved in CH2Cl2 and washed thrice using saturated NaCl
aqueous solution. Residual water in the organic phase was removed using Na2SO4 and
was further dried overnight under reduced pressure. Silica gel column chromatography of
the residue was carried out using a CHCl3/MeOH (90/10 v/v) mixture, to give 2.4 g of a
crude product. Finally, 900 mg of the crude product was injected in a preparative recycling
SEC to fractionate cyclized species from intermolecularly reacted byproducts and the linear
precursors, to give 360 mg of pure cyclized Pluronic L35 (c-L35). Meanwhile, cyclization
for BAB-type Pluronic copolymers was carried out through the acetalization reaction. Thus,
typically, 5.0 g of Pluronic 10R5 was dissolved in 50 mL of CH2Cl2, and the solution was
added into a KOH (5.0 g) dispersion of a CH2Cl2/n-hexane mixture (100 mL, 65/35 v/v) at
a rate of 12.5 µL/min. The mixture was stirred at 40 ◦C for an additional 3 d. After filtration,
the reaction mixture was concentrated under reduced pressure. Redissolution in CH2Cl2,
three times washing of the residue using brine, and silica gel column chromatography
(eluent; CHCl3/MeOH, 90/10 v/v) was used to isolate 1.7 g of a crude product. Finally,
500 mg of the crude product was injected into a preparative recycling SEC to give 170 mg
of pure cyclized Pluronic 10R5 (c-10R5).

2.6. Synthesis of Chain-End Methylated Polymers

Methylation of chain-ends for ABA and BAB-type Pluronic copolymers was carried out
following previous reports [10,34]. Typically, 50 mL of a chlorobenzene solution of Pluronic
L35 (2.5 g, 1.0 equiv.) was added (70 µL/min) to a 100 mL chlorobenzene suspension of
KOH (5.0 g) and CH3I (0.56 g, 3.0 equiv.) under an Ar gas atmosphere at room temperature.
The mixture was stirred additionally for 24 h and purified through filtration and silica gel
column chromatography in CHCl3/MeOH (90/10 v/v) to give 1.9 g of methoxy-terminated
Pluronic L35 (l-L35(OMe)).

2.7. Preparation of Pluronic Copolymer Solutions

Required amounts of copolymer were dissolved in Milli-Q water and stirred at room
temperature for over 12 h. The samples were kept in a refrigerator in tightly closed glass
vials for over 48 h for complete dissolution and filtered through a 0.45 µM Millipore filter
prior to measurement.

2.8. Critical Micelle Temperature (TCMT) by Dye Solubilization

A dye solubilization technique using 1,6-diphenyl-1,3,5-hexatriene (DPH) was used
to determine TCMT for the Pluronic copolymer solutions [30]. First, copolymers were
dissolved in Milli-Q water and stirred at room temperature for over 12 h. 25 µL of a 0.4 mM
DPH/methanol solution was added into 2.5 mL of the copolymer aqueous solution. The
final sample solution contained 1 vol% of methanol and 4.0 µM DPH, at four copolymer
concentrations (c) of 0.30, 1.0, 3.0, and 10 g/L. The sample solutions were kept in the
dark for at least 3 h prior to measurement, to ensure complete mixing equilibrium of
the system. Each sample solution was heated at a rate of 0.1 ◦C min−1, and absorption
spectrum (340–400 nm) was measured in 2 ◦C increments after an equilibration time of
10 min at each temperature. The absorption intensity changes upon temperature elevation
at the maximum absorption wavelength of DPH (λmax, DPH = 356 nm) were used in the
determination of its TCMT.

2.9. Cloud Point (Tc) Measurement

Transmission of the solution (%T) was measured at 600 nm on a V-670 UV–Visible
spectrophotometer (JASCO Co., Tokyo, Japan) using an M25-UV-2 micro quartz cell (GL
Science Inc., Tokyo, Japan). Aqueous solutions of the Pluronic copolymers were stirred at
60 rpm inside the spectrophotometer and heated at a rate of 1 ◦C/min. %T was measured in
1 ◦C increments. The lowest temperature at which %T became 90% or less was determined
as Tc. For the PEG samples, aqueous solutions of NaH2PO4 at a concentration of 250 g/L
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were used for dissolution of the polymer to induce phase separation below the boiling
point of water [38,39].

2.10. Dynamic Light Scattering (DLS)

DLS measurements were performed on a Malvern Zetasizer Nano instrument equipped
with a 50 mW frequency-doubled DPSS Nd:YAG laser (λ = 532 nm) (Malvern Panalyti-
cal, Ltd., Malvern, UK). The light scattering signal was obtained at a fixed angle of 173◦.
Aqueous solutions of Pluronic L64 and its derivatives (10 g/L) were measured at various
temperatures after an equilibration time of 10 min. Non-negative least squares analy-
ses [40,41] provided in software built into the instrument were used to determine the
number distribution of the apparent hydrodynamic diameter at finite concentration.

3. Results and Discussions
3.1. Preparation of Sample Polymers and Their Solutions

The cyclized PEG homopolymer and the Pluronic copolymers L35, L64, 10R5, and
17R4 were synthesized and purified according to a reported method [33,34,37], through
intramolecular cyclization of the corresponding linear prepolymers. In the case of Pluronic
L35, the starting prepolymer with hydroxy chain ends and its products are named l-L35(OH)
and c-L35, respectively, in this paper. The other polymers are expressed accordingly. For the
PEG homopolymers and PEG–PPG–PEG (ABA-type) Pluronic L35 and L64, the Williamson-
ether synthesis was undertaken for the reaction between the chain-end hydroxy groups.
For PPG–PEG–PPG (BAB-type) Pluronic 10R5 and 17R4, on the other hand, an acetalization
reaction was carried out instead, due to reduced reactivity of the secondary alcohol at the
chain ends. Linear polymers with methylated chain ends were also prepared via a reaction
with iodomethane in order to clarify the extent of the effect of the cyclic topology from
chemically induced changes due to the elimination of the chain-end hydroxy groups. In
the case of L35, the methylated copolymer is named l-L35(OMe), and the others are named
accordingly. The successful cyclization and dimethylation were confirmed through size-
exclusion chromatography (SEC) (Figure S1) and NMR (Figures S2 and S3). The detailed
characterization of the synthesized polymers has been reported elsewhere [34].

In the case of L64, the commercial product (linear prepolymer) is known to contain a
certain number of polymeric impurities of a stronger hydrophobic nature. These polymeric
impurities are known to substantially affect their solution properties at conditions close to
micellization, with a number of studies reporting their removal [35,36]. Accordingly, the
repeated washing of the prepolymer using n-hexane successfully purified the prepolymer,
as confirmed through the temperature-dependent transmission of the polymer solution
(Figure S4). A spike in %T that was observed at around 40 ◦C before purification due to
the aggregation of the impurities clearly disappeared for a solution prepared from purified
l-L64(OH). The cyclization and methylation reactions were both carried out using the
purified copolymer. The same procedure was carried out for the purification of l-L35(OH).

Among the various types of Pluronic copolymers commercially available, L35, L64,
10R5, and 17R4 were selected since their total molecular weight and block composition
cause aggregation at relatively mild conditions (Figure 1). In addition, a copious amount
of research has been conducted for ABA-type Pluronic copolymers, especially L64, reveal-
ing detailed aspects of their aggregation behavior [35,42–46]. Reverse-type or BAB-type
Pluronic copolymers, on the other hand, have received less attention, with fewer reports
on their physical properties [47,48]. However, the block sequential distinction between
the hydrophilic–hydrophobic–hydrophilic ABA-type and the hydrophobic–hydrophilic–
hydrophobic BAB-type results in surprisingly contrasting properties, such as substantially
higher critical micellization concentrations for the latter [32], even for copolymers with
a similar molecular weight and hydrophilic/hydrophobic block composition. Therefore,
a comparison of the changes in solution properties between ABA-type and BAB-type
Pluronic copolymers allows a clarified understanding of the effect of cyclization in relation
to the block sequence.
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Figure 1. Chemical structures (top) and schematic illustrations (bottom) of various Pluronic copoly-
mers used in this study. Both ABA- and BAB-type copolymers were compared to clarify the effect of
cyclization in relation to their block sequence.

The aqueous solutions of the linear polymers with either hydroxy chain ends (l-L35(OH),
l-L64(OH), l-10R5(OH), l-17R4(OH), and l-PEG(OH)) or methoxy chain ends (l-L35(OMe),
l-L64(OMe), l-10R5(OMe), and l-17R4(OMe)) along with their cyclized products (c-L35,
c-L64, c-10R5, c-17R4, and c-PEG) were prepared by dissolving an appropriate amount of
the copolymers in Milli-Q water. The copolymer solutions were stirred for over 12 h at room
temperature and kept in a refrigerator for over 48 h for complete dissolution. Each solution
was filtered immediately prior to measurement to remove any macroscopic impurities. For
Tc measurements of the PEG homopolymers, a salting-out effect was utilized to induce
phase separation below the boiling point of water [38,39]. Thus, l-PEG(OH) and c-PEG
were dissolved in an aqueous solution of NaH2PO4 at a concentration of 250 g/L.

3.2. Critical Micellization Temperature (TCMT) by Dye Solubilization

In order to evaluate the thermal response behavior of the synthesized cyclic Pluronic
copolymers, a TCMT measurement through the hydrophobic dye solubilization technique,
using 1,6-diphenyl-1,3,5-hexatriene (DPH) was performed [30]. TCMT was obtained from
the intersection temperature value at which a change in the slope of the absorption in-
tensity of DPH (λmax, DPH = 356 nm) was observed, indicating micelle formation and dye
solubilization within the hydrophobic core (Figure S5). Furthermore, the enthalpy of mi-
cellization (∆Hmic) was calculated from the slope of the linear fitting of the ln(c) versus
1/TCMT plots obtained at four polymer molar concentrations (c), in accordance with the
following Equation (1) (Figure 2). Using the ∆Hmic values, ∆Gmic at c = 10 g/L and at TCMT,
as well as ∆Smic, were calculated by the following Equations (2) and (3) [30]:

∆Hmic = R[∂ln (c)/∂(1/TCMT)] (1)
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∆Gmic = RTCMT ln (X) (2)

∆Smic = (∆Hmic − ∆Gmic)/TCMT (3)

where R is the gas constant, and X is the copolymer concentration in mole fraction at the
micellization condition.
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Figure 2. (a) ln(c) vs. 1/TCMT plot for aqueous solutions of linear hydroxy-terminated (blue),
methoxy-terminated (green), and cyclized (red) L35, indicated as l-L35(OH), l-L35(OMe), and c-L35,
respectively. Those of (b) L64, (c) 10R5, and (d) 17R4 are also shown. Enthalpy of micellization
(∆Hmic) was calculated from the slope of the linear fitting of the plots.

For 10 g/L ABA-type copolymer solutions, TCMT of l-L35(OH) was 58 ◦C, and that of
c-L35 decreased to 45 ◦C. The same trend was observed for L64, where cyclized species dis-
played comparably lower TCMT than their corresponding linear counterpart with hydroxy
chain-end groups (l-L64(OH), 35 ◦C; c-L64, 31 ◦C in Table 1). The methylation of the chain
ends also resulted in lowered TCMT for L35, but no significant effect was observed for L64
(l-L35(OMe), 51 ◦C; l-L64(OMe), 36 ◦C in Table 1). The difference in the critical micelliza-
tion conditions between cyclized and linear ABA-type Pluronic was rather pronounced in
comparison to the report by Booth and coworkers, where they were unable to define a clear
effect of cyclization on their critical micellization concentrations for both PEG–PPG–PEG
and PEG–poly(butylene glycol)–PEG triblock copolymers [33,49]. A similar decrease in
TCMT was observed for the BAB-type copolymers; from 69 to 62 ◦C for 10R5 and from 46 to
28 ◦C for 17R4 upon cyclization. TCMT of 10R5 and 17R4 also decreased upon methylation
of the chain ends (l-10R5(OMe), 65 ◦C; l-17R4(OMe), 42 ◦C in Table 1), suggesting the
elimination of the terminal hydroxy groups of PPG to also lower their TCMT. In any case,
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the cyclized copolymers displayed the lowest TCMT, indicating the effect of topology to
be more significant compared to the consequence of the simple elimination of hydrophilic
terminal moieties.

Table 1. Properties of Hydroxy- and Methoxy-Terminated Linear and Cyclized PEG and Pluronic
Copolymers and Their Solutions’ Thermodynamic Parameters.

Topology-Pluronic
(Chain-End) Composition Mn

(g/mol)
TCMT at 10 g/L

(◦C)
∆Hmic

(kJ/mol)a
∆Gmic

(kJ/mol) b
∆Smic

(J/(mol K)) b
Tc at 10 g/L

(◦C)

l-L35(OH)
(EG)11–(PG)16–(EG)11 1900

58 91 ± 4 –26.1 352 82
l-L35(OMe) 51 96 ± 5 –25.4 374 81

c-L35 45 77 ± 3 –25.2 319 64

l-L64(OH)
(EG)13–(PG)30–(EG)13 2900

35 182 ± 10 –24.6 670 64
l-L64(OMe) 36 183 ± 9 –24.7 672 68

c-L64 31 156 ± 2 –24.3 593 56

l-10R5(OH)
(PG)8–(EG)22–(PG)8 2000

69 145 ± 6 –26.9 505 72
l-10R5(OMe) 65 152 ± 20 –26.5 530 66

c-10R5 62 94 ± 7 –25.9 365 70

l-17R4(OH)
(PG)14–(EG)24–(PG)14 2700

46 173 ± 3 –26.4 625 49
l-17R4(OMe) 42 230 ± 30 –26.1 804 44

c-17R4 28 77 ± 5 –24.9 339 53

l-PEG(OH) (EG)45 2000
- - - - 65

c-PEG - - - - 59
a Average molecular weights reported from the manufacturer were used for the calculation of thermodynamic
parameters of micellization. b Thermodynamic parameters obtained for 10 g/L solutions at TCMT.

When ∆Hmic was determined from the slope of the ln(c) versus 1/TCMT plots, the
smallest values were found for the cyclic species (Figure 2 and Table 1), suggesting de-
creased enthalpic inhibition against micellization. According to previous reports, smaller
∆Hmic values for cyclized ABA-type copolymers arise from the reduced exposure of the
hydrophobic B segment to water in the unimer state [33,49,50]. Thus, the hydrophilic A seg-
ment in the cyclized form likely more effectively shielded the hydrophobic B segment from
contact with water. Furthermore, when the ABA- and BAB-type copolymers are compared,
a more significant effect on ∆Hmic was observed for the latter. For example, ∆Hmic of c-10R5
and c-17R4 were found to be drastically reduced to 94 and 77 kJ/mol, respectively, from
that of their linear hydroxy-terminated counterparts (l-10R5(OH), 145 kJ/mol; l-17R4(OH),
173 kJ mol−1). This was likely caused by the hydrophobic chain length to double upon
cyclization for the BAB-type copolymers, where the ∆Hmic value per hydrophobic repeating
unit is known to be smaller as the segment becomes longer due to the formation of tight
coils, minimizing contact with water [51].

Similarly, smaller values for the entropy of micellization (∆Smic) were found for the
cyclized species. This can also be attributed to the effect of the cyclic topology on the con-
formations in the unimer state and its relation to the hydrophobic effect. The hydrophobic
effect is an entropic driving force towards micellization, arising from the release of water
molecules from the lowered entropic states due to contact with the hydrophobic segments
of the amphiphiles in the unimeric state [52]. This entropically driven process is known
to be responsible for the micellization of many amphiphilic molecules, including Pluronic
copolymers [32], and the positive ∆Hmic and ∆Smic values obtained for the copolymers in
this work also indicate micellization of the linear and cyclized Pluronic to be entropically
driven. However, as mentioned above, cyclization of the copolymers leading to an efficient
shielding of the hydrophobic PPG blocks from the surrounding water environment is also
expected to reduce the hydrophobic effect, thus resulting in a lower ∆Smic. In addition,
the presence of “dangling chains” in the less structured micelles of the BAB-type Pluronic
copolymers may contribute to the more drastic decrease in ∆Smic upon cyclization (e.g.,
l-10R5(OH), 505 J/mol K; c-10R5, 365 J/mol K) compared to the ABA-type copolymers
(e.g., l-L35(OH), 352 J/mol K; c-L35, 319 J/mol K) [50]. Monte Carlo simulations of the mi-
cellization of linear ABA- and BAB-type copolymers performed by Kim and Jo revealed the
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latter copolymers to possess larger ∆Smic due to their less structured micelles and dangling
chains [53,54]. Therefore, since cyclization of both ABA- and BAB-type copolymers result
in an AB-type diblock copolymer, the ∆Smic differences can rationally be expected to be
more prominent for the copolymers with the BAB-type block sequence.

Interestingly, while the ABA-type Pluronic copolymers displayed comparable ∆Hmic
and ∆Smic values for the linear methoxy-terminated species to that of the linear hydroxy-
terminated species, an evident increase in both the thermodynamic parameter values were
found for 17R4, a copolymer with a BAB-type sequence and relatively long PPG blocks.
This was indicative of a more significant influence of the hydroxy groups for sufficiently
long hydrophobic PPG segments on the micellization phenomena compared to the hydroxy
groups of the hydrophilic PEG segments or short PPG segments. The larger ∆Smic values
for the methylated species are hypothesized to result from the stronger hydrophobicity,
and the larger ∆Hmic values may possibly result from relatively reduced hydrogen bonding
interaction within the micelle core. Thus, the fraction of water known to be contained
within the Pluronic micelle core [55,56] may have decreased by methylation of the chain-
ends due to their stronger hydrophobic nature, resulting in a larger number of hydrogen
bonding severances and a larger enthalpic change upon micelle formation.

3.3. Cloud Point (Tc)

The temperature-dependent transparency (%T) of Pluronic copolymer solutions at a
concentration of 10 g/L was measured to determine the aggregation and phase separation
behavior. Here, Tc was defined by the lowest temperature at which %T at the wavelength
of 600 nm became 90% or less. In order to separate the consequences of cyclization on the
heat-induced dehydration and coil-globule transition through (i) the elimination of the
strongly hydrophilic hydroxy end groups and (ii) conformational restriction of the cyclic
topology, Tc for the linear hydroxy-terminated, methoxy-terminated, and cyclized species
of the following four Pluronic copolymers: L35, L64, 10R5, and 17R4 were investigated
(Figure 3, Table 1). For the ABA-type Pluronic, a significant decrease in Tc was observed
for the cyclic species. For example, the Tc of c-L35 and c-L64 at 64 and 56 ◦C, respectively,
were comparably lower than their linear hydroxy-terminated counterparts (l-L35(OH),
82 ◦C; l-L64(OH), 64 ◦C). In contrast, cyclization of the BAB-type copolymers resulted in
comparable Tc to their corresponding linear hydroxy-terminated species. For instance, the
Tc of l-10R5(OH) and c-10R5 were 72 and 70 ◦C, respectively, while that of l-17R4(OH)
and c-17R4 were 49 and 53 ◦C, respectively. Interestingly, the linear methoxy-terminated
species (l-L35(OMe), 81 ◦C; l-L64(OMe), 68 ◦C; l-10R5(OMe), 66 ◦C; l-17R4(OMe), 44 ◦C,
Table 1) gave completely different Tc values and tendencies to those of cyclized species,
where comparable or increased Tc were obtained for the ABA-type copolymers, in con-
trast to significant decreases in Tc for the BAB-type copolymer solutions. The obtained
results suggest a clear distinction in the topology effect of cyclization to that of chemical
modification of the chain ends on the clouding phenomena.

To rationally explain the differences in transmittance changes upon temperature el-
evation of the ABA-type Pluronic copolymer solutions, an interpretation of the clouding
mechanism is required. First, both linear hydroxy- and methoxy-terminated species of
L35 and L64 (l-L35(OH), l-L35(OMe), l-L64(OH), and l-L64(OMe)) displayed similar %T
profiles, where the transmittance drastically drops at the Tc. Clouding behavior of Pluronic
copolymers to arise from phase transition induced through the dehydration and confor-
mational change of the PEG segment is widely known [24,31], and our results suggest
methylation of the chain-ends does not affect this mechanism. In contrast, the %T profiles
of the cyclized species of the ABA-type copolymer solutions indicate a distinct aggrega-
tion upon temperature elevation; the transition of the cyclized species took place over a
wider temperature range compared to their linear counterparts (Figure 3a,b), especially
for c-L64. A similar phenomenon was reported on the phase transition of cyclic poly(N-
isopropylacrylamide) (PNIPAM), explained to be caused by the disturbed packing of the
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polymer chains upon a coil-to-globule transformation due to the lack of chain ends [57,58],
suggesting an analogous behavior to be exhibited in our system.
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Figure 3. (a) Temperature-dependent transmittance (%T) at 600 nm for 10 g/L aqueous solutions
of linear hydroxy-terminated (blue), methoxy-terminated (green), and cyclized (red) L35, indicated
as l-L35(OH), l-L35(OMe), and c-L35, respectively. Those of (b) L64, (c) 10R5 and (d) 17R4 are
also shown. (e) %T at 600 nm for 10 g/L linear hydroxy-terminated (blue) and cyclized (red) PEG
homopolymers in aqueous NaH2PO4 solutions at the concentration of 250 g/L.
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BAB-type copolymers are rationally expected to form flower-like micelles in water,
where a fraction of the copolymer chains are expected to exist as or become “dangling
chains” upon temperature elevation. The presence of “dangling chains” in these flower-like
micelles is explained to act as inter-micellar bridging agents, which cause macroscopic
aggregation, where the cyclization results in the elimination of this agglomeration mecha-
nism [22,59]. In the case of the present Pluronic copolymers, the contribution from inhibition
of the inter-micellar bridging was possibly observed for c-17R4, resulting in a slight increase
in its Tc. On the other hand, the decreased Tc value for the linear methoxy-terminated
species can be interpreted as a consequence of reduced solvation of the hydrophobic seg-
ment of the polymer, resulting in enhanced micellar bridging agglomeration to precede the
phase transition.

When the chain conformations and the freedom of each block in the micellar state
are taken into account, linear triblock ABA-, BAB-type, and cyclic AB-type species are all
expected to exhibit different characteristics (Figure 4). For example, the two PEG segments
of linear ABA-type copolymers are only attached to the core–corona interface at one end of
each block, in contrast to the looped PEG corona of linear BAB-type and cyclized species,
with both PEG block-ends attached to the core. This is expected to produce significant
differences in the conformational freedom of the PEG blocks, which may influence the
hydration and Tc. Thus, the significant decrease in Tc upon cyclization observed only for
the ABA-type copolymers can be explained as the result of the fixture of the free block ends
at the core–corona interface, restricting their conformation.
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Figure 4. Schematic illustration of the expected conformations of linear ABA-type (left), linear
BAB-type (center), and cyclized (right) copolymers in the micellar state. Cyclization results in the
fixture of the PEG segment ends at the core–corona interface, and thus, is expected to affect the phase
transition phenomena more prominently for the ABA-type copolymer.

To test this hypothesis of the restricted chain conformation of PEG being a factor behind
the reduction in Tc, temperature-dependent transmittance measurements were carried out
for the linear hydroxy-terminated and cyclized species of PEG homopolymers (l-PEG(OH)
and c-PEG, respectively) (Table 1, Figure 3e). PEG solution samples were prepared at
polymer concentrations of 10 g/L in a NaH2PO4 aqueous solution (NaH2PO4 concentra-
tion of 250 g/L) to induce phase transition under the boiling point of water [38,39]. As
hypothesized, the cyclized species displayed lowered Tc compared to its linear counterparts
(l-PEG(OH), 65 ◦C; c-PEG, 59 ◦C), indicating conformational restriction via cyclization to
influence its solvation. This result bears a resemblance to thermal phase transition studies
carried out for linear and cyclic species of PNIPAM [57,58,60]. Although the Tc of the
cyclic PNIPAM samples was found to have concentration dependency and, therefore, not
always be lower than that of their linear counterparts, reduced enthalpy changes during the
clouding process were prevalent. These results, indicative of weakened hydrogen bonding
interactions between the polymer and solvent water molecules for the cyclized species,
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have been explained as a consequence of either restrictions on the backbone conformation
and/or steric constraints. A similar case could be assumed for the cyclized species of PEG
and Pluronic copolymers investigated in this study.

3.4. Dynamic Light Scattering (DLS)

In the temperature-dependent %T profiles of c-L64 (Figure 3b), a plateau of around
30 %T was reached after the initial gradual transmission drop, from approximately 60 to
80 ◦C. A second sharp drop in %T was found over 80 ◦C, after which the solution became a
0 %T value. This implies a distinction in the thermally induced aggregation and/or phase
separation phenomena of Pluronic L64, originating from its cyclic topology. In light of the
anomalous association observed for c-L64, a structural investigation into the micellar aggre-
gate size was conducted for L64 using DLS. The number-average hydrodynamic diameter
(Dh,n) at finite concentration for 10 g/L solutions of l-L64(OH) and c-L64 at various tem-
peratures is shown in Figure 5, while their number and intensity distribution profiles are
shown in Figure S6. In consistency with the dye solubilization measurements, Dh,n of both
l-L64(OH) and c-L64 smaller than 5 nm indicate the copolymers to be mostly molecularly
dissolved as the unimer state below TCMT, with some large aggregates as indicated from
multiple peaks in the intensity distribution (Figure S6). Following temperature elevation, an
evident size increase and the unification of multiple peaks in the intensity distribution were
observed at 40 ◦C for l-L64(OH) and at 35 ◦C for c-L64. While these suggest micellization
around the corresponding temperatures, the apparent size for c-L64 at 35 ◦C indicates the
cyclized species initially form larger aggregates around its TCMT, which break down into
smaller micelles upon further heating. At 40 and 50 ◦C, both linear and cyclized copolymer
systems displayed similar Dh,n of around 10–20 nm (Dh,n at 40 ◦C: l-L64(OH), 7 nm; c-L64,
12 nm), indicating the formation of well-defined micellar aggregates.
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Figure 5. Number-average hydrodynamic diameter (Dh,n) obtained from dynamic light scattering (DLS)
at various temperatures for 10 g/L aqueous solutions of l-L64(OH) (blue cross) and c-L64 (red circle).

Temperature elevation for l-L64(OH) revealed a gradual increase in micelle size from
40 to 60 ◦C, followed by a sudden increase in the mean value and distribution of Dh,n from
22 nm at 60 ◦C to 260 nm at 70 ◦C, which underwent no further significant change upon
temperature elevation to 80 ◦C, where Dh,n of 280 nm, was observed. The gradual increase
in Dh,n between 40 and 60 ◦C is in coincidence with previous studies, where aggregation
number and dimensions of Pluronic micelles are known to slightly increase upon tem-
perature elevation [24,44]. Furthermore, the sudden size increase from 60 ◦C to 70 ◦C is
indicative of the clouding phenomena and is consistent with the temperature-dependent
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transmittance results, where a drop in light transmittance occurred for l-L64(OH) between
60 and 70 ◦C (Figure 3b).

In contrast to the results for l-L64(OH), the c-L64 system underwent a more complex
change upon heating. Between 40 and 50 ◦C, its Dh,n remained constant (11–12 nm), and
thus, the majority of the copolymer micelles were found to retain their particle size. On
the other hand, the intensity distribution indicated the formation of larger aggregates
around 50–100 nm at 50 ◦C (Figure S6d). Upon further temperature elevation to 60 ◦C,
these aggregates became the major component of the system as seen in Dh,n (52 nm).
However, at 60 ◦C, the presence of even larger aggregates (ca. 500 nm) was indicated in the
intensity distribution. These aggregates are expected to be the cause of the first drop in light
transmittance (Figure 3b). Moreover, the second transmittance drop at 80 ◦C likely arose
from these species’ becoming the major component of the system. The above results suggest
the cyclic topology influences the thermally induced aggregation of c-L64. Nevertheless,
multi-step %T changes were not observed for the other Pluronic copolymer systems (c-L35,
c-10R5, and c-17R4), and thus, the effect of cyclization on the aggregation phenomena is
also expected to be in relation to the block composition and sequence of the copolymer.

3.5. The Effect of Cyclization on the Critical Temperatures

From dye solubilization, transmittance, and DLS measurements, cyclization was
found to both affect the micellization and clouding behavior of Pluronic, each to a different
degree for the four copolymer species explored in this study. A comparison of the critical
temperatures for the linear hydroxy-terminated, linear methoxy-terminated, and cyclized
species of the various Pluronic copolymers is shown in Figure 6. The micellar region, i.e.,
the temperature region above TCMT and below Tc, differs depending on the block sequence
of the Pluronic copolymers. The micellar region of the ABA-type Pluronic L35 and L64 is
relatively large, and while both methylation of the chain-ends and cyclization result in a
general downward shift of TCMT, Tc was significantly affected only by cyclization. For the
linear BAB-type copolymers, TCMT and Tc of the linear hydroxy-terminated and methoxy-
terminated species are almost overlapping; thus, their micellar region is extremely small,
or rather, they form a randomly cross-linked micellar network at this concentration [61].
The cyclized species, however, displayed prominently decreased TCMT and increased Tc
compared to the linear methoxy-terminated species, resulting in the expansion of the
micellar region. Summarizing the above, the topology and the chain-ends considerably
affect their critical temperatures in relation to the block sequence of the linear species.
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4. Conclusions

The effects of cyclization were observed for Pluronic copolymers in their bulk solution
properties. Investigation into the thermodynamic properties of micellization revealed a
downward shift in TCMT with decreased ∆Hmic and ∆Smic for the cyclized species. This is
believed to be due to a more effective shielding of the hydrophobic PPG segments by the
hydrophilic PEG segments in the cyclized species in the unimer state. Moreover, %T and
DLS measurements revealed a contrasting effect on the clouding phenomena of the cyclized
Pluronic micelles depending on their block sequence, where a pronounced decrease in Tc
was observed for the ABA-type copolymers. A comparison with the methoxy-terminated
linear species indicated the effect of cyclization to differ from the contribution from the
elimination of the hydrophilic chain-end groups. Thus, the interpretation of the effect of
cyclization on its phase transition behavior was discussed as arising from conformational
restrictions and/or steric constraints of the polymer chains induced from the cyclic topology.
A comprehensive understanding of the effects of cyclization allows the utilization of
polymer topology to be a viable option in the rational design of polymeric materials and
thus contributes to the fabrication of novel functional materials and their applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14091823/s1, Figure S1: SEC traces of Pluronic and PEG
samples, Figure S2: 1H NMR spectra of Pluronic and PEG samples, Figure S3: 13C NMR spectra of
Pluronic and PEG samples, Figure S4: Temperature-dependent transmittance of l-L64(OH), Figure S5:
Temperature-dependent absorption intensity of DPH in the presence of Pluronic samples, Figure S6:
Number and intensity distribution obtained from DLS.
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